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A Discrete Version of Green's Theorem
GREGORY Y. TANG, MEMBER, IEEE

Abstract-We formulate a discrete version of Green's theorem such
that a summation of a two-dimensional function over a discrete region
can be evaluated by the use of a summation over its discrete boundary.
In many cases, the discrete Green theorem can result in computational
gain. Applications of the discrete Green theorem to several typical
image processing problems are demonstrated. We also apply it to ana-
lyze shapes of particle aggregates of Fe2O3. Experimental results of
the shape study are presented.

Index Terms-Computer graphics, digital image processing, discrete
geometry.

I. INTRODUCTION
G REEN'S theorem [1] in the continuous x-y plane can
l_be written as

ff(a: )f dY=d (f dx +gdy) (1)

R

where C is the entire boundary of region R on the x-y plane.
If we read (1) from left to right, we would say that (1) tells us
how to evaluate a surface integral using a contour integral. In
particular, iff= 0, (1) becomes

Jf a dx dy = gdy. (2)
R

Let (ag/ax) = g'; then (2) becomes

ffg'dxdy fgdy. (3)
R c

In this paper we will first find a discrete version of (3), and
then generalize it. The discrete Green theorem will tell us how
to evaluate a summation of a two-dimensional function over a
discrete region by the use of a summation over its boundary
points. Since the number of boundary points usually is less
than the number of points in the region enclosed by the
boundary, the discrete Green theorem also suggests some com-
putational advantages. In the discrete space, the boundary
points of a region can be concisely represented by a Freeman
chain code [2]. The discrete Green theorem can be used to
solve some typical image processing problems such as: to cal-
culate the moments of a region whose boundary is given; to
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determine whether a point is in a region whose boundary is
given in a Freeman chain code; and to determine the area of
intersection of two regions whose boundaries are given in a
Freeman chain code.
In Section II, the discrete Green theorem corresponding to

(3) will be described and proved. In Section III, we show
some applications of the discrete Green theorem. In Section
IV, generalization of the results in Section II is shown. In Sec-
tion V, we show how to apply the discrete Green theorem to
the shape study of particle aggregates. Section VI is the final
discussion and conclusion.

II. DESCRIBING THE DISCRETE VERSION OF
GREEN'S THEOREM

A discrete space S is a set of lattice points {(h, k)|h, k are
integers}. A region R is a subset of S. A region R is finite if
the number of lattice points of R is finite. Unless otherwise
specified, we assume regions are finite in this paper. A region
R is 8-connected if there is an 8-path between any two lattice
points of R [3]. An interior point of R is a point ofR all of
whose four neighbors [4] are points of R. A boundary point
of R is a point which is not an interior point, that is, at least
one of its four neighbors is in R (the complement of R). An
8-connected region has no holes if all of its boundary points
are 8-connected. In the following we will assume all regions
are 8-connected and have no holes, unless specified. We can
trace the boundary of a region by starting at an arbitrary point
(xO, yo) and move along the boundary so that the region is
always on the left-hand side. The sequence of boundary
points visited by this tracing method is called the sequential
boundary points. We can represent the sequential boundary
points by the Freeman chain code ((xo,yo),aoala2 , , a,).
The elements of a Freeman chain code are defi1ned in Fig. 1. A
boundary point may be visited more than once using the afore-
said tracing method. They will be referred to as double points.
The Freeman chain code of the boundary points of a region
which contains only a single point is undefined. We exclude
such a case in the sequel.
For each point (h, k) ES we can define a continuous half

line {(x, y)Iy = k, x > h}, which is referred to as 1-half line
(1HL) of (h, k). Similarly {(x, y)Iy = k, x < h} is the 5-half
line (5HL), {(x, y)lx = h, y > k} is the 3-half line (3HL) and
{(x, y)Ix = h, y < k} is the 7-half line (7HL). A boundary
point p of region R is said to be a left point if there is a p' E
R such that p is on the 1HL of p' and no other point on both
R and the 1HL of p' is closer to p'. Similarly, p is a right-
point if there is a p' ER such that p is on the 5HL of p' and
no other point on both R and the 5HL of p' is closer to p'; p is
a top point if there is a p' ER such that p is on the 7HL of p'
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Fig. 1. Elements of Freeman chain code.
Fig. 3. Geometry for the case ai -1 = 2 and ai = 4.

