Acknowledgement

Parts of these notes are adapted from a recitation in Spring 1998.

My contact information:

Bill Thies
thies@mit.edu

Office hours changed again:

Starting NEXT week (10/2): Sat 1-3pm, 36-153 (this room)
See website for other TA’s (should be Tues, Wed 7-9pm, Thur)

Today:

- Probability
- Heaps
- PS 1 back
Expected Interval Between Events

\(p = \text{probability that trial succeeds} \)

Expected # trials in order to succeed = \(1/p\)

<< example: # times to flip a coin before you get a heads? 2 >>
- result used multiple times in lecture

random variable \(X = \text{number of trials needed to succeed} \)

\[E[X] = \sum_{i=0}^{\infty} i \cdot \text{Pr}(X=i) \quad \text{[Def. of Expectation]} \]

<< What is probability that \(X=i \)? >>

prob. success on 1st try: \(p \)
2nd try: \(p(1-p) \)
3rd try: \(p(1-p)^2 \)
ith try: \(p(1-p)^{i-1} \)

\[E[X] = \sum_{i=0}^{\infty} i \cdot p \cdot (1-p)^{i-1} \]

\[= p \cdot \sum_{i=0}^{\infty} i \cdot (1-p)^{i-1} \]

note \(\sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \quad \text{[infinite geometric series]} \)

\[\sum_{i=0}^{\infty} i \cdot x^{i-1} = \frac{1}{(1-x)^2} \quad \text{[d/dx]} \]

Substitute \(x = 1-p \):
\[= \frac{p}{(1-(1-p))^2} \]
\[= \frac{p}{p^2} \]
\[= \frac{1}{p} \]

See also: CLRS p. 1112
Linearity of Expectation

Roll a die. What is expected value of sum of top and bottom faces?

Random vars:
T = value on top
B = value on bottom
X = T + B

<< these are for a single throw >>

[Linearity of Expectation] << even though variables are dependent >>

\[= \sum_{i=1}^{6} i \cdot \Pr(T=i) + \sum_{i} i \cdot \Pr(B=i) \]

\[= \sum_{i=1}^{6} i \cdot (1/6) + \sum_{i} i \cdot (1/6) \]

\[= 1/6 \cdot 2 \cdot \sum_{i=1}^{6} i \]

\[= 1/6 \cdot 2 \cdot (6 \cdot 7 / 2) \]

\[= 7 \]
Dynamic Sets

- Insert(S, x) \(S \leftarrow S \cup \{x\} \)
- Delete(S, x) \(S \leftarrow S - \{x\} \)
- Contains(S, x) whether or not \(x \in S \)
- Max(S) largest \(x \in S \)

etc.

Priority Queue: one kind of dynamic set
- Operations << draw table headings below >>

<< Example: job scheduling. Value is priority; comes attached with job. >>

<table>
<thead>
<tr>
<th></th>
<th>Insert</th>
<th>Extract-Max</th>
<th>[Worst case]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>(\Theta(1))</td>
<td>(\Theta(n))</td>
<td></td>
</tr>
<tr>
<td>Sorted array</td>
<td>(\Theta(n))</td>
<td>(\Theta(1))</td>
<td><< linked list has same behavior >></td>
</tr>
<tr>
<td>Binary heap</td>
<td>(\Theta(lg\ n))</td>
<td>(\Theta(lg\ n))</td>
<td></td>
</tr>
</tbody>
</table>

Sorting with heaps:
for \(i \leftarrow 1 \) to \(n \)
 do Insert(S, A[i])
for \(i \leftarrow n \) downto 1
 do \(A[i] \leftarrow \text{Extract-Max}(S) \)

Running time? \(\Theta(n \ lg\ n) \)
<< Will see that you can be clever, make it run in place >>
Binary max-heap: nearly complete binary tree

- heap property: \(A[\text{parent}(x)] \geq A[x] \)

