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Gradient based edge detection techniques can be extended to multispectral images in various 
ways: difference operators can be applied to each component of a multi-image, and the results 
can be combined, e.g., taking the RMS, or the sum, or the maximum of their absolute values. 
In all of these approaches the image-components do not actually cooperate with one another, 
i.e., edge evidence along a given direction in one component does not reinforce edge evidence 
along the same direction in other components. To avoid this, the use of the tensor gradient of 
multi-images regarded as vector fields is suggested. Explicit formulas for the direction along 
which the rate of change is maximum, as well as for the maximum rate of change itself. arc 
derived. Digital approximations are obtained by surface fitting. 8 I 9% Academic Press. Inc 

INTRODUCTION 

Edge detection is of interest for both image analysis and image understanding. In 
image segmentation, certain specific parts of an image (objects or regions) are 
logically extracted, i.e., separated from the rest of the image, based on some local 
property of the image, usually the gray level. Object extraction is often a prerequisite 
for object description or recognition. For example, in character recognition, the 
characters must be extracted before their recognition is attempted; in chromosome 
classification, the chromosomes must first be extracted from the photomicrograph 
before they can be classified. Object extraction may be critical when there are 
neighboring objects which do not differ significantly in any pixel property. 

In many cases, edge detection turns out to be a powerful tool for object 
extraction: indeed, an efficient way of extracting an object in an image is often to 
detect and reconstruct its border. Edge detection has received considerable attention 
in recent years. A systematic account of edge detection can be found in Rosenfeld 
and Kak [14]. The literature on edge detection has been surveyed by Davis [Z], Fu 
and Mui [4], Peli and Malah [8], and Di Zenzo [3]. Edge detection is of interest also 
in artificial intelligence as it is efficiently implemented in biological visual systems. 
Edge detection from this viewpoint has been reviewed by Brady [l]. 

Currently, a number of well established techniques for edge detection in ordinary 
(one-band) images are available. In many cases, edges are detected by applying some 
local operator (usually some digital approximation of the gradient) and then 
thinning and linking short edges to form whole boundaries. The use of the gradient 
dates back to Kovasznay and Joseph [5,6]. A well-known digital approximation of 
the gradient is that proposed by Roberts [ll]. The components of the Roberts 
gradient are obtained by convolving the image with 
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A digital gradient magnitude is then obtained as the maximum of the absolute values 
of the components. 

More effective digital approximations of the gradient can be obtained by comput- 
ing differences of local averages (which is equivalent to smoothing the picture before 
applying the gradient operator). For example, a digital approximation of the 
derivative df/ax of an image f(x, y) can be obtained by convolving f with 

-1 -1 1 1 
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Differences of averages produce thick bands of edge data even when the edge is an 
ideal step edge. In real images, however, edges are also always diffused and noisy, 
and a certain thickness of the detected edge band is unavoidable, as it is shown by 
an analysis of the edge detection process in the frequency domain (see, e.g., [14]). 

The use of operators based on differences of averages raises a problem about the 
size of the neighborhoods on which the averages are to be computed. In general, 
different sizes are needed at different points. A classic solution to this problem is 
that proposed by Rosenfeld and Thurston [12] using a set of images averaged over 
larger and larger neighborhoods. 

Differences of weighted averages have also been proposed. An example is the 
Sobel operator, whose x and y components are the convolutions of the given image 
with 

Surface fitting is another classical method of deriving digital approximations for the 
gradient (and the Laplacian) of a digital image. A digital image can be approximated 
locally at any given point by a polynomial function, e.g., a plane. The gradient and 
the Laplacian of the polynomial function can then be taken as digital approxima- 
tions for the gradient and the Laplacian of the image at the given point. Many 
well-known digital approximations of different operators can be regained in this 
way, as discussed by Prewitt [9]. For example, least squares fitting a plane z = ax + 
by + c to the gray levels in a 2 X 2 neighborhood leads to the approximations to the 
first derivatives along x and y obtained as the convolutions of the given image with 
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The least squares fitting of a second degree polynomial to the gray levels in a 3 x 3 
neighborhood gives the following approximations to the first derivatives along x and 
y, respectively: 

which are known as Prewitt operators. More recently, Morgenthaler and Rosenfeld 
[17] derived digital approximations for the gradient in nD images. 
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We have reviewed these notions on surface fitting as we shall make use of them to 
obtain digital approximations for the differential operators we derive below. To 
derive digital approximations of the gradient is just one of the techniques which can 
be used to obtain edge detectors. Other techniques include mask matching, step 
fitting, use of decision theory, and filtering in the frequency domain. 

