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Abstract. Video motion magnification techniques allow us to see small
motions previously invisible to the naked eyes, such as those of vibrating
airplane wings, or swaying buildings under the influence of the wind.
Because the motion is small, the magnification results are prone to noise
or excessive blurring. The state of the art relies on hand-designed filters
to extract representations that may not be optimal. In this paper, we seek
to learn the filters directly from examples using deep convolutional neural
networks. To make training tractable, we carefully design a synthetic
dataset that captures small motion well, and use two-frame input for
training. We show that the learned filters achieve high-quality results
on real videos, with less ringing artifacts and better noise characteristics
than previous methods. While our model is not trained with temporal
filters, we found that the temporal filters can be used with our extracted
representations up to a moderate magnification, enabling a frequency-
based motion selection. Finally, we analyze the learned filters and show
that they behave similarly to the derivative filters used in previous works.
Our code, trained model, and datasets will be available online.

Keywords: Motion manipulation · motion magnification, deep convo-
lutional neural network

1 Introduction

The ability to discern small motions enables important applications such as un-
derstanding a building’s structural health [3] and measuring a person’s vital
sign [1]. Video motion magnification techniques allow us to perceive such mo-
tions. This is a difficult task, because the motions are so small that they can be
indistinguishable from noise. As a result, current video magnification techniques
suffer from noisy outputs and excessive blurring, especially when the magnifica-
tion factor is large [24, 27, 25, 28].

Current video magnification techniques typically decompose video frames
into representations that allow them to magnify motion [24, 27, 25, 28]. Their de-
composition typically relies on hand-designed filters, such as the complex steer-
able filters [6], which may not be optimal. In this paper, we seek to learn the
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Fig. 1. While our model learns spatial decomposition filters from synthetically gener-
ated inputs, it performs well on real videos with results showing less ringing artifacts
and noise. (Left) the crane sequence magnified 75× with the same temporal filter as
Wadhwa et al . [24]. (Right) Dynamic mode magnifies difference (velocity) between con-
secutive frames, allowing us to deal with large motion as did Zhang et al . [28]. The red
lines indicate the sampled regions for drawing x-t and y-t slice views.

decomposition filter directly from examples using deep convolutional neural net-
works (CNN). Because real motion-magnified video pairs are difficult to obtain,
we designed a synthetic dataset that realistically simulates small motion. We
carefully interpolate pixel values, and we explicitly model quantization, which
could round away sub-level values that result from subpixel motions. These care-
ful considerations allow us to train a network that generalizes well in real videos.

Motivated by Wadhwa et al . [24], we design a network consisting of three
main parts: the spatial decomposition filters, the representation manipulator,
and the reconstruction filters. To make training tractable, we simplify our train-
ing using two-frame input, and the magnified difference as the target instead of
fully specifying temporal aspects of motion. Despite training on the simplified
two-frames setting and synthetic data, our network achieves better noise perfor-
mance and has fewer edge artifacts (See Fig. 1). Our result also suggests that
the learned representations support linear operations enough to be used with
linear temporal filters up to a moderate magnification factor. This enables us to
select motion based on frequency bands of interest.

Finally, we visualize the learned filters and the activations to have a better un-
derstanding of what the network has learned. While the filter weights themselves
show no apparent pattern, a linear approximation of our learned (non-linear) fil-
ters resembles derivative filters, which are the basis for decomposition filters in
the prior art [27, 24].

The main contributions of this paper are as follows:

– We present the first learning-based approach for the video motion magnifica-
tion, which achieves high-quality magnification with fewer ringing artifacts,
and has better noise characteristics.

– We present a synthetic data generation method that captures small motions,
allowing the learned filters to generalize well in real videos.

– We analyze our model, and show that our learned filters exhibit similarity
to the previously hand-engineered filters.