1 2 3 4 5
x

TABLE 1
Dy(aiM,, ai) = 1 INDICATES THAT THE iTH POINT IS A RIGHT AND NON-X-TIP

POINT. Dy(aM1-, ai) = -1 INDICATES THAT THE iTH POINT IS A LEFT
AND NON-X-TIP POINT.

aa1

1 0 1 1 1 1 0 0 0

2 0 1 1 1 1 0 0 0

3 0 1 1 1 1 0 0 0

4 0 1 1 1 1 0 0 0

5 -1 0 0 0 0 -1 -1 -1

6 -1 0 0 0 0 -1 -1 --1

7 -1 0 0 0 0 -1 -1 -1

8 -1 0 0 o 0 -1 -1 -1

Chain Code of the Douryary((2,2),7228425577)

Left points: (2,1), (2,2), (2,3), (2,4)
Right points: (2,1) , (3,2), (4.3), (5,2). (5,4)
X-tip points: (2,1)
Top points: (2,4), (3.4), (4,4),(5,4),(5,2)
Bottom points: (2,1),(3,2),(4,3),(5,2),(5.4)
Y-tip points: (5,2),(5,4)

Fig. 2. An example to show some of the definitions in Section II.

and no other point on both R and the 7HL of p' is closer to
p'; and p is a bottom point if there is a p' ER such that p is on
the 3HL of p' and no other point on both R and the 3HL of p'
is closer to p'. A point is said to be an X-tip point if it is both
a right point and a left point and not a double point. A point
is said to be a Y-tip point if it is both a top point and a bottom
point and not a double point. Fig. 2 shows an example to
demonstrate these definitions.
Given a boundary point (xi, yi) and the Freeman chain ele-

ments ai I, ai(ai = a, -1I if i = 0) which sandwich (xi, yi), we
can determine if (xi, y,) is a right point or a left point. But in
general, we cannot determine whether (xi,yi) is an X-tip point
by inspecting (as -1, ai) alone. For certain (ai-1, a1)'s we can

say definitely that (xi, yi) is not an X-tip point. For example,
if ai-1 = 2 and ai 4, then we have a geometry as shown in
Fig. 3. Since when we move from P6 to P4, the region should
be on the left-hand side, so we can conclude that P7, P8, P1,
P2, P3 are not in region R (otherwise the chain code is not

ai 1, ai). (xi, yi) is on the 5HL of Pl. So (xi, yi) is a right
point. IfP5 is in R, then (xi, yi) is not an X-tip point. IfP5 iS
not in R, then (xi, Yi) is a double point and not an X-tip point.
Summarily, what we can say about (xi, yi) is that it is a right
point and not an X-tip point. But we cannot say whether

(k j1 yir.1)

Fig. 4. Geometry for the case ai1I = 4 and ai = 6.

(xi, yi) is a left point or not. Following the similar argument
for all possible ai -l, ai, we tabulate the results in Table I

(Dy(ai-1, ai)). fDy(ai 1, ai)I = 1 indicates that (xi,yi) is not
an X-tip point. Dy(ai I, ai) = - 1 indicates (xi, yi) is a left
point and Dy(ai , ai) = +1 indicates (xi, yi) is a right point.
Consider another case when ai-1 = 4 and ai = 6. The geom-
etry is shown in Fig. 4. Moving from P8 to P6, we know that
region R is below P8POP6, and Pl, P2, P3, P4, P5 are not in
R. PO is a right point and a left point. IfP7 is in R, then Po
is an X-tip point; otherwise it is not. Hence, it is uncertain
whether P7 is an X-tip point or not. But it is certain to say

that P7 is a left point. Using the similar argument we can

establish Cy(ai-1, ai) (see Table II) such that Cy(ai-1, ai)=
1 indicates that (xi, yi) is a left point.
Let f(m, n) be a function defined over all the lattice points

and R is a region in {(h, k)fh > 0, k > 0, and h, k are integers}
and R is 8-connected without holes. R has at least two points.
The boundary of R is represented by Freeman chain code

