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“The field of pattern recognition is concerned with the automatic discovery of

regularities in data through the use of computer algorithms and with the use of these

regularities to take actions ...”

—Pattern Recognition and Machine Learning, Christopher M. Bishop

“There is ... a rhythm and a pattern between the phenomena of nature which is

not apparent to the eye, but only to the eye of analysis; and it is these rhythms and

patterns which we call Physical Laws”

—The Character of Physical Law, Richard Feynman

If we regard science as the human enterprise of understanding the natural

world, we might regard computer science as the computer’s enterprise of un-

derstanding the artificial world. We have language, memory and structure for

our knowledge representation. Computers have their own language, memory,

and structure, which comprise their “understanding”. Careful investigation in-

to epistemology and methodology in computer science will help us to apprehend

scientific methods. By analyzing machine learning, this paper studies human

learning in retrospect, including topics of inductivism, falsificationism, scien-

tific realism, paradigms and incommensurability. We shall see that all these

problems are linked up by patterns, both for machines and for humans.

Following is an outline of my thesis:

1. Induction and falsification resemble the training and testing process in

machine learning. But Hume asserted that induction cannot be logical-

ly justified, and Popper even discarded it. As for falsification, Popper’s

justification is unsatisfactory to me. In machine learning, by assuming

that seen and unseen observations are distributed according to a certain

probability distribution, the generalization error caused by training and
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testing is computable. Borrowing this idea, I will argue that if we pre-

sume patterns, i.e. recognizable regularities, induction and falsification

are logically justifiable. [section 1]

2. Patterns are recognizable, but may be recognized in different forms. The

patterns of digits are shapes of strokes in human eyes, or hyperplanes in

SVMs, or weighted networks in NNs. They look totally different, but they

are describing the same regularity. [section 2]

3. Computational model is like Kuhn’s scientific paradigm, which has “in-

commensurability”. When scientific theories become incommensurable,

their reality and objectivity become questionable. Many philosophers ex-

plain the development of science by the theory of evolution, which is also

unsatisfactory to me. In contrast, I think patterns could give a more clear

explanation for scientific realism. [section 3,4]

4. In the end, by making an analogy between a scientific paradigm and an

adaptive model, I want to argue that though paradigms’ architectures are

incommensurable, their adaptability to patterns is mensurable. [section

5]

1 Inductivism and Falsificationism

According to inductivism, which is one of the most influential methodolo-

gies of science, scientific inquiry has four stages: first we observe facts; we next

draw inductive generalizations from them; we then try to find laws of nature

from which the generalizations follow; we finally try to organize these laws into

scientific theories. Theories should ideally be universal, which means that they

can be applied to related situations, explaining known phenomena and predict-

ing future outcomes. Extracting universal laws from empirical phenomena is

the principle of science.

This inductive method has been considered logically unjustifiable since

Hume, who held that there is no valid logical argument supporting that “in-

stances of which we have had no experience resemble those of which we have

had experience”, and therefore “even after the observation of the frequent or

constant conjunction of objects, we have no reason to draw any inference con-
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cerning any object beyond those of which we have had experience.” In the light

of this view, theories can never be inferred from observations, because their u-

niversality or applicability about what we have had no experience of cannot be

rationally justified.

Approving of Hume’s rejection of inductivism, Popper proposed that falsi-

fiability plays the central role in the logic of science, serving as “the criterion

of demarcation between science and pseudoscience”. In his view, science begins

with hypotheses which are then tested by deriving particular observable conse-

quences. Theories in principle can never be justified or verified. They can only

be tentatively accepted, and they are rejected as long as falsifying evidence has

been found.

Falsificationism is an important methodology in science, but I think Pop-

per’s denial of the function of inductivism is unacceptable. Popper claimed that

“There is no need even to mention ‘induction’ ”. The first two steps of science—

observing facts and making inductive generalizations from them—to him do not

exist. Scientists just jump from an observation statement to a theory. But how

to jump to a good theory? Popper’s response was “by jumping first to any the-

ory ... repeatedly applying the critical method, eliminating many bad theories,

and inventing many new ones.” It seems to me that Popper’s attitude towards

rationality was vague and dubious. He thought that it is reasonable to believe

that the future will be very different from the past, but it is also reasonable to

act on the assumption that it will be like the past, since we can have no better

assumption to act upon.