We will release the codes, the trained model, and the dataset online.
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Method Liu et al . [13] Wu et al . [27]
Wadhwa et
al . [24]

Wadhwa et
al . [25]

Zhang et al . [28] Ours

Spatial decom-
position

Tracking, optical
flow

Laplacian pyra-
mid

Steerable filters Riesz pyramid Steerable filters
Deep convolu-
tion layers

Motion isola-
tion

-
Temporal band-
pass filter

Temporal bandpass
filter

Temporal bandpass
filter

Temporal bandpass
filter (2nd-order
derivative)

Subtraction or
temporal band-
pass filter

Representa-
tion denoising

Expectation-
Maximization

-
Amplitude weighted
Gaussian filtering

Amplitude weighted
Gaussian filtering

Amplitude weighted
Gaussian filtering

Trainable convo-
lution

Table 1. Comparisons of the prior arts.

2 Related Work

Video motion magnification. Motion magnification techniques can be di-
vided into two categories: Lagrangian and Eulerian approaches. The Lagrangian
approach explicitly extracts the motion field (optical flow) and uses it to move
the pixels directly [13]. The Eulerian approaches [27, 24, 25], on the other hand,
decompose video frames into representations that facilitate manipulation of mo-
tions, without requiring explicit tracking. These techniques usually consist of
three stages: decomposing frames into an alternative representation, manipu-
lating the representation, and reconstructing the manipulated representation to
magnified frames. Wu et al . [27] use a spatial decomposition motivated by the
first-order Taylor expansion, while Wadhwa et al . [24, 25] use the complex steer-
able pyramid [6] to extract a phase-based representation. Current Eulerian tech-
niques are good at revealing subtle motions, but they are hand-designed [27, 24,
25], and do not take into account many issues such as occlusion. Because of this,
they are prone to noise and often suffer from excessive blurring. Our technique
belongs to the Eulerian approach, but our decomposition is directly learned from
examples, so it has fewer edge artifacts and better noise characteristics.

One key component of the previous motion magnification techniques is the
multi-frame temporal filtering over the representations, which helps to isolate
motions of interest and to prevent noise from being magnified. Wu et al . [27]
and Wadhwa et al . [24, 25] utilize standard frequency bandpass filters. Their
methods achieve high-quality results, but suffer from degraded quality when
large motions or drifts occur in the input video. Elgharib et al . [4] and Zhang et
al . [28] address this limitation. Elgharib et al . [4] model large motions using
affine transformation, while Zhang et al . [28] use a different temporal processing
equivalent to a second-order derivative (i.e., acceleration). On the other hand,
our method achieves comparable quality even without using temporal filtering.
The comparisons of our method to the prior arts are summarized in Table 1.

Deep representation for video synthesis. Frame interpolation can be viewed
as a complementary problem to the motion magnification problem, where the
magnification factor is less than 1. Recent techniques demonstrate high-quality
results by explicitly shifting pixels using either optical flow [10, 26, 14] or pixel-
shifting convolution kernels [17, 18]. However, these techniques usually require
re-training when changing the manipulation factor. Our representation can be
directly configured for different magnification factors without re-training. For
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frame extrapolation, there is a line of recent work [16, 22, 23] that directly syn-
thesizes RGB pixel values to predict dynamic video frames in the future, but
their results are often blurry. Our work focusing on magnifying motion within a
video, without concerns about what happens in the future.

3 Learning-based Motion Magnification

In this section, we introduce the motion magnification problem and our learning
setup. Then, we explain how we simplify the learning to make it tractable. Fi-
nally, we describe the network architecture and give the full detail of our dataset
generation.

3.1 Problem statement

We follow Wu et al .’s and Wadhwa et al .’s definition of motion magnification
[27, 24]. Namely, given an image I(x, t) = f(x+ δ(x, t)), where δ(x, t) represents
the motion field as a function of position x and time t, the goal of motion
magnification is to magnify the motion such that the magnified image Ĩ becomes

Ĩ(x, t) = f(x + (1 + α)δ(x, t)), (1)

where α is the magnification factor. In practice, we only want to magnify certain
signal δ̃(x, t) = T (δ(x, t)) for a selector T (·) that selects motion of interest, which
is typically a temporal bandpass filter [24, 27].

