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Abstract 

In this paper, two new geodesic distance transforms for gray-scale images are presented. The first transform, the Distance 
Transform on Curved Space (DTOCS), performs the calculation with integer numbers. The second transform, the Weighted 
Distance Transform on Curved Space (WDTOCS), gives a weighted distance map with real numbers for an arbitrary 
gray-value image. Both transforms give a distance map in which the distance value of a single point corresponds to the 
length of the shortest discrete 8-path to the nearest background point. Both differ from the previously presented gray-level 
distance transforms by not weighting the distance values directly by the gray-values, but by gray-value differences. 
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1. Introduct ion 

Rutovitz (1968) has proposed an algorithm for obtaining a gray-weighted distance function, in which gray- 
value is identified with a concept of "height" and gray-weighted distance is defined in such a way that it is less 
along paths with low gray-value pixels. In his method, he proposes only two iterations, as in the black-and-white 
case. Rosenfeld (1969) presented a parallel version of this algorithm. 

Fall-distance (Rutovitz, 1978; Vossepoel et al., 1979) is another modification of distance, in which the only 
permitted paths from the reference set are those with falling, i.e. strictly decreasing, gray-values. The set of 
points reached by such strictly decreasing paths is known as the fall-set of the reference set. 

Another generalization, the GRAYMAT (Levi and Montanari, 1970) defines the gray-weighted distance 
between two points as the smallest sum of gray-levels along any path joining the points. The algorithm is 
obtained by a suitable generalization of the algorithms that have been used in the black-and-white case, e.g. 
(Rosenfeld and Pfaltz, 1966; Montanari, 1968). The same algorithm is also presented in (Piper and Granum, 
1987) and is used as the first stage of a cost algorithm in (Verbeek and Verwer, 1990) 

In (Preteux and Merlet, 1991 ) two new distance transforms are defined, namely the topographical distance, 
which is defined using a function called the connection cost, and the differential distance transform, which is 
defined using the deviation cost function. 
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Table I Table 2 Table 3 Table 4 

The city block kernel The 3 × 3 kernel used in this The split 3 × 3 kernel used in The split 3 x 3 kernel used in 

paper the forward scan the backward scan 

b a b c a b c 

d e f d e f d e e f 

h g h k g b k 

Algorithms for 3D with some generalizations have been described by Mohr and Bajcsy (1983) and Borgefors 
(1984). 

This paper presents two new distance transforms for gray-level images. The first one, called the Distance 
Translorm on Curved Space (DTOCS), performs the distance calculation with integer numbers and gives a 
distance map, in which the value of every pixel is the length of the shortest path to the nearest background pixel 
along a discrete 8-path in a square grid. The area in which the transform is calculated may consist of several 
disjoint regions (Veps~iliiinen and Toivanen, 1991; Toivanen, 1993a). The DTOCS and WDTOCS algorithms 
have been derived from the well-known Rosenfeld-Pfaltz-La~ algorithm which calculates the distance transform 
for binary images and is presented for instance in (Serra, 1988). None of the earlier mentioned transforms 
calculate the same kind of distance maps as the DTOCS and WDTOCS. All the other gray-weighted skeleton, 
GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray-levels or 
weighting the gray-levels in some manner. The DTOCS does not weight them, it calculates the distance value 
for each point by calculating the gray-level difference between two adjacent points along the minimal path. 
The second transform is called the Weighted Distance Transform on Curved Space (WDTOCS). In (Toivanen, 
1994) it was called the EDTOCS. It gives a weighted distance map over a gray-value image. Again, every pixel 
has a distance value corresponding to the length of the shortest discrete 8-path from the pixel to the nearest 
point in the background. 

New image compression algorithms based on DTOCS have been presented in (Toivanen, 1992, 1993a,b). 

2. Definition of the DTOCS 

In the distance map produced by the Distance Transform on Curved Space (DTOCS), every pixel has a 
distance value which corresponds to the distance of that pixel from the nearest background pixel along a path 
according to the tbllowing definitions. 

