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Abstract— Visual inspection of cells is a fundamental tool for
discovery in biological science. Modern robotic microscopes are
able to capture thousands of images from massively parallel
experiments such as RNA interference (RNAi) or small-molecule
screens. Such screens also benefit from lab automation, making
large screens, e.g., genome-scale knockdown experiments, more
feasible and common. As such, the bottleneck in large, image-
based screens has shifted to visual inspection and scoring by
experts.

In this paper, we describe the methods we have developed
for automatic image cytometry. The paper demonstrates illu-
mination normalization, foreground/background separation, cell
segmentation, and shows the benefits of using a large number
of individual cell measurements when exploring data from high-
throughput screens.

I. INTRODUCTION

One of the most basic tools of modern biology is visual
inspection of cells using a microscope. Modern techniques,
such as immunofluorescent staining and robotic microscopes,
have only magnified its importance for the elucidation of bio-
logical mechanisms. However, visual analysis has also become
a major bottleneck in large, image-based screens, where tens
to hundreds of thousands of individual cell populations are
perturbed (genetically or chemically) and examined to find
those populations yielding an interesting phenotype. Several
genome-scale screens have relied on visual scoring by experts
[1], [2]. There are benefits to manual scoring, such as the
ability of a trained biologist to quickly intuit meaning from
appearance, the robustness of the human visual system to
irrelevant variations in illumination and contrast, as well as
humans’ ability to deal with the wide variety of phenotypes
that cells can present.

However, automatic image cytometry has several advan-
tages over manual scoring: simultaneous capture of a wide
variety of measurements for each cell in each image (versus
scoring a few features per image), quantitative rather than
qualitative scoring, ease of reproducibility, detection of more
subtle changes than is possible by eye, and the main benefits,
elimination of tedious manual labor and much faster analysis
of images.

Several groups have made use of automated cell image
analysis [3], [4], [5], [6], [7], demonstrating the efficacy of
such an approach. These groups have either made use of
expensive and inflexible commercial systems, often bundled
with a particular imaging platform, or they have developed
their own software, seldom used outside of the original lab
because of its specificity to a particular screen. In order to

reduce the duplication of effort in this area, and to make tools
for automated cell-image analysis more widely available, we
have created CellProfiler, an open-source, modular system for
cell-image analysis [8], [9].

This paper describes the key algorithms in CellProfiler, and
our overall strategies for accomplishing high-throughput image
analysis. These include illumination correction to normalize
for biases in the illumination and optical path of the micro-
scope, identification of cells versus background, segmentation
of individual cells, and capture of a wide variety of per-cell
measurements (the “high-content” aspect of our work). We
discuss methods and techniques for exploration and analysis
of the resulting data and illustrate their application to real-
world biological experiments.

II. CHALLENGES IN IMAGE-BASED HIGH-CONTENT
SCREENING

We have analyzed several large screens with our system.
This paper presents some of the challenges inherent to image-
based screens, and the methods we use to address those
difficulties. We will use two screens in particular as examples.
The first is a set of cell microarrays, single glass slides
with cells growing on an array of “spots” printed with gene-
knockdown reagents [10]. The second is from an experiment
screening ∼5000 RNA-interference lentiviral vectors targeted
to silence ∼ 1000 human genes, run in a set of 384-well
plates [11]. Both experiments produced thousands of high-
resolution (512×512 pixels or larger) images, each containing
hundreds of cells. Each image contains cells with a single
gene’s expression knocked down (decreased).

These experiments suffered from a variety of biases and
sources of noise. Both showed illumination variation of around
a factor of 1.5 within the field of view, swamping many mea-
surements with noise if not corrected. The cell microarray ex-
periment was performed with Drosophila melanogaster Kc167
cells, which are notoriously difficult to segment accurately
[12]. Also in this experiment, significant post-measurement
biases were detected based on spot position on the slide, due
to variations in cell seeding density, concentrations of nutrients
or stain, or other factors.