While previous techniques rely on hand-crafted filters [24, 27], our goal is
to learn a set of filters that extracts and manipulates representations of the
motion signal δ(x, t) to generate output magnified frames. To simplify our train-
ing, we consider a simple two-frames input case. Specifically, we generate two
input frames, Xa and Xb with a small motion displacement, and an output
motion-magnified frame Y of Xb with respect to Xa. This reduces parameters
characterizing each training pair to just the magnification factor. While this sim-
plified setting loses the temporal aspect of motion, we will show that the network
learns a linear enough representation w.r.t . the displacement to be compatible
with linear temporal filters up to a moderate magnification factor.

3.2 Deep Convolutional Neural Network Architecture

Similar to Wadhwa et al . [24], our goal is to design a network that extracts a
representation, which we can use to manipulate motion simply by multiplication
and to reconstruct a magnified frame. Therefore, our network consists of three
parts: the encoder Ge(·), the manipulator Gm(·), and the decoder Gd(·), as illus-
trated in Fig. 2. The encoder acts as a spatial decomposition filter that extracts
a shape representation [9] from a single frame, which we can use to manipulate
motion (analogous to the phase of the steerable pyramid and Riesz pyramid [24,
25]). The manipulator takes this representation and manipulates it to magnify



Learning-based Video Motion Magnification 5

Magnification 
factor

: Residual Block

: Conv layers

: Non-trainable layers

ReLu
Conv

Conv

Conv32_k3s2-ReLu

Res. Blk.

Conv16_k7s1 -ReLu
[ℎ,𝑤𝑤

,3]

[ℎ,𝑤𝑤
,16]

[ℎ/2,𝑤𝑤
/2,32]

ReLu
Conv32_k3s2

[ℎ/4,𝑤𝑤
/4,32]

Res. Blk.

Res. Blk.

ReLu
Conv32_k3s1

[ℎ/2,𝑤𝑤
/2,32]

Res. Blk.

Res. Blk.

Encoder

Texture 
repr.

Shape 
repr.

Input

Decoder

U
psam

ple

Res. Blk.

Res. Blk.

Concat.
[ℎ/2,𝑤𝑤

/2,32]

[ℎ/2,𝑤𝑤
/2,64]

U
psam

ple
[ℎ,𝑤𝑤

,64]
Conv32_k3s1-ReLu

[ℎ,𝑤𝑤
,32]

Conv3_ k7s1
[ℎ,𝑤𝑤

,3]

9 Res. Blks.
Texture 

repr.

Shape 
repr.

O
utput

[ℎ/2,𝑤𝑤
/2,32]

Res. Blk.

ReLu
Conv32_k3s1

Conv32_k3s1

[ℎ/2,𝑤𝑤/2,32]

𝜶𝜶
Shape 
repr.
𝑴𝑴𝒃𝒃

Shape 
repr.
𝑴𝑴𝒂𝒂

Manipulator

𝑿𝑿𝑎𝑎𝑿𝑿𝑏𝑏

Magnified 
Frame
�𝒀𝒀

Manipulator

Decoder
Texture 

repr.
Shape 
repr.

Shared

𝜶𝜶

Encoder

Texture 
repr.

Shape 
repr.

Encoder

Texture 
repr.

Shape 
repr.

Overview of architecture

Input Frames

Res. Blk.

