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Summary of Contents

This is a part of the supplementary material. The contents of this supplementary
material include the additional experiment results with descriptions and parameter
setups, which have not been shown in the main paper due to the space limit.

The accompanied supplementary video contains comparisons with other
methods [5,1,6,2] and baselines, self-evaluations and other applications.

A.1 Parameters for Example Videos

In Table A.1, we specify parameters used in the experiments of the main paper
such as magnification factors, and temporal filters. The parameters of examples
in the supplementary video are self-contained if specified. For FIR filter, we chose
the number of taps equal to the number of video frames in that sequence, and
apply the filter in the frequency domain. For all other filters, we apply them in
the time domain.

A.2 Additional Experiments

This section describes the detail description of the dataset (in Sec. A.2.1), and
presents additional results. We present an example for the characteristics of
Static mode that magnifies broad frequency bands in Sec. A.2.2, qualitative
comparison in Sec. A.2.3, quantitative analysis in Sec. A.2.4, visualization analysis
examples in Sec. A.2.5, descriptions for other applications in Sec. A.2.6 and the
supplementary video content in Sec. A.2.7.

A.2.1 Detail dataset Information.

In the synthetic training data generation, we use two datasets: the MS COCO [26],
and the PASCAL VOC segmentation dataset [25]. The license conditions are
as follows: the annotations and images of the MS COCO are under Creative
Commons Attribution 4.0 license and Flickr terms of use, respectively, and the
PASCAL VOC is under Flickr terms of use and MSR Cambridge License (RTF).

All the real video examples used for comparisons come from either [5,6,1,9,2],
otherwise our own captured data is used.
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Sequence
Name

Magnification
Factor

Temporal
Band

Sampling Rate
(fps)

Temporal Fil-
ter

crane 75⇥ 0.2� 0.25 Hz 24 FIR

balance 10⇥ 1� 8 Hz 300
2nd order Butter-
worth

throat 100⇥ 90� 110 Hz 1900 FIR

baby 20⇥ See Temporal
Filter Column

30
Di↵erence of IIR,
same as [6]

tree (high freq
band)

25⇥ 1.5� 2 Hz 60 FIR

tree (low freq
band)

25⇥ 0.5� 1 Hz 60 FIR

camera 75⇥ 36� 62 Hz 300
2nd order Butter-
worth

eye 75⇥ 30� 50 Hz 500 FIR
gun 8⇥ N/A N/A Dynamic Mode
cat-toy 7⇥ N/A N/A Dynamic Mode
drone 10⇥ N/A N/A Dynamic Mode
hot-co↵ee 3⇥ N/A N/A Dynamic Mode
drum 10⇥ 74� 78 Hz 1900 FIR
drum 10⇥ N/A N/A Static Mode

guitar 25⇥ 72� 92 Hz 600
2nd order Butter-
worth

guitar 10⇥ N/A N/A Static Mode

Table A.1. Parameters of our results

A.2.2 Comparison of temporal operations

Our network is trained on the two frames setting, but we also have shown that
multi-frame linear temporal filtering is compatible to some extent. We discuss the
di↵erence of temporal operation characteristics for a reference purpose. Fig. A.1
shows the frequency response characteristics of di↵erent temporal operations.

Also, as shown in Fig. A.1, the area-under-covers of (a) are far broader than
(b), i.e., these modes magnify broader frequency ranges comparing to band-pass
filtering in (b). This implies as follows. First, as the same amount of magnification
factors are increased, overall energy increment of ours is even larger than the
previous work; hence, the magnification factors are not directly comparable
across modes, and this fact needs to be taken into account when the results
are compared. Second, since noise (high) frequency band is also involved in, the
training and working on the regime (a) would require more robust representation
and synthesis power than the regime (b); thus, utilizing only two frames is much
challenging regimes. For temporal filtering, magnifying a low-frequency band
needs to take into account a long history of frames as shown in Fig. A.1-(c), while
given an anchor frame, Static mode can magnify broad ranges of motion only
with two frames, which is memory e�cient.

We note that the subtraction operation at test phase is not claimed as the
best, but they have trade-o↵s. The multi-frame based temporal filtering [5,1] has
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Fig.A.1. Comparison on temporal operators. The plots visualize log frequency
responses of the subtraction operation for Static and Dynamic modes (a) and temporal
filter examples (b) used in [5,1,6]. (c) temporal domain visualization of a low-freq.
band-pass filter example (sampling rate: 60Hz, cut-o↵: [0.35, 0.71]Hz) used in [1], where
the filter lies across near 450 frames. For visual comparison purpose, the frequency
domain range is resampled to have the same range comparable between (a) and (b).

its own merits: selectivity of a frequency band of interest, and noise frequency
band suppression as shown in Fig. A.1-(b). Since our network is trained only
on (a), it is hard to expect any generalization for other temporal operations.
Surprisingly, at test stage, we observed that our representation works favorably
well with replacing the subtraction operation in the manipulator by the temporal
filtering. Thus, we also conduct experiments with the subtraction operation to
assess and compare the performance of our representation with the competing
ones, i.e., phase representations from complex steerable filters [1] and Riesz
transformation [6] (see the supplementary video). Also, we compare our method
with the competing methods equipped with temporal filtering.