For both screens, discovery of unknown “interesting” phe-
notypes was and is an open-ended goal. We take a wide variety
of per-cell measurements, because we do not know which
measurements will be most useful or interesting a priori, both
in the particular screen and for future explorations. Capturing
a wide variety of measurements provides the most freedom



in post-cytometry analysis, but also leads to difficulties in
finding which subset of hundreds of measurements can most
effectively discriminate a particular phenotype.

Moreover, even in the more goal-directed screens, we are
often focused on identifying cells that are different from the
“usual” cell in ways that may not be completely specified.
Algorithms and methods that work well on normal cells can
fail completely when faced with cells that vary significantly in
appearance. Robustness to wide variation in cell appearance
is therefore an overarching concern in all of our work.

In the following section, we discuss how each of the issues
discussed above arose during screens, and the methods we
used to overcome these challenges.

III. METHODS

A. Illumination Normalization

Any image- and cell-based screen involves several devices
whose physical limitations lead to biased measurements. One
of the most pervasive of these is non-uniformity in the optical
path of the microscope and the imager. It is typical for the
overall illumination to vary by almost a factor of two across
the field of view, making segmentation of individual cells more
difficult, and seriously compromising intensity-based measure-
ments. Since many such measurements vary less than two-fold
in a group of cells, they will be useless unless the illumination
is normalized. Fortuitously, such variation is consistent from
image to image within a single screen, provided as many
elements as possible do not change within the screen, i.e.,
the microscope and optical components are kept the same, the
same type of slide or plate is used consistently throughout
the experiment, and the images are taken in as short a span
as is feasible. We include uneven incoming illumination,
sensor biases, and illumination variation due to lens and slide
imperfections under the single term “illumination variation.”

We need to estimate the illumination variation in order to
correct for it within each image. We model the image-forming
process at pixel (x, y) in a particular image I as,

Ix,y = Lx,y(Cx,y + b), (1)

where I is the image, L is the illumination function, C is an
indicator function which is 1 if a cell overlaps pixel (x, y), and
0 otherwise, and b is a term to account for background staining.
Note that this model conflates the magnitude of C + b and L,
but since we lack any data that give L physical units, we only
need to estimate it up to a scale factor. Lindblad and Bengtsson
use a similar model for single image normalization (after log-
transformation of the pixels), but without the background term
[13]. In our experience, non-specific (background) staining is
not always low enough to disregard during normalization.

In the cell microarray experiments, we found that the cell
distribution was uniform in the field of view (figure 1) and,
in this case, background staining b negligible (as judged from
a histogram of pixel intensities). In this case, we estimate L
as a smoothed per-channel average of I across all the images
in the screen. The average intensities for the three channels
(i.e., stains) and the (uniform) cell distribution are shown in

figure 1. Note that we smooth the intensity images to reduce
sampling noise prior to using them for illumination correction.

In the well-based experiments, each well was imaged in four
different locations. Each location had a significantly different
cell distribution, but the background staining level b and the
illumination function L were the same across locations (as
judged by eye). We use a smoothed regression via equation
(1) to estimate L for a range of values of b, taking the pair
that best fit the position-wise averages. Cell distribution was
estimated by smoothing DNA-stained images and adaptively
thresholding to approximately locate nuclei (more accurate
identification of nuclei is described in the next section).

Illumination correction is necessary for accurate segmenta-
tion and measurement of cells. We note that the optimal so-
lution would combine the estimation of illumination variation
and the segmentation steps into a single procedure, similarly to
well-known EM-segmentation methods that simultaneously fit
a smooth bias field and discrete segmentation labels to image
data [14], [15]. In our initial implementation, we have focused
on each step separately, with the goal of understanding the
nature of the signal. In addition, the high-throughput nature of
the experiments places substantial run-time limitations on the
algorithms used for the analysis of individual images. We are
currently working on a fast implementation for simultaneous
illumination correction and segmentation of cell images.