Res. Blk.

g(•)
h(•)

(a) (b)

Fig. 2. Our network architecture. (a) Overview of the architecture. Our network
consists of 3 main parts: the encoder, the manipulator, and the decoder. During train-
ing, the inputs to the network are two video frames, (Xa,Xb), with a magnification
factor α, and the output is the magnified frame Ŷ. (b) Detailed diagram for each part.
Conv〈c〉 k〈k〉 s〈s〉 denotes a convolutional layer of c channels, k × k kernel size, and
stride s.

the motion (by multiplying the difference). Finally, the decoder reconstructs the
modified representation into the resulting motion-magnified frames.

Our encoder and decoder are fully convolutional, which enables them to
work on any resolution [15]. They use residual blocks to generate high-quality
output [21]. To reduce memory footprint and increase the receptive field size, we
downsample the activation by 2× at the beginning of the encoder, and upsample
it at the end of the decoder. We downsample with the strided convolution [20],
and we use nearest-neighbor upsampling followed by a convolution layer to avoid
checkerboard artifacts [19]. We experimentally found that three 3 × 3 residual
blocks in the encoder and nine in the decoder generally yield good results.

While Eq. (1) suggests no intensity change (constant f(·)), this is not true in
general. This causes our network to also magnify intensity changes. To cope with
this, we introduce another output from the encoder that represents intensity in-
formation (“texture representation” [9]) similar to the amplitude of the steerable
pyramid decomposition. This representation reduces undesired intensity magni-
fication as well as noise in the final output. We downsample the representation
2× further because it helps reduce noise. We denote the texture and shape rep-
resentation outputs of the encoder as V = Ge,texture(X) and M = Ge,shape(X),
respectively. During training, we add a regularization loss to separate these two
representations, which we will discuss in more detail later.

We want to learn a shape representation M that is linear with respect to
δ(x, t). So, our manipulator works by taking the difference between shape repre-
sentations of two given frames, and directly multiplying a magnification factor
to it. That is,

Gm(Ma,Mb, α) = Ma + α(Mb−Ma). (2)
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Linear Non-Linear

Fig. 3. Comparison between linear and non-linear manipulators. While the
two manipulators are able to magnify motion, the linear manipulator (left) does blur
strong edges (top) sometimes, and is more prone to noise (bottom). Non-linearity in
the manipulator reduces this problem (right).

In practice, we found that some non-linearity in the manipulator improves
the quality of the result (See Fig. 3). Namely,

Gm(Ma,Mb, α) = Ma + h (α · g(Mb −Ma)) , (3)

where g(·) is represented by a 3× 3 convolution followed by ReLU, and h(·) is a
3× 3 convolution followed by a 3× 3 residual block.

Loss function. We train the whole network in an end-to-end manner. We use
l1-loss between the network output Ŷ and the ground-truth magnified frame Y.
We found no noticeable difference in quality when using more advanced losses,
such as the perceptual [8] or the adversarial losses [7]. In order to drive the
separation of the texture and the shape representations, we perturbed the in-
tensity of some frames, and expect the texture representations of perturbed
frames to be the same, while their shape representation remain unchanged.
Specifically, we create perturbed frames X′b and Y′, where the prime symbol
indicates color perturbation. Then, we impose loses between V′b and V′Y (per-
turbed frames), Va and Vb (un-perturbed frames), and M′

b and Mb (shape
of perturbed frames should remain unchanged). We used l1-loss for all regular-
izations. Therefore, we train the whole network G by minimizing the final loss
function L1(Y, Ŷ)+λ(L1(Va,Vb)+L1(V′b,V

′
Y )+L1(Mb,M

′
b)), where λ is the

regularization weight (set to 0.1).

Training. We use ADAM [11] with β1 = 0.9 and β2 = 0.999 to minimize the loss
with the batch size 4. We set the learning rate to 10−4 with no weight decay.
In order to improve robustness to noise, we add Poisson noise with random
strengths whose standard deviation is up to 3 on a 0−255 scale for a mid-gray
pixel.