The subject of the present article is gradient-based edge detection in multi-images. 
Research on this subject has already been done by Nevatia [18], Robinson [19], and 
Sankar [20], among others. We shall discuss difference operators that make use of 
vectors of local properties rather than gray levels. All the techniques described above 
can be extended to multi-images in various ways. Our purpose is to discuss the type 
of extensions suggested by the analytical treatment of multi-images as vector fields. 
This approach has been suggested by Machuca and Phillips [7] who established a 
framework for the applications of differential geometry to image processing. The 
present article proposes a solution for a problem formulated by these authors, 
namely “how to combine the gradients (of the image components) into one output.” 
The analytical treatment begins with the next section; in the rest of this section, a 
brief qualitative discussion of the problem is provided to place it in better focus. 

As a first approximation, all the techniques described above can be extended to 
multi-images. Since a multi-image can be modelled as an array of ordinary images, a 
straightforward approach is to evaluate the gradient as the vector sum of the 
gradients of the individual components of the multi-image. Another approach is to 
take the RMS of the component gradient magnitudes as the magnitude of the 
resultant gradient. For example, if R, G, and B are the respective red, green, and 
blue components of a color image, the RMS of v, R, v,G, and V, B 

((R(x, y) - R(.x - 1, y>)* +(G(x, Y) - G(x - 1, I’))” 

+ (B(x, y) - B(x - 1, Y))2)1’2 

could be taken as the x-component of the resultant gradient. The resultant gradient 
magnitude would turn out to be the Euclidean distance between the color vectors 
(Wx - 1, y) G(x - 1, Y), B(x - 1, Y)) and (Nx, y), G(x, y), B(x, Y)). As co-lor 
vectors (or, more generally, property vectors) can be averaged over neighborhoods, 
the distance between point vector values can be replaced by a distance between 
averaged vector values. 

The RMS can be replaced by the sum, or even the maximum, of the absolute 
values of the differences involved. The Fisher distance can also be used at the price 
of some additional computations (both averages and variances are to be computed 
over suitable neighborhoods). 

The above mentioned operators make use of color (or spectral) components; they, 
however, can be unsatisfactory in certain cases. For example, the use of Fisher 
distance can provide good results, but is time consuming. On the other hand, taking 
the vector sum of the gradients of the separate bands as the gradient of the whole 
multi-image is computationally cheap but very unsatisfactory. Consider, for exam- 
ple, a color image where B is constant while R and G both show vertical edges 
around, say, the y axis. Suppose that the edge strength is the same but oneband 
increases from left to right while the other decreases: then the vector sum of the 
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gradients would provide a null resultant gradient. The RMS approach would provide 
the correct result in the above case. 

Consider, however, the following two cases: at any given point (x, y) all the 
bands exhibit an edge (a) along one and the same direction, (b) along different, 
possibly orthogonal, directions; with equal band edge strengths, the RMS approach 
gives the same result in both cases, while, quite obviously, in case (a) the edge 
strength should be greater as convergent evidence from all the bands should 
reinforce the edge strength. 

THE GRADIENT OF A MULTI-IMAGE 

In what follows, R denotes the set of real numbers. Let f: R2 + R” be a 
continuous multi-image. We set V, = { f( ) x : x E R2 }. The following notations will 
be adopted: x = (x’, x2), f= (f’,. .., f”), y =f(x) = (f’(x), . . ., f”(x)) = 
(y’, . . ., y”). Hence, for j = 1, . . . . m, y’ =fj(x). 

We assume the Jacobian 1 afj/ax”l to be of rank 2 everywhere in R2. Then V, 
is a two-dimensional manifold embedded in R”. Let h = 1,2 and fh(x) = 
(df l/axh, . . . ) df “/axh). So defined, fh(x) is an m tuple of reals in which the jth 
term represents the value of b’ffi/dxh at x E R’. We assume that f,(x) and its first 
derivatives are continuous. 

Let x denote the scalar product in R”. For h, k = 1,2, we set 

ghktX) = fh(x) ‘fktx). 

Notice that { f&)}h=l,J is a basis for the two-dimensional vector space of tangent 
vectors of I’, at y = f(x). The four numbers &k(x), h, k = 1,2 are the components 
of a symmetric tensor field g(x) = g(x’, x2) of rank 2. 

For image processing applications, we are interested in the following two quanti- 
ties to be computed locally at each point x = (x1, x2): (a) the direction through 
point x along which f has the maximum rate of change, and (b) the absolute value 
of this maximum rate of change. We are thus led to the problem of maximizing the 
form 

df* = i t gh,dxhdxk 
h=l k=l 

(2) 

under the condition 

i dxhdxh = 1. 
h=l 

(3) 

This problem can be reformulated as the problem of finding that value of 8 which 
maximizes the form 

F( 0) = g,,cos2t? + 2g,, cos 19 sin 8 + g,, sin% (4 
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which, in turn, can be solved by means of the following substitutions 

sin28 = +(l - ~0~213) 

cos2e = $(l + cos28) 

sin8c0s8 = isin28. 