<< also have min-heaps, k-ary heaps >>

\[
A = 12, 6, 10, 4, 3, 8, 5, 2
\]

Can store in array (add indices to graph, draw array)

- Parent(i) = \(\lfloor i/2 \rfloor \)
- Left(i) = \(2i \)
- Right(i) = \(2i + 1 \)

Extract-max (A)

- max \(\leftarrow A[1] \)
- A[1] \(\leftarrow A[\text{size}(A)] \)
- \(\text{size}(A) \leftarrow \text{size}(A) - 1 \)
- run Heapify(A) // restore heap property
- return max

EXTRACT-MAX EXAMPLE (Remove node 12, move 4 to top, run Heapify)

Time = Heapify time + \(\Theta(1) \)
Maintaining Heap Property

Heapify(A, i) // Subtrees of i are heaps. Makes i’s subtree a heap.
largest ← i
if Left(i) ≤ size(A) and A[Left(i)] > A[largest]
 largest ← Left(i)
if Right(i) ≤ size(A) and A[Right(i)] > A[largest]
 largest ← Right(i)
if largest ≠ i
 then exchange A[i] ↔ A[largest]
 Heapify(A, largest)

<< note: tighter code via looping >>

HEAPIFY EXAMPLE (See CLRS, p. 131)

Correctness: induction on height of node i
Running time: proportional to height, O(lg n) (for n-node heap)
Inserting Elements into Heap

Insert(A, key)
 size(A) ← size(A) + 1
 i ← size(A)
 A[i] ← key
 while i > 1 and A[Parent(i)] < key
 do exchange A[i] ↔ A[Parent(i)]
 i ← Parent(i)

<< like insertion of insertion sort >>

INSERT EXAMPLE (See CLRS, p. 141)

Running time: O(lg n) for n-elem heap
Sorting Using Heaps

Heapsort
- O(n \(\lg n \)) worst-case \(<\) known >>
- sorts in place \(<\) to show >>
<< none of the sorts we've seen so far have both of these properties >>

HeapSort(A)

 Build-Heap(A)

 for i ← size(A) downto 2
 size(A) ← size(A) – 1 \(<\) note: effects only size of heap, not real array >>
 Heapify (A)

HEAPSORT EXAMPLE (See CLRS, p. 137)

Running time = Build-Heap time + O(n \(\lg n \))
Building a Heap from an Array

We didn’t cover this in detail in recitation.

Build-Heap(A)
 for i ← size(A) downto 1
 do Heapify(A, i)

BUILD-HEAP EXAMPLE (See CLRS, p. 134)

Correctness: induction on i
- invariant: all trees rooted at m > i are heaps

Running time (naïve analysis):
 n calls to Heapify = n * O(lg n) = O(n lg n)

<< Good enough for O(n lg n) bound on heapsort, but sometimes we build
heaps for other reasons. >>

Tighter analysis:

Time of Heapify = O(height(i))
Assume n = 2^k - 1 (complete binary tree)

T(n) = O(n+1 + (n+1) * 2 + (n+1) * 3 ... 1 * k)

Thus, Build-Heap(A) = O(n), where n=size(A)
Sorting Review

<table>
<thead>
<tr>
<th>Sort</th>
<th>Average</th>
<th>Worst Case</th>
<th>In place?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heapsort</td>
<td>$\Theta(n \lg n)$</td>
<td>$\Theta(n \lg n)$</td>
<td>yes</td>
</tr>
<tr>
<td>Quicksort</td>
<td>$\Theta(n \lg n)$</td>
<td>$\Theta(n^2)$</td>
<td>yes</td>
</tr>
<tr>
<td>MergeSort</td>
<td>$\Theta(n \lg n)$</td>
<td>$\Theta(n \lg n)$</td>
<td>no</td>
</tr>
<tr>
<td>InsertionSort</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
<td>yes</td>
</tr>
</tbody>
</table>