B. Segmentation

The primary benefits of image-based assays are the capture
of per-cell data, with a large number of per-cell measurements.
This prevents the conflation of multimodal populations, as in
expression profiling with gene-chips, and provides a much
richer data source than other methods, such as flow cytometry.
To exploit the full potential of this data, however, it is
necessary to accurately segment individual cells within each
image.

Unfortunately, the appearance of cells is highly variable
from assay to assay. Experiments use different types of cells,
different staining protocols, different growth substrates, and
of course, different conditions within each assay. All of these
prevent a single approach from being optimal for all cases. We
have implemented several methods in our system in a modular
fashion so we can easily adapt to new screens.

We have developed a successful, general approach for
cell segmentation. Nuclei are more uniform in shape and
more easily separated from one another than cells, so we
first segment nuclei, then use segmented nuclei to seed the
segmentation of individual cells. We threshold the nuclear
image using a regularized version of Otsu’s method [16]
or our own implementation that fits a Gaussian mixture to
pixel intensities. After thresholding the nuclear channel, we
separate nuclei that appear to abut or overlap by locating
well-separated peaks in the intensity image, and use either a
watershed transformation [17] or Voronoi regions of the peaks
to place nuclear boundaries, as in related work [18], [19], [20].
Our thresholding and segmentation system are modular, so the
user can experiment with different approaches on a small set



Fig. 1. Top: Mean intensity for DNA (nuclear) and Actin (cytoskeletal) stained channels in the cell microarray experiment. Bottom left: Mean intensity
for phospho-Akt stained channel (a protein of interest in this screen). Bottom right: The flat distribution of nuclear centers. Nuclei that overlap the image
boundary are eliminated before measurement. All images are false color.

of images to determine the best option, or modify existing
modules for a particular experiment.

Given segmented nuclei, segmentation of individual cells
is a matter of locating the borders between adjacent cells.
The wide variety of cellular phenotypes discussed above
prevents us from knowing the particular appearance of cell
borders, and in fact, in many screens the borders may change
significantly in response to a particular condition, such as a
gene’s knockdown. For this reason, we use a very general
method for placing cell borders.

A priori, we assume that a pixel we have classified as being
“within some cell” is more likely to be associated with the
closest nucleus in the image. This naturally leads to using the
Voronoi regions of the nuclei to place borders between cells.
Another approach is to assume the borders of the cells are
brighter or darker, and use a watershed transformation to place
boundaries. Both of these approaches are commonly used in
image cytometry [21], [22]. However, the first approach makes
no reference to the cytoskeletal stain (i.e., information on
where the border of the cell is actually located), and the second
relies on the borders of the cells being brighter or darker and
is overly sensitive to noise in pixels at cell boundaries. In
our experience, both of these methods provide poor results in

practice. We combine and extend these approaches by defining
a distance between pixels that makes dissimilar pixels farther
apart, and use this metric to compute nearest-neighbor regions.

We define similarity in terms of pixel neighborhoods. The
distance between adjacent pixels at positions i and j is
computed as

((i− j)T∇g(I))2 + λ||i− j||2 (2)

where g(I) is a smoothed version of the image, ||i − j|| is
the Euclidean distance between pixels i and j, and λ is a
regularization term that balances between image-based and
Euclidean distances. Distances between non-adjacent pixels
are computed as the shortest path stepping between adjacent
pixels, and cells are segmented via Voronoi regions of nuclei
under this metric. More details of this approach are given in
our earlier work [23].

C. Measurements

After segmentation, it is possible to make per-cell measure-
ments for each image. Even if the screen is very targeted and
the staining protocol has been tuned to give a simple binary
answer, we capture a wide variety of measurements in order
to maximize our ability to make inferences from the data.



Fig. 2. Top: Median cell DNA content plotted on the physical layout of the slide in the cell microarray experiment. Bottom left: DNA content histogram for
all cells on the slide, prior to spatial bias correction. Bottom right: DNA content histogram after bias correction. DNA content is measured by total intensity
of the DNA stain within the nucleus, with unknown units. For this cell line, the dominant peak is made up of 4N cells, in which the DNA has duplicated,
but the cells have not yet divided. The horizontal axis labels show relative values only.