Applying 2-frames setting to videos Since there was no temporal concept
during training, our network can be applied as long as the input has two frames.
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We consider two different modes where we use different frames as a reference. The
Static mode uses the 1st frame as an anchor, and the Dynamic uses the previous
frames as a reference, i.e. we consider (Xt−1,Xt) as inputs in the Dynamic mode.

Intuitively, the Static mode follows the classical definition of motion mag-
nification as defined in Eq. (1), while the Dynamic mode magnifies the difference
(velocity) between consecutive frames. Note that the magnification factor in
each case has different meanings, because we are magnifying the motion against
a fixed reference, and the velocity respectively. Because there is no temporal fil-
ter, undesired motion and noise quickly becomes a problem as the magnification
factor increases, and achieving high-quality result is more challenging.

Temporal operation. Even though our network has been trained in the 2-
frame setting only, we find that the shape representation is linear enough w.r.t .
the displacement to be compatible with linear temporal filters. Given the shape
representation M(t) of a video (extracted frame-wise), we replace the difference
operation with a pixel-wise temporal filter T (·) across the temporal axis in the
manipulator Gm(·). That is, the temporal filtering version of the manipulator,
Gm,temporal(·), is given by,

Gm,temporal(M(t), α) = M(t) + αT (M(t)). (4)

The decoder takes the temporally-filtered shape representation and the texture
representation of the current frame, and generates temporally filtered motion
magnified frames.

3.3 Synthetic Training Dataset

Obtaining real motion magnified video pairs is challenging. Therefore, we utilize
synthetic data which can be generated in large quantity. However, simulating
small motions involves several considerations because any small error will be
relatively large. Our dataset is carefully designed and we will later show that
the network trained on this data generalizes well to real videos. In this section,
we describe considerations we make in generating our dataset.

Foreground objects and background images. We utilize real image datasets
for their realistic texture. We use 200, 000 images from MS COCO dataset [12] for
background, and we use 7, 000 segmented objects the PASCAL VOC dataset [5]
for the foreground. As the motion is magnified, filling the occluded area becomes
important, so we paste our foreground objects directly onto the background
to simulate occlusion effect. Each training sample contains 7 to 15 foreground
objects, randomly scaled from its original size. We limit the scaling factor at 2 to
avoid blurry texture. The amount and direction of motions of background and
each object are also randomized to ensure that the network learns local motions.

Low contrast texture, global motion, and static scenes. The training ex-
amples described in the previous paragraphs are full of sharp and strong edges
where the foreground and background meet. This causes the network to general-
ize poorly on low contrast textures. To improve generalization in these cases, we
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add two types of examples: where 1) the background is blurred, and 2) there is
only a moving background in the scene to mimic a large object. These improve
the performance on large and low contrast objects in real videos.

Small motion can be indistinguishable from noise. We find that including
static scenes in the dataset helps the network learn changes that are due to noise
only. We add additional two subsets where 1) the scene is completely static, and
2) the background is not moving, but the foreground is moving. With these, our
dataset contains a total of 5 parts, each with 20, 000 samples of 384×384 images.
The examples of our dataset can be found in the supplementary material.

Input motion and amplification factor. Motion magnification techniques
are designed to magnify small motions at high magnifications. The task becomes
even harder when the magnified motion is large (e.g . > 30 pixels). To ensure
the learnability of the task, we carefully parameterize each training example to
make sure it is within a defined range. Specifically, we limit the magnification
factor α up to 100 and sample the input motion (up to 10 pixels), so that the
magnified motion does not exceed 30 pixels.

Subpixel motion generation. How subpixel motion manifests depends on de-
mosaicking algorithm and camera sensor pattern. Fortunately, even though our
raw images are already demosaicked, they have high enough resolution that they
can be downsampled to avoid artifacts from demosaicking. To ensure proper re-
sampling, we reconstruct our image in the continuous domain before applying
translation or resizing. We find that our results are not sensitive to the interpo-
lation method used, so we chose bicubic interpolation for the reconstruction. To
reduce error that results from translating by a small amount, we first generate
our dataset at a higher resolution (where the motion appears larger), then down-
sample each frame to the desired size. We reduce aliasing when downsampling
by applying a Gaussian filter whose kernel is 1 pixel in the destination domain.