Popper’s criterion for a good theory itself suffers from a form of the problem

of induction, for there is no valid logical argument supporting that a theory

which has withstood tests will continue to pass further tests or outperform

falsified theories. That is to say, the best theory so far does not necessarily

lead to a better prediction than a falsified theory when they are applied in a

new situation. Consequently it is not reasonable to act upon the so-called “best

theory so far”. The connection between the known past and the unknown future

is severed. No theory can guide our future action, whether it has been successful

in the past or not. When he said we can have no better assumption to act upon,

Popper failed to realize that inductively grounded action becomes, on his view,

equivalent to acting randomly and irrationally.
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A nice example—a common hoax of the internet era—will show that fal-

sificationism fails in a random world. During the World Cup, many websites

claim that they can predict the results of games based on big data analysis. To

convince you, they tell you which teams will win in the next three matches—a

falsifiable hypothesis. After you have been surprised by their magical foresight,

they ask you for money in return for further predictions. You may luckily win

if you bet according to their prediction. However, you will probably find that

the big data analysis fails. What went wrong? Well, the answer is plain. These

websites just enumerate all possible outcomes and show different predictions to

different people. They will lose 7/8 of their potential customers, but neverthe-

less they can make money from the remaining 1/8. From this example we see

that falsificationism does not give us a good theory. By first jumping to any

theories and eliminating the falsified ones, the remaining theories can still be

useless for future applications. If theories are uniformly random, the verified

ones and falsified ones have no difference in any sense. Conversely, if the world

is totally random, all theories are eqaully powerless. Say a person guessed right

about the last ten coin tosses; will he or she be more sure about the next toss

than other people?

Unlike predicting the World Cup, there are many tasks that computers have

accomplished successfully, for instance spam filtering. As a human learns from

experience, a machine learns from data. Here is big data analysis at its best1. It

starts with a large dataset of N emails {x1, · · · , xN} called a training set. The

categories (spam or not) of the emails in the training set are known in advance,

typically by collecting labeling results from users. We can express the category

of an email using variable t (it is called the target vector in machine learning

terminology), so we get {t1, · · · , tN}. The aim of machine learning is to get a

function y(x) which takes an email x as input and generates an output t. The

precise form of the function y(x) is determined during the training phase, also

known as the learning phase, on the basis of the training data. Namely, y(x) is

an adaptive model whose parameters are calculated so that {y(x1), · · · , y(xN )}
and {t1, · · · , tN} are matched in the best way. (Machine learning develops

theories and methods on models, learning algorithms and criteria of matching

degree. We omit technical details here and focus on methodology.)

1See Christopher M. Bishop, Pattern Recognition and Machine Learning (springer, 2006).
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Compared to batch training, an online training procedure in which data

becomes available in a sequential order is more like the process of induction.

It starts from an initial model y0(x) which can take an email x as input and

output whether it is spam or not. After receiving an email x1 and its category

t1, the machine adjusts its model to y1(x) to fit this instance. Then it receives

(x2, t2) and adjusts to y2(x) accordingly. It continues with (x3, t3) · · · (xN , tN )

until it gets the final form yN (x). I think this is also the way a human makes

an induction. He or she has an adaptive model in mind and modifies it accord-

ing to experience step by step. Hume explained our engagement in induction

by a custom or habit originating from the repeated observation that things of

a certain kind are constantly conjoined with things of another kind. I think

this successive and adaptive view of induction is more adequate: it allows that

human can react before getting a vast number of repeated observations; also, it

makes room for novelty.

Once the model is trained it can then determine the category of new emails,

which are said to comprise a test set. The ability to categorize correctly new

examples that differ from those used for training is known as generalization.

Hence the test set is used to check the model’s capability of generalization.