For each cell, we make measurements of its morphology
(e.g., area, perimeter, extent, convexity, and several Zernike
moments), and intensity and texture of the various stains (e.g.,
mean and standard deviation of intensity, correlation of stains,
and Gabor filter response at various scales). Measurements
are also broken down by cellular compartment (nucleus,
cytoplasm, and entire cell). A full discussion of which mea-
surements to use in a given screen is not germane to this
paper, but our guiding principle has been that, although it can
make inference more difficult, taking too many measurements
is better than taking too few. Adding new measurements to
our system is simple because of its modular design.

Many of the measurements we capture have a clear bi-
ological meaning, such as cell size, or total DNA staining
intensity in the nucleus (proportional to the amount of DNA
present). Others have a less obvious connection to the biology
of the cell, such as the eccentricity of the nucleus, or amount
of variation in the cytoskeletal stain. Although we may not
be able to assign meaning to every measurement, we can
still make use of them when performing analyses or when
classifying cells, as discussed in section III-E.

D. Spatial Bias Correction

Before measurements can be used to make biologically
useful statements, we must control for systematic biases as
much as possible. Biases in the data often come from variation

across the physical layout of the slide or multi-well plate in
which the experiments were performed (a.k.a, “plate effects”
and “edge effects” [24]).

Some measurements can be corrected by fitting a smooth
function to the data on the physical layout, and dividing the
corresponding per-cell measurements at each position by the
smooth function. For example, if we plot median per-cell DNA
intensity on the slide layout for a 5600-spot (140× 40) slide
(figure 2, top), we observe a spatially varying bias, most likely
due to inhomogeneity in the stain for DNA. We correct for this
bias by applying a 2D median filter to the 140 × 40 values
and dividing each cell’s measurement by the smoothed value.
The improvement in the per-cell DNA content histogram is
obvious (figure 2, bottom left vs. right).

In some cases, it is difficult to determine how to correct
a particular measurement or combination of measurements.
Nonlinear interactions of cells with their environment makes
it nearly impossible to remove all biases before making
inferences from the data. Therefore, we make maximum use of
nearby control spots or wells and check each measurement we
use against the physical layout (as in figure 2). Bias correction
is an active area of research [24], [25].

E. Exploration and Inference

We take several approaches to exploring data from high-
throughput, high-content screens. For example, (1) per-cell



measurements can be combined to give per-gene values by
taking means, medians, etc., or by using other data reduction
techniques. (2) Pairs of populations produced by different gene
knockdowns can be compared directly using distribution-based
metrics. Or, (3) individual cells can be classified by their
measurements, and gene knockdowns compared by how they
change the balance of different classes of cells. We discuss
each of these approaches below.

1) Per-Gene Measurements: Each per-cell measurement
can be converted to a per-gene measurement by taking the
mean, median, or otherwise reducing each measurement to a
small set of parameters. This approach works particularly well
when the screen focuses on a simple single parameter readout
(e.g., presence of a given protein), or if the goal is to find
gene knockdowns that have an easily measured effect (e.g.,
cause cells to grow larger). For example, figure 3 shows a
scatterplot of per-gene mean cell size vs. mean nuclear size.
Three replicates knocking down the gene ial are highlighted,
in which cells and nuclei have grown larger than controls.

This approach is also effective for early, open-ended ex-
ploration, where identification of outliers is the primary task,
especially since it can be applied to any measurement without
prior knowledge about that measurement’s biological implica-
tions.

Reducing the data in this way makes it weakly analogous
to the data from gene-chips, in which mean expression level is
measured for a large number of proteins. Like gene-chips, this
approach can suffer from an over-reduction of measurements.
For example, knocking down a gene may cause some cells
to double in size, and an equivalent fraction to halve in size,
but this would not affect the mean cell size [26]. In contrast,
if we work with measurements’ distributions directly, such
differences are easily detected.