Subpixel motion appears as small intensity changes that are often below
the 8-bit quantization level. These changes are often rounded away especially
for low contrast region. To cope with this, we add uniform quantization noise
before quantizing the image. This way, each pixel has a chance of rounding up
proportional to its rounding residual (e.g ., if a pixel value is 102.3, it will have
30% chance of rounding up).

4 Results and Evaluations

In this section, we demonstrate the effectiveness of our proposed network and
analyze its intermediate representation to shed light on what it does. We compare
qualitatively and quantitatively with the state-of-the-art [24] and show that our
network performs better in many aspects. Finally, we discuss limitations of our
work. The comparison videos are available in our supplementary material.
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(a) Phase (b) Ours (c) Input (d) Phase (e) Ours

Fig. 4. Qualitative comparison. (a,b) Baby sequence (20×). (c,d,e) Balance se-
quence (8×). The phase-based method shows more ringing artifacts and blurring than
ours near edges (left) and occlusion boundaries (right).

Ours with Static Mode Ours with Temporal Filter Phase-based with Temporal Filter [24]

Fig. 5. Temporal filter reduces artifacts. Our method benefits from applying tem-
poral filters (middle); blurring artifacts are reduced. Nonetheless, even without tempo-
ral filters (left), our method still preserves edges better than the phase-based method
(right), which shows severe ringing artifacts.

4.1 Comparison with the State-of-the-Art

In this section, we compare our method with the state of the art. Because the
Riesz pyramid [25] gives similar results as the steerable pyramids [24], we fo-
cus our comparison on the steerable pyramid. We perform both qualitative and
quantitative evaluation as follows. All results in this section were processed with
temporal filters unless otherwise noted.
Qualitative comparison Our method preserves edges well, and has fewer
ringing artifacts. Fig. 4 shows a comparison of the balance and the baby se-
quences, which are temporally filtered and magnified 10× and 20× respectively.
The phase-based method shows significant ringing artifact, while ours is nearly
artifact-free. This is because our representation is trained end-to-end from exam-
ple motion, whereas the phase-based method relies on hand-designed multi-scale
representation, which cannot handle strong edges well.
The effect of temporal filters Our method was not trained using tempo-
ral filters, so using the filters to select motion may lead to incorrect results.
To test this, we consider the guitar sequence, which shows strings vibrating at
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Original Frame Ours (Dynamic Mode) Zhang et al. [28]

Fig. 6. Applying our network in 2-frame settings. We compare our network
applied in dynamic mode to acceleration magnification [28]. Because [28] is based on
the complex steerable pyramid, their result suffers from ringing artifacts and blurring.

different frequencies. Fig. 7 shows the 25× magnification results on the guitar
sequence using different temporal filters. The strings were correctly selected by
each temporal filter, which shows that the temporal filters work correctly with
our representation.

Temporal processing can improve the quality of our result, because it prevents
our network from magnifying unwanted motion. Fig. 5 shows a comparison on
the drum sequence. The temporal filter reduces blurring artifacts present when
we magnify using two frames (static mode). However, even without the use of
the temporal filter, our method still preserves edges well, and show no ringing
artifacts. In contrast, the phase-based method shows significant ringing artifacts
even when the temporal filter is applied.

Two-frames setting results Applying our network with two-frames input cor-
responds best to its training. We consider magnifying consecutive frames using
our network (dynamic mode), and compare the result with Zhang et al . [28].
Fig. 6 shows the result of gun sequence, where we apply our network in the
dynamic mode without a temporal filter. As before, our result is nearly artifact
free, while Zhang et al . suffers from ringing artifacts and excessive blurring, be-
cause their method is also based on the complex steerable pyramid [24]. Note
that our magnification factor in the dynamic mode may have a different meaning
to that of Zhang et al ., but we found that for this particular sequence, using the
same magnification factor (8×) produces a magnified motion which has roughly
the same size.