We can see both inductivism and falsificationism in the above machine

learning process. Learning the model y(x) from the training set is trying to

inductively find some kind of regularity. Testing the model on a new dataset is a

more sophisticated form of falsification—rather than rejecting a model so long as

a counter-example emerges, a comprehensive evaluation is adopted. The model

is not an arbitrary one got from jumping as Popper contended. As a matter of

fact, jumping is not feasible: just imagine how hard it would be to jump to an

effective model. The machine cannot merely guess what the parameters should

be in the absence of the training set. On the contrary, induction does play a

key role in its success. Meanwhile, the test set on behalf of falsificationism is

indispensable as well. Otherwise a simple exhaustive model specifying ti for

each xi will perform perfectly on the training set, but have no ability to classify

other emails, and thus have no value in practical use.

Why are inductivism and falsificationism significant in scientific practice?

Or in the context of machine learning, how can the training set lead to a good

model whose success rate is much higher than a blind one, and how can the
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test set guarantee a verified model’s further success in new applications? The-

oretical machine learning analysis of generalization error, which is a measure

of how accurately a model is able to predict outcomes for previously unseen

data, is based on the assumption that all data pairs, including training data

{(x1, t1), · · · , (xN , tN )}, test data and any potential data, are independent and

identically distributed with a certain probability distribution on space X × T .

All formulae, performance evaluations and error analyses are derived from and

computed against that probability distribution. Namely, a pattern is presumed

in a task, which is the origin and criterion of everything. The pattern is con-

tained in training data and thus discovered and characterized by the trained

model. The test set, as a set of samples from all potential data sharing the

intrinsic pattern, verifies the captured pattern in the model.

I have argued that patterns help to justify our scientific methods, without

which induction and falsification may degenerate to random behaviors. Now we

need to call on an elucidation of patterns: what are they? Do they really exist?

2 Patterns

Hume held that the premise that nature has underlying patterns cannot be

established by reasoning. It cannot be proved deductively, because underlying

patterns are not logically necessary, so long as we need to find them by scientists’

empirical efforts besides sitting and making trivial deductions. Nor can it be

proved inductively, because induction is based upon the principle “that instances

of which we have had no experience, must resemble those of which we have had

experience”, “that the course of nature continues always uniformly the same”;

and then we get a petitio principii. So how can we justify the existence of

patterns or the principle of uniformity of nature?

The assumption that patterns exist is vital in scientific practice. To me

it should be clear that there are patterns, and this is my position of scientific

realism. Regardless of how people would describe it as, a belief or a dogma or

whatever, that there are patterns is the most reasonable belief and the most

empirical dogma, so to speak. In contrast, the claim that there are no patterns

sounds unreasonable and nonempirical at any rate. We are thrown into a world

full of all sorts of phenomena; some have underlying patterns and some may not.
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Sciences study the ones whose patterns are more apparent and easier to discover,

and this is the reason why sciences have made some but not all (perhaps never

all) progress. Isn’t the success of science persuasive enough to demonstrate the

empirical and reasonable existence of patterns?

(People may think it absurd to argue the existence of some entity without

revealing it, or claim the knowledge of some information without demonstrating

it. This is an outdated view. In cryptography, computer scientists come up

with a method called zero-knowledge proof 2, by which the prover can prove to

the verifier that a given statement is true, without conveying any information

apart from the fact that the statement is indeed true. Proving the existence of

an entity by showing it, or proving one has knowledge of certain information by

revealing that information, is a way, but not the only way. If I could, I would

like to give a zero-knowledge proof of patterns.)

I need to clarify the notion of pattern by giving an explicit definition, but

before that let me give another machine learning example to provide some insight

into it. Consider the widely applicable task of recognizing handwritten digits

(it can be used in a postal system to recognize zip codes, for example). The

machine will take an image as input and produce the identity of the digit 0 · · · 9
in it as output. Although handwriting can vary greatly, one may think that the

task is tractable, as the patterns of digits are there distinctly. Yet apparently

distinct patterns to human eyes could be unintelligible to computers, which

have a totally different architecture of understanding. Computer scientists used

to tackle this problem from a human perspective, analyzing and formalizing

handcrafted rules and heuristics to distinguish the digits based on the shapes of

the strokes. But such an approach leads to a proliferation of complicated rules

and infinite exceptions, and invariably gives poor results in practice.