2) Population comparisons: To compare two populations’
measurements directly without first reducing to a single per-
gene value, we can apply distribution comparisons such as
the Kolmogorov-Smirnov [3] or Kuiper [27] tests, or compute
sample-based information-theoretic estimates, such as the KL-
divergence between the two distributions [28]. These can be
used to compare each sample against a set of positive or
negative controls, or against the full slide-wide cell population,
yielding a more experiment-specific per-gene measurement as
discussed above.

Comparing gene knockdowns’ populations via a single or
small set of per-cell measurements, as in figure 3, top right,
is similar to exploring data from flow cytometry, in which
a few measurements are taken for a large number of cells.
Flow cytometry is generally lower-throughput than image-
cytometry. The number of measurements is also much more
limited compared to automatic image-based cytometry.

3) Per-Cell Classification: To take full advantage of the
large number of per-cell measurements, our primary method
of exploration is via per-cell classifiers. We build or train
classifiers that identify a phenotype of interest, and apply
them to the full screen in order to determine which conditions
or gene knockdowns cause enrichment or depletion in those

phenotypes. Our goal is to understand the function of genes,
with the underlying assumption that gene knockdowns that
cause similar changes in phenotype have similar functions in
the cell.

In particular, we advocate the per-cell classifier approach
because it detects very small changes in the percentage of
cells falling into a particular class. Some phenotypes, such as
mitotic (replicating) cells, are <1% of cells at the background
level and increase only three-fold above this level in outliers
and positive controls [8]. These changes are so small relative
to the full population that they are swamped if measurements
are blindly combined into per-gene values, or when comparing
two otherwise similar distributions.

Given a classifier for cells showing a known phenotype, the
list of gene knockdowns that enrich or deplete that phenotype
can be used to impute function for those genes. For example,
if we build a classifier for cells in metaphase, knockdowns that
cause enrichment of that phenotype probably have a regulatory
function in the metaphase to anaphase transition. Simplified
examples of per-cell classifiers are shown in figure 4, in which
classifiers were constructed to identify different phases of the
cell cycle based on a pair of measurements, total nuclear
DNA content (as measured by the DNA stain), and mean
nuclear phospho-H3 content (a marker for mitosis). If a gene
knockdown significantly changes the fraction of cells landing
in one (or more) of these classifiers, it is likely to be a regulator
for those phases of the cell cycle. Most classifiers are more
complicated than this, involving a larger number of per-cell
measurements [8].

To compute enrichments and p-values, we treat the output of
classifiers as Bernoulli random variables. If negative controls
are available in the screen, then enrichments are computed
relative to those controls. Otherwise, we use the full screen-
wide cell population as the control, the operative assumption
being that for each phenotype, knockdown of most genes will
not affect that phenotype. There are two justifications for this
assumption: many genes are not expressed under experimental
conditions, so they cannot be depleted by knockdown, and
most genes’ knockdown will have no effect on a particular
phenotype.

The phenotypes targeted by the classifier can be biologically
well-characterized, such as cells in a particular phase of
the cell cycle (as above), or simply cells that have a novel
appearance, without a well-defined biological interpretation
attached. For an uncharacterized phenotype, the group of
gene knockdowns causing enrichment or depletion in that
phenotype can be informative depending on the group of gene
knockdowns causing similar effects. For example, the genes
in the group might share a physical or biochemical property,
suggesting a mechanism for the phenotypic change. Or, if
the group contains genes with a similar, known function, the
uncharacterized genes in the group can be hypothesized to
also share that function. This also allows for the identification
of new, hypothetical cellular processes, rather than simply
identifying genes involved in known processes.