(xO ,yo), aoa1 al_l)-
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TABLE II
1 INDICATES THE ith POINT IS A LEFT POINT

1 2 3 4 5 6 7 8
a.1

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 1 0 0

3 0 0 0 0 0 1 1 0

4 0 0 0 0 0 1 1 1

5 1 0 0 0 0 1 1 1

6 1 1 0 0 0 1 1 1

7 1 1 1 0 0 1 1 1

8 1 1 1 1 0 1 1 1

TABLE III
DEFINITION OF a& AND aiy FOR EACH FREEMAN CODE ELEMENT ai

ai aix aiy

1 1 0

2 1 1

3 0 1

4 -1 1

5 -1 0

6 -1 -1

7 0 -1

8 1 -1

We define F,(m, n) = ITO f(i, n),

xi+, =xi+aix

yi+ I =yi+ajy

Q (X , j y)P

Fig. 5. Geometry for Lemma 1.

P4

P5 * * P3

P2P6

87 pi

P*
Ps o

H = PS (Po) (Pp1)P6 (P2), P5 (P3)

T= P4
R= H UT

Fi= nT

Fig. 6. An example to demonstrate the proof of Lemma 1.

(4)

where aix, aiy are defined in Table III. The sequential bound-
ary point (xo,yO), (x1,y1) * * (xl 1,yj- 1) is denoted by B.

Lemma 1: If (xi, yi) C B and is a right and non-X-tip point,
then there is a (xj, y,) E B such that xj .xi,,yj = yi, and (Xi,
yj) is a left and non-X-tip point. All the lattice points between
(xi,yj) and (xi, yi) are in R.

Proof: Since (xi, yi) is a right point, there is aP ER such
that (xi, yi) is on 5HL PO of P. See Fig. 5. Let (xt, y1) be a

point in R such that {(xt, ye), (xt + 1, yi), ,(xi - 1, yi),
(xi, yi)} R l PO and (Xt - 1, yi) ER. Ifxt xi, then (xi, Yi)
is a double point and (xi,y1) = (xi,y,). If xt xi, then (xt,yi)
is a left point since (xt - 1, yi) CR and is not a right point
since (xt, yi)ER. Hence, (xt, yi) is a left point and not an

X-tip point and (xj,yj) = (xt,yi).
For each non-X-tip right point Pr, we can define a set of lat-

tice points (called HLS) P, (Pr) = {(h, k)IP, is the non-X-tip
left point corresponding to Pr (using Lemma 1), h, k are in-
tegers, and (h, k) lies on the horizontal line segment PlPr}.
Let be all HLS's defined by all the non-X-tip right points of
B. T is the set of all X-tip points of B. See Fig. 6 for an exam-

ple. Then R = fUT (t T = 0). We have

y, f(m,n)= f(m,n)+ f(m,n)
(m,n)ER (m,n)EH (m,n)E T

= f(m, n) + E f(m, n)
hEH (m,n)Eh (m,n)eT

(5)

where h is any HLS of ft.

Letting the endpoints of h E H be (M2, n) and (m1, n), (5)
becomes

/ ml\

( f(i,n) + f(m,n)
/EH/=m2 (m,n))T

-ml m2

f(i,n) - f(in) +f(m2, n)
hcH -i=o i=o

+ f(m, n) (6)
(m, n)E T

Cr(ai-,, ai). CY(ai-,, ai) =

a a
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l-1
= E Fx(xi,yi)Dy(ai11,a1)
i=o

+ Z f(m, n) + Z f(m, n) (7)
(m, n) are (m, n)E T
non-X-tip
and left
point

I-1
= Z Fx(xi,Yj)Dy(ai-1,ai)
i=o

1-1
+ E f(xi,yi)Cy(ai_1,ai)- (8)

i=o

Summarizing the aforesaid results, we have Theorem 1.
Theorem 1: Let R be a discrete 8-connected region with-

out holes in the subspace S' = {(h, k)|h > 0, k > 0, h, k are
integers}. R contains more than one lattice point. The se-
quential boundary of R is B represented by a Freeman chain
code as ((xo, yo), aoal ... a,1) such that region R is seen on
the left-hand side as one moves along the sequential boundary
points. f(m, n) is a function defined over S'. The following
equation jolds:

i-i
Z f(m,n)= [Fx(xi,yi)Dy(ai_,1ai)

(m,n)ER i=o

+f(xi,yi) Cy(a1 ,ai)] (9)
where

m
Fx(m,n)= E f(i,n)

i=o

xi+l =xi+aiX

yi+ I =yi +aiy.