Emancipated from human patterns, the machine views the image as a pixel

vector. Pre-processing may be exploited on original input vectors to help to

refine the pattern. For instance, we can translate and rescale images so that

each digit is contained within a box of a fixed size. After the location and scale

2See Uriel Feige, Amos Fiat and Adi Shamir, “Zero-knowledge Proofs of Identity”, Journal

of cryptology, (1988); Jean-Jacques Quisquater and Louis Guillou, “How to Explain Zero-

knowledge Protocols to Your Children”, In Advances in Cryptology-CRYPTO’89 Proceedings,

(1990).
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of all handwritten digits have been normalized, the subsequent recognition will

become much easier, focusing on different essential patterns. Computer scien-

tists have been coming up with various pre-processing methods, which are also

called feature extraction. We get strokes and lines as features in our eyes, and

computers have their own features in a quite different sense—new transformed

vectors in the feature space.

Next is the main learning stage. There are diverse models whose theories

and criteria are completely different from each other, or we may say they are

“incommensurable”. We shall come back to the incommensurability topic later

in detail. Here I would like to briefly introduce two popular models: support

vector machines (SVMs)3 and neural networks (NNs)4.

SVMs are primarily used for classification between two categories, like the

previous spam filtering problem (though the handwritten digits recognition is a

multiple-category classification problem, the core theory is the same.) We have

already learnt to process input data into vectors in the feature space, and an

SVM constructs a hyperplane separating the whole space into two subspaces,

each of which corresponds to a category. By telling which subspace an input

item falls into, it gives out the corresponding category as output. Consider a

simple case in which all training data can be perfectly separated, i.e. there

exist hyperplanes such that all vectors in one category fall into one side, and all

vectors in the other category fall into the other side. Then which hyperplane is

the best among many such candidates? Intuitively, a good one has the largest

distance to the nearest training-data point of either category, and this distance is

called the margin. The SVM algorithm presumes that the larger the margin the

lower the generalization error of the classifier. SVMs have variants to deal with

complex situations when no perfect separation exists, but let me skip them as

we already get the key point. Hyperplane and margin are essential components

in SVMs, and the parameters describing them constitute a pattern to be learnt.

Things are very different when it comes to neural networks. The idea

3See Corinna Cortes and Vladimir Vapnik, “Support-vector networks”, Machine Learning,

(1995).
4See Warren McCulloch and Walter Pitts, “A Logical Calculus of Ideas Immanent in

Nervous Activity”, Bulletin of Mathematical Biophysics, (1943); Frank Rosenblatt, “The

Perceptron: a Probabilistic Model for Information Storage and Organization in the Brain”,

Psychological Review, (1958).
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of artificial neural networks in machine learning comes from biological neural

networks of animals. Neural networks generally take the form of interconnected

“neurons”, i.e. a graph of linked nodes. Front neurons receive the input vector,

back neurons produce the output, and intermediate neurons are hidden nodes.

Each neuron performs some transforming function determined by the network

designer, and exchanges information with other neurons through its links. Each

link has a weight parameter on it which is determined based on training data.

So the graph structure and transforming functions are designated by computer

scientists as prior architecture. And as a pattern, the set of weight parameters

is learnt from specific tasks.

Hopefully the above two models can shed some light on the definition of

pattern, at least for machines. Since recognition has an inherent psychological

dimension, recognized patterns cannot be mind-independent (“psychological”

and “mind” here also refer to computers in a broad sense). For a machine, a

pattern is a set of parameters which rests on the architecture of its model, viz.

the hyperplane and margin in SVMs and the network of neurons in NNs. In

other words, a pattern is internally formed in an adaptive model according to

external phenomena. Likewise for humans, laws (of physics, biology, or engi-

neering etc.) are patterns of nature recognized and depicted in our mind. This is

reminiscent of the neo-Kantian view that the world investigated by the sciences

is dependent on scientists’ theoretical assumptions and perceptual training. But

more than that, I would like to introduce an objective and external dimension

of patterns, which has a close relation to paradigms, incommensurability and

scientific realism.

