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Point-Based Computer Graphics

Models created from 3D scanners are
becoming more prevalent as the

demand for realistic geometry grows and scanners
become more common. Unfortunately, scanned models
are invariably noisy. This noise corrupts both samples’
positions and normals. Many methods have been pro-
posed for denoising models’ geometry, whether repre-
sented as triangle meshes or as points. Less effort has
been spent on improving normals, except as a step
toward or byproduct of smoothing geometry, and even
though noise in normals affects rendering quality more
than noise in positions. We believe there are benefits to
considering normal improvement on its own.

Our proposed method for improving normals is
derived from a feature-preserving geometry filter. Many
such filters are available, most operating on models rep-
resented as triangles meshes. 

We argue that for point rendering, removing noise
from normals is more important than removing noise
from geometry, because normals have a greater impact
on the model’s perceived quality. Nonlinearity in light-
ing calculations causes even low levels of noise in nor-
mal directions to be quite noticeable, while the level of
positional noise in scanned models is seldom enough to
cause visible occlusion errors. Normal filtering has been
explored by others, but generally as a step toward
smoothing of geometry,1,2 and not as an end in itself.

Our filter does not modify sample positions during
smoothing. We could attempt to simultaneously smooth
normals and positions, but similarly to lighting calcula-
tions, noise in normals has a nonlinear effect on the esti-
mates of smooth positions. This leads to poor smoothing
in flat areas and over smoothing near features.3 We avoid
these difficulties by concentrating on normals alone.

Two approaches for smoothing point models have been
proposed. Point set surfaces estimate smoothed normals
and geometry by least-squares fitting to locally weighted
neighborhoods.4 The spectral processing method creates
a local height field, which is then filtered and resampled.5

The former method is not feature preserving, while the
latter requires resampling to a regular grid, which can
degrade features. Our method is novel in that it preserves
features and doesn’t require resampling.

3D bilateral filter
The bilateral filter was originally

proposed in image processing,6,7 but
there have been three recent exten-
sions to 3D shapes.2,3,8 We use the
3D bilateral filter proposed by Jones,
Durand, and Desbrun3 because of its
straightforward extension to mod-
els represented as points with nor-
mals, such as surfel models.9

The 3D bilateral filter applied to a
model predicts a new position for
every point as a weighted combina-
tion of predictions from nearby
points in the model, based on their positions and nor-
mals. It is of the form

(1)

where S is the set of all points in the model, k is a nor-
malizing factor (sum of the weights),

and Πp(s) is the linear prediction for s given the infor-
mation at point p, Πp(s) = s + (p − s) ⋅ np np, where np is
the normal at p. This is simply the projection of s onto
the plane through p with normal np.

We refer to the two functions f and g as the spatial
weight and influence weight functions, respectively.
They are both positive, monotonic, decreasing func-
tions. The first controls how large a neighborhood of
points is used to estimate s′. The second causes predic-
tions Πp(s) that are far from the original position s to
have less effect on the estimate for s′. In other words, g
rejects outliers and gives the 3D bilateral filter its fea-
ture-preserving behavior. We use Gaussians of width σf

and σg in our work. The feature-preserving nature of
the bilateral filter and its relation to the choice for f and
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g is discussed in depth elsewhere for both images10 and
3D shapes.3

Normal filtering
Rather than using the bilateral filter to modify points’

positions, we can instead treat Equation 1 as a spatial
deformation, and update the normal ns according to this
deformation.11 In other words, we look at how an infin-
itesimal patch at s with normal ns would be modified by
the filter. Since the filter removes noise from point posi-
tions, it should also align normals, as shown in Figure 1.

In a sense, the filter compresses space perpendicu-
larly to the surface defined by the points. Points move
closer to the surface, and normals align with one anoth-

er. With near features, we see similar behavior, but nor-
mals align with the surface normal on one side or the
other, depending on their location (see Figure 2).

Our method relies on the feature-preserving behavior
of the filter with regards to geometry to preserve fea-
tures in the normal field as well. This is the only require-
ment for feature preservation in the normals. Our
normal filter inherits the feature-preserving behavior of
the geometric filter it is based on.