The per-cell classifier approach can also be applied to a



Fig. 3. Top left: Scatterplot of per-image mean cell area vs mean nuclear area in a cell microarray experiment. Three replicates knocking down the gene
ial are highlighted in the upper right corner. The lines show two standard deviations around the mean. Top right: Per-cell histograms of cell area for the ial
replicates compared to controls. Lower left: Cells with ial knocked down. Lower right: Control cells (Blue: DNA, Green: Actin, Red: phospho-Histone H3).

particular gene’s knockdown which might not show a human-
discernable phenotype, but for which we can still build a
classifier. If the classifier is effective at separating the cells
with the target gene knocked down from the cell population
at large, the implication is that there is a measurable phenotype
caused by the target gene’s knockdown, and other knockdowns
that cause the same phenotype have a similar function.

One of the benefits of the classifier-based approach is that it
is less susceptible to spatial biases when the classifier is trained
by a human, compared to data-reduction or full-population
comparison methods, because of the robustness of the human
visual system to these biases. Note, however, that the nonlinear
effect of environment on cells can cause biases in the fraction
of cells of a particular phenotype, so the results of applying the
classifier should be checked for spatial bias, similar to figure
2.

The classifier approach is reminiscent of example-based
image retrieval [29], [30]. However, rather than searching for
images as the primary goal, we are using similar techniques

to quickly categorize subimages of cells, with the intent of
determining the number and distribution of cells matching our
query specification.

After finding hits in a particular screen, followup work may
be necessary to validate the results. If there are a sufficient
number of replicates, or data from other screens are available,
it may be possible to make a categorical statement about a
gene knockdown’s effect without further experimental work.
However, in almost all cases, biologists will investigate the
mechanism of the effect in traditional followup experiments.

IV. DISCUSSION

This paper has presented several methods for high-content,
high-throughput image-based screens of cells. Such screens
are particularly valuable in biological and pharmaceutical
research. We have developed CellProfiler [9], a modular, open-
source system incorporating these methods.

High-throughput, high-content screening is a powerful tech-
nique for making discoveries about cellular processes, genetic



Fig. 4. Simplified examples of per-cell classifiers (from [8]). The central scatterplot shows total DNA content (horizontal axis) vs mean phospho-histone
H3 staining intensity for all cells in the screen of human genes. Phospho-histone H3 is present in cells undergoing cell division (mitosis). Selecting different
regions in the scatterplot selects different subpopulations of cells, as shown in the insets. Each inset shows 4 subimages; each subimage shows a random cell
from the corresponding subpopulation (marked) and its surrounding image neighborhood. Counter-clockwise from lower left: 2N cells (normal complement
of chromosomes), 4N cells (DNA duplicated), Metaphase (condensed DNA, preparing to separate), Anaphase/Telophase (daughter cells separating). This is
also the progression of the cell cycle. A gene knockdown causing enrichment in any of these subpopulations relative to controls is likely a regulator of that
phase of the cell cycle. Most classifiers involve many more measurements.

pathways, and drug candidates. It also poses new challenges
and requires novel techniques to realize its full potential as
a discovery tool. Algorithms for identifying, segmenting, and
measuring individual cells must deal with noise and biases,
be robust to a wide variety of cell appearances, and must be
accurate enough to allow very small (<1%) subpopulations to
be identified accurately. However, the payoff for the increased
effort is a dramatically more powerful method for detect-
ing changes in cells under different experimental conditions,
through the use of per-cell data and classifiers, compared to
more traditional techniques. These methods have been proven
in some of the first large-scale automatic screens to appear in
the biological literature [8], [11].

For reasons of scope, this paper does not include a discus-
sion of the architecture and design of our system implementing
the techniques presented here [9]. We aimed to make the sys-
tem as modular and extensible as possible, while maintaining
a user-friendly interface. We believe it has been successful in
these respects, particularly given its use in a variety of non-cell
screening tasks (e.g., counting and classifying yeast colonies
on Petri dishes, counting nuclear subcompartments/speckles,
tumor measurement, etc. [31]).

In the future, we will incorporate methods for simultaneous
illumination normalization and segmentation, and automatic
methods for spatial bias correction. We have also started to
explore general clustering based on per-cell measurements.
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