3 Paradigms and Scientific Evolution

Kuhn’s concept of a scientific paradigm (or a disciplinary matrix which he

later suggested to use as a clarification of paradigm) is an ideal counterpart

of a model in computer science. A paradigm consists of metaphysical assump-

tions, values, key theories, instruments, methods and problem-field. Normal

scientific practice is a coherent tradition guided under a paradigm, through

which puzzle-solutions are cumulatively generated and the scope and precision

of scientific knowledge are steadily extended. Just as there are different world
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views, there are different paradigms. Alternation from one paradigm to anoth-

er results in a shift in almost everything, including the scientific imagination,

the problems available for scientific scrutiny and the standards of a legitimate

problem-solution. Such an alternation is subversive to the previous paradigm’s

basic commitments, leading Kuhn to call it a scientific revolution, a transfor-

mation of the world within which scientific work was done. Transformations

from Ptolemaic astronomy to Copernican astronomy, from Aristotelian dynam-

ics to Newtonian mechanics to Einsteinian dynamics are all typical scientific

revolutions.

The concept of a paradigm challenges scientific realism and inevitably lead-

s to a pessimistic and skeptical attitude towards sciences. Kuhn held that we

have no higher standard from which to evaluate different paradigms. He even

drew a parallel between political and scientific revolutions that when they occur,

political or scientific recourse fails. Different political parties acknowledge no

supra-institutional framework for their adjudication, and as a final result, they

resort to force. Similarly, the issue of paradigm choice can never be unequivo-

cally settled by logic and experiment alone but has to appeal to factors external

to science.

We should not simply accuse Kuhn of subjectivity and irrationality. A

thorough discussion of his genuine intention is necessary. Though relinquishing

the view that scientific development is a piecemeal process by which knowledge

has been ever growing closer and closer to the truth, Kuhn held the alternative

view that scientific development is a process of evolution which has no ultimate

goal in advance. He did not believe in a full, objective, true account of nature

by which paradigms are evaluated in terms of the closeness to it. But Kuhn did

not reject that science is making progress, instead he considered this progress

to be evolutionary, from present knowledge rather than toward future truth.

It is interesting that many philosophers of science ultimately resorted to

Darwin’s theory of evolution to explain the success or justify the development

of science, from Popper to Kuhn to van Fraassen. Popper asserted that his

falsificationism is “the conscious attempt to make our theories, our conjectures,

suffer in our stead in the struggle for the survival of the fittest”, and “not in

need of any further rational justification”. A similar conclusion was made by

van Fraassen, who asserted that “science is a biological phenomenon, an activity
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by one kind of organism which facilitates its interaction with the environment”.

He made a further assertion that the scientific mind is Darwinist mind: only

successful scientific theories survive, and no other explanation is required.

I think the theory of evolution cannot be employed as a fundamental ex-

planation. It tells us why many inadequate creatures have been eliminated,

but does not provide any guarantee for the survivors’ future. If what we have

obtained from the past environment has nothing to do with the future envi-

ronment, if nature turns its behavior sharply and frequently, what is the use

of evolution? One must admit that nature has some stability and regularity

continuing for some period of time at least. Then what is the demarcation

between present knowledge and future truth? Specifically, what is the distinc-

tion between evolution from present knowledge and development toward future

truth?

Moreover, the theory of evolution only tells us that some theory will be

successful (at present, actually), but does not tell us why a particular theory is

successful. Besides external factors, let us admit that there should be specific

scientific features rendering it successful and seek a resolution from the theory

itself.

To answer these questions introduces a more profound aspect of the theory

of evolution—it presupposes patterns of nature. The evolution of biological

populations depends on the external environment, and those who successfully

capture patterns of nature survive. For example, the theory of evolution explains

the long neck of a giraffe by food shortage in the lower reaches of trees. If we

regard the former—long neck—as an internal pattern, then we should regard

the latter—food shortage in the lower reaches of trees—as an external pattern.

To put it another way, we may say evolution is the natural selection of all kinds

of inhabitants by keeping the ones whose internal patterns match with natural

patterns and eliminating the rest.

Once again, we meet with patterns from evolution. Next I will argue that,

as the world is comprised of observable phenomena with underlying patterns,

the scientific enterprise should aspire to the latter rather than be limited to the

former.
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4 Observable Phenomena/Underlying Patterns

Undue reliance on the theory of evolution stemming from biology may result

in an unwarranted judgement that patterns of nature are volatile and temporary.