III. APPLICATIONS
In this section, we will examine various applications of

Theorem 1.
1) Calculating the Moments: The u, v moment of a region

R is defined as

muv= 3 munv
(m, n)ER

where (m, n) is the coordinate of any point in R. If R
S'={(h, k)Ih>O, k>O, h, k are integers} and R ha
holes, by the use of (9), (10) becomes

mu v =, [Fx (x i, Yi) DY(ai - ,ai)
i=o

+ f(xi, yi) Cy(ai -1 ai)]
where (xi, yi)'s are the sequential boundary points. Equ
(11) effectively tells us how to calculate the u, v moment~
region R if only the sequential boundary points are given.
function F, in (1 1) is Fx(m, n) = IT 0 iUnV. For the firs
second moments, a closed form for Fx(m, n) can be c

found. Thus we have the following.

(10)

i) u = O, v = 0: We have

m m

Fx(m,n)= Z ion°= 1=m
i=o i=0

and

i-i
Moo= 3 [xiDy(ai , ai) + Cy(ai1, a1)].

i=o

Moo is the number of discrete lattice points in R or the area
of R. In [2], Freeman suggested a formula to calculate the
area which is defined as the number of cells enclosed by the
boundary, not the number of lattice points in the region.
Therefore, our formula and Freeman's formula will not pro-
duce the same result for a given Freeman chain code.

ii) u = 1, v 0: We have

m
Fx(m, n) i = m(m + 1)/2

i=o

and

i-i
Mo= [(xi(xi + 1)/2) Dy(ai_1, ai)+xiCy(ai-1,,ai)]-

i=o

iii) u 0=,v = 1: Wehave

m
Fx(m,n) E n=mn

i=O

and

Moi = xiyiDy(aqi_,ai)+yiCy(aqi_,ai).
i=0

iv) u1=,v1=: Wehave

m
Fx(m,n) 3 in =nm(m + 1)/2

i=o

and

i-i
Ml=i [(xiyi(xi + 1)/2) Dy(ai.,ai)

i=o

+ xiyiCy(ai- 1 ai)].
v) u = 2, v 0: We have

m

Fx(m, n)=E P =m(m + 1)(2m + 1)/6
i=0

and

i-i

(I1) M20= > [(xi(xi+l)(2xi+1)/6)Dy(ai1.,ai)
i=o

ation +x Cy(qj- ,aj)]
s ofa IxC(1,1]
The vi) u 0O, v = 2: We have

t and
Dasfly

m ~~~2 2easily Fx(m, n) = E n = mn
i=o
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and

I-i

M0=2 [xIyDy(aa, a) +yCy(ai - 1, ai)].
i=o

Notice that if we use (10) to calculate the moments, the
number of computations is proportional to Moo (i.e., the area)
while if we use (11) to calculate the moments, the number of
computations is proportional to the length of the sequential
boundary which is linearly related to NMS. This is a signifi-
cant computational gain.
2) Determining Whether a Point is in a Region: Given a re-

gion R in S' by its sequential boundary ((xo, yo), aoal *
at1) and a point (h, k) E S', we want to determine whether
(h, k) is in R.
Define

J(m - h, n - k)=
0 if m/zh or n k

1 if m = h,

Applying Theorem 1 to (12) twice, we have

I -1 1-1

I(R, R') = L E[A(xi,yi, xy) Dy(qj-l, aj)
j=0 1=0

*Dy(a>- 1 ,ai)
+ B(xi, yi, xj, i) Cy(qj, aj) Dy(qj 1, ajF)
+ Ax(x1 - xj,yi - yj) Dy(ai- 1, ai) Cy(aia1, a;)

+J(xi - 4 y - Y;) Cy(aj , aj) Cy(ajl,aj)]
(13)

where

x.