Quantitative Analysis. The strength of motion magnification techniques lies
in its ability to visualize sub-pixel motion at high magnification factors, while
being resilient to noise. To quantify these strengths and understand the limit
of our method, we quantitatively evaluate our method and compare it with the
phase-based method on various factors. We want to focus on comparing the
representation and not temporal processing, so we generate synthetic examples
whose motion is a single-frequency sinusoid and use a temporal filter that has
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Fig. 7. Temporal filtering at different frequency bands. (Left) Intensity signal
over the pixel on each string. (Right) y-t plot of the result using different temporal
filters. Our representation is linear enough to be compatible with temporal filters. The
strings from top to bottom correspond to the 6-th to 4-th strings. Each string vibrates
at different frequencies, which are correctly selected by corresponding temporal filters.
For visualization purpose, we invert the color of the y − t slices.

(a) Sub-pixel motion performance (b) Noise performance with small in-
put motion (0.05 px)

(c) Noise performance with large in-
put motion (5 px)

Fig. 8. Quantitative analysis. (a) Subpixel test, our network performs well down to
0.01 pixels, and is consistently better than the phase-based [24]. (b,c) Noise tests at
different levels of input motion. Our network’s performance stays high and is consis-
tently better than the phase-based whose performance drops to the baseline level as
the noise factor exceeds 1. Our performance in (b) is worse than (c) because the motion
is smaller, which is expected because a smaller motion is harder to be distinguished
from noise.

wide passband.4 Because our network was trained without the temporal filter,
we test our method without the temporal filter, but we use temporal filters with
the phase-based method. We summarize the results in Fig. 8 and its parameter
ranges in the supplementary material.

For the subpixel motion test, we generate synthetic data having foreground
input motion ranging from 0.01 to 1 pixel. We vary the magnification factor α
such that the magnified motion is 10 pixels. No noise was added. Additionally, we
move the background for the same amount of motion but in a different direction
to all foreground objects. This ensures that no method could do well by simply
replicating the background.

4 Our motion is 3Hz at 30 fps, and the temporal filter used is a 30-tap FIR with a
passband between 0.5 - 7.5Hz.
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In the noise test, we fixed the amount of input motion and magnification
factor and added noise to the input frames. We do not move background in this
case. To simulate photon noise, we create a noise image whose variance equals the
value of each pixel in the original image. A multiplicative noise factor controls
the final strength of noise image to be added.

Because the magnified motion is not very large (10 pixels), the input and the
output magnified frames could be largely similar. We also calculate the SSIM
between the input and output frames as a baseline reference in addition to the
phase-based method.

In all tests, our method performs better than the phase-based method. As
Fig. 8-(a) shows, our sub-pixel performance remains high all the way down to
0.01 pixels, and it exceeds 1 standard deviation of the phase-based performance
as the motion increase above 0.02 pixels. Interestingly, despite being trained
only up to 100× magnification, the network performs considerably well at the
smallest input motion (0.01), where magnification factor reaches 1, 000×. This
suggests that our network are more limited by the amount of output motion it
needs to generate, rather than the magnification factors it was given.

Fig. 8-(b,c) show the test results under noisy conditions with different amounts
of input motion. In all cases, the performance of our method is consistently higher
than that of the phase-based method, which quickly drops to the level of the
baseline as the noise factor increase above 1.0. Comparing across different input
motion, our performance degrades faster as the input motion becomes smaller
(See Fig. 8-(b,c)). This is expected because when the motion is small, it becomes
harder to distinguish actual motion from noise. Some video outputs from these
tests are included in the supplementary material.