Nature has patterns of varying degrees, and correspondingly we have theories of

different depths. If one can only see what is apparent to the eye and only believe

in observations on the surface, he or she will probably come to instrumentalism.

van Fraassen held that the value of science is to “save the phenomena”—the aim

and only aim of science is to describe observable phenomena. As for the scientific

terms concerning unobservables, they are merely instruments for predicting or

integrating observables, and we should hold an agnostic attitude, not believe or

disbelieve them.

In the first place, the line between what is observable and what is unob-

servable is quite vague. It has been recognized from primitive times that a look

through eyes is an observation. Nowadays it is widely accepted that a look

through a telescope is an observation. But some people deny the observation

of particles in a cloud chamber. To me it is simply because they have not got

used to our extended sense brought by technology yet. Think about computers:

raw data are definite observations, statistical data such as the mean and vari-

ance are reliable observations, so how could the parameters after complicated

calculations no longer be observations? Since computers only have the ability

of computation, it is improbable that someone would argue that the number of

steps of computation matters. Fortunately we human beings have many abili-

ties, and observation is only one form of perception. It is the most direct form,

and unfortunately most people stay at this level. Why do we discriminate in

this way, trusting observations from our eyes and doubting theories from our

thoughts? All these perceptions are beneficial and important for our recognition

of natural patterns!

The exact form of a pattern is not that essential or crucial. Recall the

handwritten digits recognition. From our point of view, patterns of digits are

visually perceived. In primary school, teachers just write down digits 0 · · · 9 on

the blackboard and ask pupils to copy these patterns. Nobody will question

what the exact form of a digit is or which font is the standard. Students im-

mediately learn digits after such a demonstration. As Schlick considered that a
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color is defined by showing it, which is an irreducible sense activity, recognition

of digits is carried out in the same way. Yet this is not the way computers learn.

We can ask computers to output digits, but always in a fixed form regardless of

how many fonts they know. Computers cannot write digits freely as humans.

In turn, it becomes extremely difficult for them to recognize handwritten digits.

Computers have to train intricate models such as SVMs and NNs based on a

large dataset, whereas humans get the point after taking a look. And the pattern

formed in an SVM or a neural network can hardly be visual anymore. What do

these parameters stand for? What connection do they have with the shape of

digits? No human knows, but a computer does. The parameters describing the

hyperplane and margin in an SVM, the weight parameters in a neural network,

and the visual image in a human’s eyes share the pattern of digits despite they

differ superficially. They reflect different aspects of that pattern which links

them altogether.

The above discussion may encourge us to try to review our sciences from

God’s perspective. Nature has patterns which are clear in God’s eyes, but lim-

ited to our poor capability, we cannot perceive them easily in “the right form”.

We invent scientific theories and conceive physical entities such as particle, force,

string and so on. Perhaps God is confused by us, just like we are confused by

computers. Nonetheless we learn some characteristics of patterns in our tortuous

way. We lose the original appearance of patterns and get various incompatible

paradigms such that even God cannot tell which one is more accurate. But the

patterns we recognize could reflect different aspects of God’s patterns, and they

are linked altogether.

I absolutely do not want to make science a religion by envisaging God’s

perspective. Instead, I think this envision may help us to discern scientific re-

alism metaphysically and semantically. We have good reasons to believe the

mind-independent existence of the world, although the world of our experience,

i.e. the world investigated by sciences is mind-dependent. Reality and objec-

tivity come from the connection between external patterns of the world itself

and internal patterns of the world we perceive (including but not limited to ob-

servation), where the latter captures certain aspects of the former. I agree that

scientific practice should be committed to a literal interpretation of theories,

for only literally construed, a paradigm could guide scientists’ researches clearly
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and effectively, which ensures the orderly and rapid development of normal sci-

ence. But this does not mean that the entities postulated by a theory—particle,

wave, energy, etc.—exist. Metaphysically, I recommend the view that theoreti-

cal entities, which are internal patterns in the mind, are reflections of external

patterns of nature. Again, there is no need to draw a demarcation between

“observational terms” and “theoretical terms”. They are all perceptual terms

as different levels of reflections obtained by different forms of perception.