A(xj,yj,xj,y!) = E AXci -p,Yi - Yi)P=O
P=0

n = k.

Then

z~~~~~~~~~~~~~~~~~~~~
i , (m -h,n-k)n={

(m, n) E=-R

1 if (h,k)isinR.

0 if (h,k)is notinR.

Applying Theorem 1, we have

z J(m-h,n-k)
(m, n) GER

= E [Ax(xi- hhy1i- k)Dy(ai1,,ai)
1=o

+ J(x1- h,yy- k) Cy(a1 1,ai)]
where

xi
A\x(xi - h,yj - k)- E J(i - h,yj - k)

1=0

J if yi=k and xi>h.

0 otherwise.

The number of computations is proportional to the length of
the sequential boundary.
3) Determining the Area of the Intersection ofTwo Regions

Defined by Their Sequential Boundary Points ((xO, yo),
aoai ... al1 )and((x0,y'),a'a'1 ---a;'..l): LetRbethere-
gion corresponding to ((xO, yo), aoal ... a,). Define f(x,
Y)=( ,n)eR J(m -x, n -y). Then we havef(x,y)=1 if
(x, y) is in R and f(x, y) = 0 if (x, y) is not in R. The area of
the intersection betweenR and R' is

I(R, R')= f(x,y)
(x,y)eR'

(12)J(m-x,n-y).
(x,y)ER' (m,n)ER

rx; if x1Ixi, Y:-Y

-i xi if X;>Xi, Y=Y

0 otherwise

x.I

B(xj,yj, xj,yi)P= 0 J(xi - P,yi - Yj)
P=O

IJ0 otherwise

1.1 if x;i X, y;=Yi

and (xi, yi), (x;, y;) are the ith and jth sequential boundary
point on R and R', respectively.
The number of computations of using (13) is proportional

to the product of the lengths of the boundary sequential
points of R and R'. Other methods for area intersection and
point inclusion can be seen in [5].

IV. GENERALIZATION

Following arguments similar to those in Section II we can
establish Dx(a-1., ai) (see Table IV) and Cx(ai-1, as) (see
Table V). Theorem 2, described below, can be proved in a
manner similar to Theorem 1.
Theorem 2: Let R be a discrete 8-connected region without

holes in the subspace S' = {(h, k)jh > 0, k > 0, h, k are inte-
gers}. R contains more than one lattice point. The sequential
boundary of R is B represented by Freeman chain code as
((xO, yo), aoazI * * al 1 ) such that region R is seen on the left-
hand side as one moves along the sequential boundary points.
g(m, n) is a function defined over S'. The following equation
holds:

- Z g(m,n)=+E Gy(xi,yi)Dx(a1-j,ai)
(m, n)CR i=0

- g(xi,yi) Cx(ai -1, ai)
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TABLE IV
DX(a-1, a,). DX(ai-1, ai) = +1 INDICATES THAT THE ith POINT IS A

BOTTOM AND NON- Y-POINT. DX(ai ,, a;) = 1 INDICATES THAT THE
ith POINT IS A ToP AND NON-Y-TIP-POINT.

ai

1 2 3 4 5 6 7 8

1 +1 1 1 0 0 0 0 1

2 1 10 0 0 0 1

3 0 0 0 -1 -1 -1 -1 0

4 0 0 0 -1 -1 -1 -1 0

5 0 0 0 -1 -1 -1 -1 0

6 0 0 0 -1 -1 -1 -1 0

7 1 1 1 0 0 0 0 0

8 1 1 1 0 0 0 0 0

where
n

Gy(m, n) = L g(m, i)
i=o

xi+ I=,,Xi +aix
and

yi+ I =-yi +aiy-

Combining Theorem 1 and Theorem 2, we obtain Theorem- 3
which is the discrete version of Green's theorem.
Theorem 3 (Discrete Green's Theorem): Let R be a dis-

crete 8-connected region without holes in the subspace S'=
{(h, k)|h > 0, k> 0, h, k are integers}. R contains more than
one lattice point. The sequential boundary of R is B repre-
sented by a Freeman chain code as ((xO,yo), aoal ... a,-,)
such that R is seen on the left-hand side as one moves along
the sequential boundary points. f(m, n) and g(m, n) are func-
tions defined over S'. The following equation holds:

E (f(m, n) - g(m, n))
(m, n) GER

-i-r
= LFx(xi,yi)Dy(ai-,ai)
i=o

+ Gy(xi, Yi) Dx(ai - ,ai))

+ y (f(x,yj) Cy(aj-1,a1)
i=o

- g(xi, yi) Cx(ai - , ai)J

where
m

Fx(m, n) = L f(j, n)
j=0

n

Gy(m, n) = L g(m,j)
j=o

xi+ =xi +aix

TABLE V
C,(ai-1, a,). C,(ai-l, ai) = 1 INDICATES THAT THE ith POINT IS A BoTrOM POINT.

a1 1 2 3 4 5 6 7 8a1

1 1 1 1 1 1 0 0 1

2 1 1 1 1 1 1 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0

6 1 1 0 0 0 0 0 1

7 11 0 0 0 0 1

8 1 1 1 1 0 0 0 1

and
yj+j =yj+ajy-

Define

V F.(m,n) = F(m, n) - F.(m - 1, n)

and

VyGy(m,n)=Gy(m,n)- Gy(m,n- 1).

Equation (14) can be written as

Z (VxFx(m,n)- VyGy(m,n))
(m, n) GER

I-1
= E3 [Fx(x1,yj)Dy(aj-1,a1)
i=o

+ Gy(xi,yi) Dx(ai ,a1)]
+ Z [VXFx(xt,yj) Cy(aj1,a1)
1=0

- VyGy(xi,yi) Cx(ai-1, ai)]
because

m m-l

VxFx(m n)= L f(i,n) - E f(i,n)
1=0 1=0

=f(m, n)
and similarly

VyGy(m,n) =g(m,n).
The similarity in appearance between (1) and (15) is

apparent.
The discrete Green theorem also holds if region R contains

(14) holes. If R contains holes, then the boundary points are not

8-connected. Instead the boundary points consist of several
8-connected closed arcs. Assume that region R has k - 1

holes, then the Freeman chain code representing the boundary
ofR is

[(X01 Yol), aO0, all* a(l, -

((XO2, Y02), aO2, a12, *. , ay2 -1)2

* --- ((XOk, YOk), aOkalk ..-a(lk -1)k]

(15)
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Yi

0

+ (1,2)

(0, 1)+ + (2, 1)

+ (1,0)

The region R.
Freeman chain code of the outer boundary ((0,1), 8246).

Freeman ciain code of the inner boundary ((0,1), 2864)

Calculating the summation of the right hand side of (16) over the outer boundary
is shown below:

N r I X I v i "-x. I _ aI 1 aI)
Xi

2

6 0 21 1 1 2 c

3

iX i
D

(a -1l'a ) + C (a-I',a ) = 5

Calculating the sumnation of the right hand side of (16) over the inner boundary
is shown below:

i a
,_ a, D (ai-l a)i (a i_la') X. Y x D (aa a)+C (aa a)

0 4 2 1 0 0 1 0

1 2 8 0 0 1 2 0

2 8 6 -1 1 2 1 -1

3 6 4 0 0 1 0 0

3
*i Dy(a._1,a.) + Cy(a, _,a.) = -1

ii
(5-2)

(5-1) + (5-2) = 4 = the area of R

Fig. 7. Demonstration of using formula (16) to calculate the area of
region R which has a hole.

where

(Xo, Yod), i 1, 2, , k

is the coordinate of an arbitrary point of the ith boundary arc.
(aoia 1i ... a(, 1) i) is the chain code obtained by starting at

(xoi, Yoi) and moving along the corresponding closed arc such
that region R is always on the left-hand side. Formula (14)
becomes

Z (f(m, n) - g(m, n))
(m, n) E R

outer boundary is {(0, 1), 8246}, and that of the inner bound-
ary is {(0, 1), 2864}. Define f(m, n) = 1, g(m, n) = 0; then
1(m,n)ER1 f(m, n) is the area ofR1 which is apparently equal
to four. Applying (16), we can obtain the same result. Fig. 7
shows the calculations of applying (16) to find the area.