Fig. A.2 shows its example that Static mode with our method magnifies the
motion of all three strings whose frequencies are di↵erent. This shows that our
method magnifies true motions, but not hallucinating.
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Fig.A.2. Broad frequency magnification (Guitar sequence). The Static mode
with our method does not alter input frequency, as well as magnifies overall the frequency.
The estimated frequencies of 4, 5, 6-th strings are {137.14, 109.10, 80}-Hz, which is very
close values to ideal frequencies, {144, 108, 80}-Hz. Color lines on the slice view are the
samples of the period measure to estimate frequency.
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A.2.3 Additional qualitative Comparisons.

Various qualitative results can be found in the supplementary video. Due to the

characteristic of the problem, we strongly recommend to refer to the supplementary

video for complete comparison and evaluation.

We also present another comparison with other methods in Fig. A.3, where
we replace the all the temporal operation to be Dynamic mode, so that we can
compare the capability of the representation and synthesis of each method under
the same setting.

(b)

(c)

(d)

(e)

(a)

Fig.A.3. Slice view comparison with other methods, Dynamic mode. We com-
pare original inputs (a) for reference, Wadhwa et al . [1] (b), Wadhwa et al . [6] (c),
Zhang et al . [2] (d) and the proposed method (e). Even though there are large transla-
tional motions, only our method shows clear boundaries with proper magnified motion
in slice view, while the other methods have blurry textures due to artifacts.

A.2.4 Additional Quantitative Comparisons.

We summarize the test parameters used in all quantitative results in Table A.2.
In Fig. A.4, we show additional quantitative evaluations for completeness: noise
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Table A.2. Summary of parameter for each quantitative test.

Param.
Test Magnification Factor Motion (px.) Magnified Motion (px.) Noise Background Motion

Sub-pixel Capped at 100 0.01 - 1 Capped at 10 No Yes
Noise 5.0 2.0 10.0 0.01 - 100 No

Noise on Real Image 2.0 (estimate) - - 0.01 - 100 No
Magnification Factor 1 - 1,000 0.01 - 2.0 Capped at 10 No Yes

Input Motion Capped at 5.0 1 - 10 Capped at 10 No Yes
Magnified Motion Capped at 5.0 1 - 10 1 - 30 No Yes

(a) Noise performance in real images
(b) Input motion test. Because magnified motion is
capped at 10px, magnification factor approaches 1
towards the end, which explain the performance.

Fig.A.4. Additional Quantitative Analysis.

performance on real data and input motion range test. To test the noise perfor-
mance on real examples in (a), we grab three consecutive frames from 17 high
speed videos, and approximate their motions as linear. That is, the third frame
will have twice the amount of motion as the second frame. We synthetically add
noise as described before.

(a) (b)

Fig.A.5. Example output from extreme noise test on real images (Noise
factor = 9). (a) Our method preserves the detail better and results in less noise than
(b) the phase-based method [1].

To see the extreme behavior against noise, we qualitatively compare the cases
in Fig. A.5. Our method tends to preserve detail better (notice the car) rather
than blurring, and have a better structure preserving quality in the output than
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the phase-based one. Since our filters are directly learned in a data-driven way,
we can easily augment the data to induce desired properties.

A.2.5 Additional Network Visualization for Analysis

(a) Unit A Unit B
(b) ↵=2 (c) ↵=5 (d) ↵=2 (e) ↵=5

Fig.A.6. Visualization of activations at Probe pt. B in Fig. 2, i.e., h(↵(g(A2�
A1)). (a) Example input, where the arrows indicate the motion directions of each shape
objects. Comparing (b,d) to (c,e), as the magnification factors are increased, the
manipulator layer not only increases the scale of activation, but also propagates the
activation around. In this regard, our network seems to learn how to compensate object
movements according to resulting motion.

In Fig. A.6-(b–e), we compare the activations of the compensation part, i.e.,
h(↵(g(A2 �A1)), with two di↵erent magnification factors ↵ for the same input
motion. It shows that, according to ↵, the compensation not only scales activations
but also spatially propagates around. This suggests that our representation acts
as a proxy of motion information that is able to be interpreted and manipulated.
Lastly, observing activations of the compensation part in Fig. A.6 and the fusion
layer in Fig. A.7, the network seems to learn how to compensate discrepancy
introduced by motion manipulation, rather than explicitly moving pixels. These
suggest that our method learns a representation closely related to Eulerian motion
representation rather than Lagrangian one.

A.2.6 Applications

To show the versatility of our learned motion representation, we additionally
present potential applications, view/frame interpolation. Note that we directly
use the network trained on our synthetic data for motion magnification, and we
have never re-trained or fine-tuned the network for the specific applications. The
results can be found in the supplementary video.