One obtains 

F(e) = { g,,(i + c0s2e) + 2g,,sin28 + g,,(l - c0s2e)) 

= 3bll + g2*) + c0s2e( g,, - g,,) + 2g,,sin28 } . (5) 

On setting dF/dO equal to 0, one obtains 

0 = t arct42g12/(gll - g,,)). (6) 

If 0, is a solution to this equation, so is 0, + 7r/2. As F(e) = F( 9 + w), we may 

confine to the values of 8 within the interval [0, T). Thus, Eq. (6) always provides 
two values of 8; except for the case in which F(8) is constant, F is maximum in 
correspondence to one of these two values and minimum in correspondence to the 
other. Stated differently, Eq. (6) associates with each point (x, y) in the space 
domain of the multi-image a pair of orthogonal directions: along one of them, f 
attains its maximum rate of change, along the other, its minimum. 

Note. From a mathematical standpoint, the gradient of the multi-image f is 
tensor g. Indeed, f is a vector field, i.e., a vector valued function defined over a 
manifold (the x, y plane), hence its gradient must be a tensor. 

Quite obviously, the whole theory applies whenever m 2 2, i,e., when there is 
actually more than one image component. More details on this aspect are given in 
the Appendix, which also contains an elementary formulation of the maximization 
problem expressed by Eqs. (2) and (3). 

In the remainder of this section, we shall consider the problem of deriving digital 
approximations for the gradient of a digital multi-image. More precisely, we shall 
derive digital approximations for 0, and F(&,)‘/2, where @, is the angle which 
determines the direction along which f has its maximum rate of change (in 
Euclidean metric), while F( e0)1/2 is the actual value of the maximum rate of change 
(also called “edge strength”). 

We shall make use of the surface fitting technique. Specifically, the given digita! 
multi-image f will be approemated locally at each point by a linear multi-image f 
of same dimensionality m: f will then be used to compute approximated values of 
0, and F(00)*/2. 

Let us first examine how f^ can be computed. We shall adopt for p the same 
notational conventions we have taken for f, namely f = ( f”r, . . . , !“I), j = f(x) = 
ci’w,. f. , f”‘(x)) = (y’,..., y”). Hence, for j = l,..., m, jj=p(x). As f^ is 
linear,forj=l,..., m,wehave 

jJ = aj,x’ + aj2x2 -I- a. 
‘3’ (7) 
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So, in order to determine j, we must get estimates of the coefficients aj,. This in turn 
can be done by means of well-known techniques. For example, the three coefficients 
in the right-hand side of Eq. (7) can be estimated by least-squares fitting the plane 
represented by that equation to the pixel values (in the jth image band) in a 
neighborhood of the given point (x’, x2). For example, we can use the pixel values 
f/(x’, x2), f’(x’ + 1, x2), f’( x1, x2 + l), fj(x’ + 1, x2 + l), as data points for a 
least squares fit of the plane represented by Eq. (7): the result is (see e.g., [13, Vol. 2, 
P. 1071) 

ai1 = (fj(xl + 1, x*) + fj(,l - 1, X* + 1))/2 

- (f’(X’, x”) + fj(xl, x2 + 1))/2 

a,* = (fj(xl, x2 + 1) +fi(xl + 1, x2 + 1))/2 

-(fj(xl,x*) +fj(xl + 1,x2&2. 

The expression for ah has not been reported: indeed, the coefficients ah&j = 
1, ;. . , m, are not actually needed. Notice that f(x) (or, more correctly, V, = 
{ f(x):x E R*}) can be considered an approximation to the tangent plane of V, at 
Y = f(x). 

Once the relevant coefficients aj, have been computed, they can be used to obtain 
an estimate of 0, as follows. From Eq. (7) it follows that 

From these and Eq. (1) we can obtain approximations ihk of the tensor coefficients 
g,, as follows 

gll = f ai ,. 
j=l 

m 

t2* = C a,2* 
j=l 

m 

i12 = C aj,aj,- 
j=l 

Pa> 

(9b) 

(94 

Then we are able to obtain an estimate 8, of t$, by means of Eq. (6). By substituting 
0, into the right-hand side of Eq. (4), and then taking the positive square root, we 
then obtain an estimate of the edge strength locally at the point x = (xl, x2) under 
consideration. 