It should be pointed out that the discrete Green theorem is
not true if region R is not a subset of S' = {(h, k)fh > 0, k > 0,
h, k are integers}. To extend the discrete Green theorem such
that region R may be in several different quadrants involves
defining a summation method which reflects the "direction"
of summation. Since we can represent most pictures as a sub-
set of S', we will not make an extension of the discrete Green
theorem such that region R can lie in different quadrants. But
such extension is possible.

V. THE DISCRETE GREEN THEOREM AS APPLIED
TO PARTICLE SHAPE ANALYSIS

The dynamics of the electrical mobility of an aggregate of
particles is related to the shape of the aggregate. To under-
stand the dynamics and the electrical mobility of particles is of
vital importance in developing a control process such as to
minimize the generation of harmful particles during coal lique-
faction. We applied the digital image processing techniques in
general and the discrete Green theorem in particular to study
the shape effects.
Several microscope pictures of aggregates of Fe2 03 particles

have been digitized. A COMTAL image processing system is
used to process the digital images. Since the background is
clear, the boundary points of each aggregate can be obtained
easily be a simple thresholding technique. The boundary
points are then encoded in a Freeman chain code. The bound-
ary of an aggregate in Fig. 8 thus obtained is shown in Fig. 9.
Then, using (1 0), we calculate Moo, Mlo, MO, M11,M20, M02
of each particle aggregate. The centroid of the aggregate is de-
fined as (Mlo/Moo MO, /Moo). The aspect ratio of the aggre-
gate is defined as

max (a, i3)
A (aspect ratio) = mm (a,

min (ot,hm
where ct, ,B are eigenvalues to the matrix

k

= Z E [Fx(x1j,y11)Dy(aqij-,a11)
j=1 i=o
+ G y(xi1, y11) Dx(aii - 1, ai)
+ f(xi, yj,) Cy(aij - 1, ai)
- g(xii, yii) Cx(aij- 1, aii)] (16)

where

x(i+ I)i xii + aijx

y(i+ 1)j =yij + aijy -

To prove (16) is straightforward, we will use a simple ex-
ample to demonstrate (16) is true. Consider that a discrete
region R1 contains four points R1 = {(0, 1), (1, 0), (2, 1),
(1, 2)}. R1 has one hole. The Freeman chain code of the

-C20 11-
-Cil C02 -

and

20=M20 (mlo
MMOOMO

M02 (Mo1 2
02 MOO-~o

Ml/ MOI MIO\
MOO MOO M00

We use the technique described in Section 111-2 to determine
whether the centroid is located in the aggregate. The result re-
ported by the machine is also shown in Fig. 9. All the pro-
grams are written in Fortran in an interactive mode. The user
uses the cursor to select a particle aggregate. The computer
generates a report as shown in Fig. 9 almost instantly.
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Fig. 8. One of the pictures of aggregates Fe203.

MOMENT ANALYSIS

Moo
M1o
Mo0
M11
M20
M02
CENTROID
LONG AXIS
SHORT AXIS
ASPECT RAT
CENTROID I'

4415000000D 04
*5531820000D 06
*1783925000D 07
21639849100 09
9012050900D 08
7249738080D 09

125 404
*1061782468D 05
6939956371 D03

r1O 1529955537 D02
NOT IN THE OBJECT

chain code of the boundary; to determine whether a point is in
a given region whose boundary points, in terms of the Free-
man chain code, are known; and to determine the area of the
intersection of two discrete regions whose boundary points are
given in terms of the Freeman chain code. We also apply the
discrete Green theorem to study the shape of particle aggre-
gates. An experimental result of this shape study is shown.
The discrete Green theorem uses the Freeman chain code to

represent the boundary points. Some results shown in [2] can
also be obtained by the use of the discrete Green theorem. It
will be a fair statement if we say that the discrete Green theo-
rem is an extension and generalization of the previous work
done by Freeman [2].
The discrete Green theorem holds when the discrete region is

entirely in one quadrant. The discrete Green theorem fails if
the discrete region lies in several quadrants. It is possible to re-
move this failure by defining a new way to do summation. We
feel such effort is not necessary because most pictures can be
represented as a subset of the first quadrant.
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