If we write the 3D bilateral filter in Equation 1 for a
point s in space as a deformation, that is, s′ = F(s), then
the transformation of the normal can be computed from
the transposed inverse of the Jacobian J(s) of F(s),11

where Ji(s) is the ith column of J(s), and si is the ith com-
ponent of s. We have assumed that n′s will be renormal-
ized after smoothing, and thus use the adjoint rather
than full inverse of J(s). We do not give the full deriva-
tion of J(s). It’s straightforward to derive from Equation
1 by hand, or to use an implementation of automatic dif-
ferentiation to compute it. We further explore the use
of the transposed adjoint in the “Analysis of the Trans-
posed Adjoint to the Filter” sidebar.

We demonstrate the results of our filter on a noisy 3D
scan of a face, stored as a surfel model in Pointshop 3D
(see Figure 3, next page).12 After four iterations of the fil-
ter, nearly all noise in the normals is removed. The fea-
tures, particularly around the eyes and mouth, are well
preserved by the filter. The artifacts (for example, on the
side of the nose) are caused by surfels with very large
radii, and are present in the original data. There are about
75,000 surfels in this model. For this example, we used
σf = 4 and σg = 0.5 of the mean surfel radius. In general,
we must adjust the filter parameters based on sampling
rate and the amount of noise in the model. The spatial fil-
ter is truncated to zero at twice σf. The filter runs in ≈ 30
seconds per pass on a 1.4-GHz Athlon processor. The
speed could be improved through optimization. For
instance, kd-trees are used to locate nearby points. Jones,
Durand, and Desbrun have found it much more efficient
to use spatial binning with bins of size σf for this purpose.3

We demonstrate more aggressive smoothing with σf

= 8 on a scan of a dog (400,000 surfels.) Each pass
requires ≈ 500 seconds, due to a larger model and wider
filter. Figure 4 shows the initial model and two passes
of the smoother.

Conclusion
We have presented a feature-preserving filter for the

normals of point models. For rendering applications,
this is generally sufficient, as the normals are much
more important to rendering quality than the actual
point positions. In simple terms, our method is a syn-
thesis of spatial deformations11 and feature-preserving
geometry filtering.3

Our filter does not modify sample positions, which we
believe is beneficial in an iterative smoothing process.
When noisy positions and normals are filtered, some
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Analysis of the Transposed Adjoint of the Filter

The effectiveness of our method can be understood by analysis
of an ideal case in 2D. Suppose we have an infinite planar surface
defined by y = 0 with constant normal [0 1]T, and are adjusting the
normal for a point s=[s1 s2]T near the surface. As an approximation,
and since we are near the surface, we can neglect the influence of s
itself on the prediction for its smoothed position s′. In this case, it’s
not difficult to see that s′ will always be the perpendicular
projection of s onto y = 0, that is, s′ = F(s) = [s1 0]T. Thus, the
Jacobian of F will be

, 
with transposed adjoint 

.
In the more realistic case, in which the surface’s sample positions

and normals are noisy, the s′ might not move completely to the 
y = 0 plane, or it could drift tangentially relative to s. However, if 
s′ = F(s) ≈ [s1 εs2]T with ε < 1 (as will be true for reasonable levels of
noise), then the transpose adjoint will be near 

, and after sufficient iterations, ns will be close to [0 1]T.
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1 How the filter affects normals near a flat region of the surface. 

2 How the filter affects normals near a corner. 



smoothing of features is unavoidable. By not modifying
sample positions, we preserve as much information
about the original features as possible, giving normals
that better reflect these features.

One possibility for future work is to use our normal
improvement algorithm as a presmoothing pass, then
apply a filter to sample positions. We have concentrated
on normals rather than positions because normals are
much more important than positions in rendering qual-
ity. For other applications, such as haptics and surface
reconstruction, it might be necessary to improve point
positions as well.

Many scanners produce normals for samples from the
positions of neighboring samples. We have not yet
explored how this affects our normal smoothing method
when compared to data from scanners that estimate nor-
mals from, for example, lighting variation. The models
we have used to demonstrate our method were gener-
ated from triangle meshes, effectively estimating nor-
mals from neighboring positions. ■
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4 Two iterations of our filter are applied to a scan of a dog statue. (Model courtesy of Jianbo Peng.)

3 Four iterations of our filter applied to the normals of a noisy 3D scan. 
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