4.2 Physical Accuracy of Our Method

In nearly all of our real test videos, the resulting motions produced by our
method have similar magnitude as, and are in phase with, the motions produced
by [24] (see Fig. 1, and the supplementary videos). This shows that our method
is at least as physically accurate as the phase-based method, while exhibiting
fewer artifacts.

We also obtained the hammer sequence from the authors of [24], where ac-
celerometer measurement was available. We integrated twice the accelerometer
signal and used a zero-phase high-pass filter to remove drifts. As Fig. 10 shows,
the resulting signal (blue line) matches up well with our 10× magnified (without
temporal filter) result, suggesting that our method is physically accurate.

4.3 Visualizing Network Activation

Deep neural networks achieve high performance in a wide variety of vision tasks,
but their inner working is still largely unknown [2]. In this section, we analyze
our network to understand what it does, and show that it extracts relevant infor-
mation to the task. We analyze the response of the encoder, by approximating it
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Gabor-like filters Laplacian-like filters Corner detector-like filters

Fig. 9. Approximate shape encoder kernel. We approximate our (non-linear) spa-
tial encoder as linear convolution kernels and show top-8 by approximation error. These
kernels resemble directional edge detector (left), Laplacian operator (middle), and cor-
ner detector-like (right).

Fig. 10. Physical accuracy of our method Comparison between our magnified
output and the twice-integrated accelerometer measurement (blue line). Our result
and the accelerometer signal match closely.

as a linear system. We pass several test images through the encoder, and calcu-
late the average impulse responses across the images. Fig. 9 shows the samples of
the linear kernel approximation of the encoder’s shape response. Many of these
responses resemble Gabor filters and Laplacian filters, which suggests that our
network learns to extract similar information as done by the complex steerable
filters [24]. By contrast, the texture kernel responses show many blurring kernels.

4.4 Limitations

While our network performs well in the 2-frame setting, its performance de-
grades with temporal filters when the magnification factor is high and motion is
small. Fig. 11 shows an example frame of temporally-filtered magnified synthetic
videos with increasing the magnification factor. As the magnification factor in-
creases, blurring becomes prominent, and strong color artifacts appear as the
magnification factor exceeds what the network was trained on.

In some real videos, our method with temporal filter appears to be blind to
very small motions. This results in patchy magnification where some patches
get occasionally magnified when their motions are large enough for the network
to see. Fig. 12 shows our magnification results of the eye sequence compared
to that of the phase-based method [24]. Our magnification result shows little
motion, except on a few occasions, while the phase-based method reveals a richer
motion of the iris. We expect to see some artifact on our network running with
temporal filters, because it was not what it was trained on. However, this limits
its usefulness in cases where the temporal filter is essential to selecting small
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Original Frame 20× 50× 300×

Fig. 11. Temporal filtered result at high magnification. Our technique works
well with temporal filter only at lower magnification factors. The quality degrades as
the magnification factor increases beyond 20×.

Input

Ours with temporal filter

Phase-based [24]

Fig. 12. One of our failure cases. Our method is not fully compatible with the
temporal filter. This eye sequence has a small motion that requires a temporal filter
to extract. Our method is blind to this motion and produces a relatively still motion,
while the phase-based method is able to reveal it.

motion of interest. Improving compatibility with the temporal filter will be an
important direction for future work.

5 Conclusion

Current motion magnification techniques are based on hand-designed filters,
and are prone to noise and excessive blurring. We present a new learning-based
motion magnification method that seeks to learn the filters directly from data.
We simplify training by using the two-frames input setting to make it tractable.
We generate a set of carefully designed synthetic data that captures aspects
of small motion well. Despite these simplifications, we show that our network
performs well, and has less edge artifact and better noise characteristics than the
state of the arts. Our method is compatible with temporal filters, and yielded
good results up to a moderate magnification factor. Improving compatibility
with temporal filters so that it works at higher magnification is an important
direction for future work.
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