I must concede that not every phenomenon, or every group of phenomena,

has underlying patterns. Spam and handwritten digits are clear positive cases,

whereas the result of the World Cup may be a negative case, or at least a

hard case which requires a lot of further efforts. I believe science should be the

enterprise of pattern recognition. Any theory which claims itself as a science

without showing us the patterns it has constructed should be regarded as a

pseudoscience, no matter how many instances from which it alleges to make an

induction, or how many tests it somehow passes, as in the case of the internet

hoax. Of course, there are other enterprises whose aim is not to find out the

pattern but to enlighten us in other ways, such as literature, arts and religion,

and they deserve our same respect.

5 Incommensurability

Now we come back to the haunting incommensurability. Kuhn maintained

that different paradigms are incommensurable. Different computational models

are incommensurable in the same way. Viewing data as vectors in a high-

dimensional space, SVMs capture patterns by dividing the space into homoge-

neous subspaces, while NNs capture patterns by organizing a network. They

have been competing against each other for over half a century. The neural net-

work theory had been overwhelmingly popular since the 1950s. Experimental

psychologists firmly believed in its practical validity, but a group of statisti-

cians headed by Vladimir Vapnik severely criticized its theoretical foundation.

Vapnik and Alexey Chervonenkis developed the Vapnik-Chervonenkis theory

during 1960-1990, which is a computational learning theory from a statistical

point of view. Based on the Vapnik-Chervonenkis theory, Vapnik invented the

SVM method in 1995, and it gradually overtook neural networks in machine
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learning popularity. (Ironically, in order to publish his work in the era of neural

networks, Vapnik had to choose the word “network” which he hated to entitle

his paper—“Support-vector networks”. Later, it was renamed “Support Vec-

tor Machine”.) In the 2000s, the breakthrough of deep learning architectures

revived neural networks, which seized the initiative from SVMs again, but the

doubts of their theoretical foundation never go down.

I conceive a scientific paradigm as an adaptive model. Their architectures

are incommensurable (it is hard to say which one is more basic, a hyperplane

or a network?), but their adaptabilities—the capacity to capture patterns—are

commensurable. In computer science, an acknowledged measure is the accuracy

on the test set: whether the model classifies the category correctly or fits the

value closely on new data. The measure of accuracy is not the final judgement.

Holding a paradigm or a model’s basic commitments, scientists can develop it

flexibly to improve its adaptability and accuracy, e.g. deep learning promotes

neural networks’ revival. In natural sciences, adaptability becomes much more

perplexing and difficult to measure among different paradigms. A pragmatic

concern, or technology, should be a feasible measure. Occasionally there are

apparent situations where one paradigm’s adaptability has it all over anoth-

er’s. The replacement of Newtonian dynamics by relativistic dynamics is the

best-known example. Their different architectures—the different meanings of

Newton’s concepts of space, time, mass and Einstein’s concepts of space, time,

mass—are not the issue here. The theory of relativity reduces Newton’s theory

to a special case with a low speed, and its superiority in adaptability is solidly

justified.

6 Conclusion

So far, we have discussed scientific methods and scientific realism from a

machine’s as well as a human’s point of view. Pattern recognition is at bottom

the same as machine learning: historically, one originated from engineering and

one grew out of computer science; actually, they are two faces of the same

field. As regards human learning, I would describe science as the enterprise of

pattern recognition too. Patterns establish the goal, the reality, and the methods

of science. We should activate all our capacities to capture them, including
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induction, deduction, observation, hypothesis, imagination, or whatever else

one can think of. But patterns’ volume always exceeds our capacity. For a

deaf person, sounds do not exist. What if all human beings lack some kind of

sense? But things are not absolute. Deaf people can perceive sounds by the

visualization of acoustic waves. To discover the patterns beyond our senses, we

must develop sophisticated methods to perceive them. And this is the honorable

mission of sciences.

Although I have not fully argued for patterns, I hope to have shown that

they are plausible. I wish my work may start a first step towards a bigger goal,

to think about real patterns in nature.
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