APPLICATION TO COLOR IMAGES 

We shall discuss the above results in the particular case of color images (m = 3). 
A continuous color image can be regarded as a function mapping R* into the RGB 
space. Following the common notation, we shall write x, y instead of x1, x2. The 
color components will be denoted R(x, y), G(x, y) and B(x, y), so that the image 
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as a whole can be denoted j = (R, G, B) or, more explicitly, j(x, y ) = 
(R(x, y), G(x, y), B(x, y)). We shall write r, g, b for the unitary vectors associated 
with the R, G, and B axes, respectively. Then the vectors jh, A = 1,2 can be 
rewritten 

8R JG LIB 
u=--r+ 

ax axg+axb 

aR aG aB 
v=-r+-g+-b 

ay ay ay 

Both u and v are functions of the two space coordinates x, y. The explicit formula 
for the angle 8 can be rewritten 

f3 = i arc tan (%,$t g,, - icy, > > (11) 

where 

(12b) 

aR aR aG aG aB aB 
g XY 

=uxv=-----+--+--. 
ax ay ax ay ax ay 

U2c) 

Quite obviously, the tensor components g,,, g,.,., and g,, are also functions of the 
space coordinates x, y. 

To help understand the meaning of the above formulas, a few special cases will be 
discussed in detail. 

Case 1. Assume that, we have at some point (x, y) in the space domain 

aR aG aB 
-=-=-= 
a~ a~ ay 

0 

aB 
-= 0 
dX 

dR aG -= -- 
ax ax. 

In words, B is constant, no image components vary along the y axis, and R and G 
vary along x with the same absolute rate of change and opposite signs. In this case, 
v = 0, hence g, = gXY = 0, and we have 

2 

g .,=2$. 
I 1 
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From Eq. 11 we have 13 = 0 or 13 = a/2. It is easily seen that the first solution 
corresponds to the maximum rate of change and the second to the minimum. So we 
have a maximum rate of change along x and the edge strength is fil6’B/dxl. Notice 
that evaluating a gradient for the whole multi-image as the vector sum of the 
gradients of the separate image components would provide a result of 0 in this case. 
On the contrary, the RMS approach would provide the correct results owing to the 
fact that the gradients of R(x, y) and G(x, JJ) have the same direction. 

Case 2. Let us consider the case u = v. In this case, the rate of change along x 
and that along y are equal. From Eqs. (12a) through (12c), it follows that g,, = g, 
= gxy, hence, Eq. (11) provides either 8 = a/4 or 19 = -s/4. The maximum rate of 
change is found along 8 = 1r/4 and its value turns out to be 

F(f)“‘= (i(g,, + g,,) + gxysin ,)1’2 = {2gxx}“2. 

The RMS approach would provide the same result, again due to the fact that the 
gradients of the separate image bands all have the same direction (the one de- 
termined by B = 7r/4). It can be verified that the orthogonal solution 0 = -a/4 
corresponds to a minimum of F(0). 

Case 3. Let us assume that, at some given point (x, y) in the space domain, the 
following situation holds 

aR 6 aR 1 
-g-=-y, ay=2 

aG 1 aG fi 
ax=-2’ -.-&=? 

aB aB 

z=ay= 
0. 

So, B is constant, while the gradients of R and G are orthogonal to one another and 
equal in magnitude. We have g,, = g,, = 1, gxY = 0, hence Eq. (2) gives B = 0 or 
8 = n/2. In this case, however, these values of 6 are irrelevant as F(8) is constant: 
F(e) = 1 for any 8. The rate of change turns out to be 1 (along any direction 8). 
Notice that the RMS approach would provide a value of fi. 

Case 4. Let us consider a situation slightly different from that of Case 3, namely 

aR y&=6, $1 
aG 1 aG d- - = -- 
ax 2’ ay=T- 

aB aB -= 
XL= ay 

0. 

Hence B is again constant, and the gradients of R and G are again orthogonal to 
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one another, however, they are not equal in magnitude. Here we have g,, = 
I3/4, g, = 7/4, gxy = 3J?;/4. Equation (11) provides 8 = 30”, 6 = 120”. The 
maximum rate of change is found along 8 = 30” and its value turns out to be 1.72. 
The RMS approach would provide a value of 2.23. 

APPENDIX 

In this Appendix, a simple derivation of the constrained maximum problem 
expressed by Eqs. (2) and (3) is provided. Let F( 0) = If( x’) - f( x)12, where 
x = (x’, x2) and x’ = (x’ + E cos 8, x2 + e sin 0). In words, F(B) is the square of 
the length of the vector f(x’) - f(x) which represents the change of f for a small 
displacement from x = (x’, x2) to a generic point x’ on the circle of radius t‘ 
centered at x. We have 

W) = f IfI< x1, x2) -f’(x’ + ~cos6, x2 + esinf3)j2 
r=l 

For g11* g22, g12 gi ven by Eq. (l), we eventually get Eq. (4). 
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