For the view/frame interpolation applications, we use our network to generate
intermediate frames between two input frames by changing magnification factor
in a range of [0,1]. For the view interpolation example, we generate and insert 25
intermediate frames given two input images. For the frame interpolation example,
we generate five frames between every two consecutive frames, i.e., 5⇥ temporal
interpolation. We use the light field camera dataset [28] in these applications.
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(a) Unit02 (b) Unit13 (c) Unit19 (d) Decoded

Fig.A.7. Visualization of activations at Fusion layer in Fig. 2. We show ran-
domly sampled activations fused from visual and motion compensated representations.
The representations and decoded frame show that our network compensates discrepancy
induced by motion magnification visually, rather than explicit pixel movement. It shows
a color synthesis behavior of our network in (d). Around the yellow ellipse in (d), the
color values seem to be synthesized to compensate movements in a similar way to
inpainting.

A.2.7 Supplementary Video Content

The content summary of the supplementary video is as follows:

– Qualitative comparison with temporal filter
– Qualitative comparison in 2 frame input setting (static mode, dynamic mode,

frequency characteristics comparison)
– Additional analysis
– Applying di↵erent magnification factors without re-training (including motion

attenuation examples)
– Applications: View/Frame interpolation.
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3. Cha, Y.J., Chen, J., Büyüköztürk, O.: Output-only computer vision based damage
detection using phase-based optical flow and unscented kalman filters. Engineering
Structures 132 (2017) 300–313

4. Balakrishnan, G., Durand, F., Guttag, J.: Detecting pulse from head motions in
video. In: IEEE Conf. on Comput. Vis. and Pattern Recognit. (2013) 3430–3437

5. Wu, H.Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman, W.: Eulerian
video magnification for revealing subtle changes in the world. ACM SIGGRAPH
31(4) (2012) 65–8

6. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Riesz pyramids for fast
phase-based video magnification. In: IEEE Int. Conf. on Comput. Photogr. (2014)

7. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans.
Pattern Anal. Mach. Intell. 13(9) (1991) 891–906

8. Liu, C., Torralba, A., Freeman, W.T., Durand, F., Adelson, E.H.: Motion magnifi-
cation. ACM Trans. Graph. 24(3) (2005) 519–526

9. Elgharib, M.A., Hefeeda, M., Durand, F., Freeman, W.T.: Video magnification in
presence of large motions. In: IEEE Conf. on Comput. Vis. and Pattern Recognit.
(2015)

10. Kalantari, N.K., Wang, T.C., Ramamoorthi, R.: Learning-based view synthesis for
light field cameras. ACM SIGGRAPH Asia 35(6) (2016) 193–10

11. Wang, T., Zhu, J., Kalantari, N.K., Efros, A.A., Ramamoorthi, R.: Light field
video capture using a learning-based hybrid imaging system. ACM Trans. Graph.
36(4) (2017) 133:1–133:13

12. Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video Frame Synthesis using
Deep Voxel Flow. In: IEEE Int. Conf. on Comput. Vis. (2017)

13. Niklaus, S., Mai, L., Liu, F.: Video Frame Interpolation via Adaptive Convolution.
IEEE Conf. on Comput. Vis. and Pattern Recognit. (2017)

14. Niklaus, S., Mai, L., Liu, F.: Video Frame Interpolation via Adaptive Separable
Convolution. In: IEEE Int. Conf. on Comput. Vis. (2017)

15. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond
mean square error. Int. Conf. on Learn. Representations (2016)

16. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video
representations using lstms. In: Int. Conf. on Mach. Learn. (2015)

17. Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content
for natural video sequence prediction. In: Int. Conf. on Learn. Representations.
(2017)

18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: IEEE Conf. on Comput. Vis. and Pattern Recognit. (2015)

19. Sajjadi, M.S., Schölkopf, B., Hirsch, M.: Enhancenet: Single image super-resolution
through automated texture synthesis. IEEE Int. Conf. on Comput. Vis. (2017)

20. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

21. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts.
Distill 1(10) (2016) e3



1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

ECCV
#12

ECCV
#12

Learning-based Video Motion Magnification 25

22. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: Eur. Conf. on Comput. Vis., Springer (2016) 694–711

23. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. IEEE Conf. on Comput. Vis. and Pattern Recognit.
(2017)

24. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

25. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. Int. J. of Comput. Vis. 88(2) (June
2010) 303–338

26. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,
P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: Eur. Conf. on
Comput. Vis., Springer (2014) 740–755

27. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: Quanti-
fying interpretability of deep visual representations. In: IEEE Conf. on Comput.
Vis. and Pattern Recognit. (2017)

28. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.V., Antunez, E., Barth, A., Adams,
A., Horowitz, M., Levoy, M.: High performance imaging using large camera arrays.
In: ACM Transactions on Graphics (TOG). Volume 24., ACM (2005) 765–776