Definition 1. Let X C Z 2. Let B C Z 2 be the structuring element. Let the external boundary of X be denoted 
by 0X and be defined by OX = (X ® B) \ X. aX C X c. See (Giardina and Dougherty, 1988). 

In the definitions of the DTOCS and the WDTOCS below we will use the following notation, x E X and 
y E c)X. Let g t x ( x , y )  be the set of digital 8-paths in (XU aX) linking x and y. Let 3/C g " x ( x , y )  and let 3/ 
have n pixels. Let ai E 3/and ai+l C 3 / be two adjacent pixels in the path y. Let ~x(a i )  denote the gray-value 
of the pixel ai. The Distance Transform on Curved Space (DTOCS) is defined as follows. 

Definition 2. Let the distance between ai and ai+l be dx(ai ,  ai+l ) = I~x(ai) - ~ x ( a i + l  ) [ +  1, i = 1,2 . . . . .  n -  1. 
The length of the path 3/is defined by A(3/) = y']i"=-i 1 dx(ai ,  ai+l ). The DTOCS distance image is defined by 

f i x (X )  = m i n ( A ( y ) , y  ~ g ' x ( x , y ) ) ,  y E c)X, q tx (x , y  ) 4: O, 

f,~x (y) =o. 

(1) 

(2) 
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Fig. 1. The height displacement of DTOCS for all neighbors of a pixel e, i.e. xi E Ns(e)  in a rectangular grid. 
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3. The kernels 

In the city block kernel (see Table 1 ), the diagonal corner points are omitted. It is assumed that the distance 
from them to point e is infinite. Due to the lack of points, the results obtained by the city block kernel are 
poorer than those obtained by the full kernel from the earlier stated definition of the DTOCS point of view. 

The 3 x 3 kernel used in this paper is depicted in Table 2. In the 2-phase algorithm, the kernel in Table 3 is 
used in the forward scan and the one in Table 4 in backward scan. 

Borgefors (1986) analyzed the behaviour of the 5 x 5 kernel for binary images, and therefore those results 
are not applicable here. The question of applying bigger than 3 x 3 kernels is left to be analyzed in the future. 

4. The DTOCS algorithm 

Let X C Z 2. Let x E X and y E X be two points in 2-dimensional discrete space. A sequential two- 
pass algorithm to calculate the Distance Transform on Curved Space is presented in (Veps~il~iinen, 1991 ) and 
(Toivanen, 1992). The following algorithm requires two images: the original gray-level image G(x) and a binary 
image ) r (x )  which determines the region(s) in which the transform is performed. In ) r (x ) ,  X is initialized to 
the maximal representative number of the memory and X c to 0 similarly as with the the Rosenfeld-Pfaltz-La~ 
algorithm. See (Serra, 1988). 5r*(x) means an already calculated point..T'*(e) denotes the new distance value 
of the point e in the image 5 v. It should be noted that the region X in which the following transform is performed 
may consist of several disjoint regions. This applies also to the background area X c. The following two-pass 
algorithm is also easily adapted to the hexagonal grid in the same way as the Rosenfeld-Pfaltz-La~ algorithm. 
The rectangular grid displacement 1 is replaced by the integer approximation of the height displacement 

v / l  ÷ ( G(  e)  - G ( x i )  ) 2 ~ 1 + G ( e )  - G ( x i )  

lbr all neighbors xi of a pixel e ( x  i E Ns(e) )  as seen in Fig. 1. Ns(e)  denotes the 8 neighbors of pixel e 
in a rectangular grid. The constant 1 has to be added to the gray-value difference in the same way as 1 is 
added to the pixel value in the Rosenfeld-Pfaltz-La~ algorithm. Otherwise the DTOCS algorithm will not give 
a distance map at all. 

In Eqs. (4) and (6),  the parameter a governs the amount in which the curvature of the gray-level image 
is taken into account. If  o~ = 1, the algorithms will give the DTOCS distance map according to the Definitions 
1 and 2. If  o~ = 0, then Eqs. ( 3 ) - ( 6 )  will reduce to the Rosenfeld-Pfaltz-La~ algorithm (Serra, 1988). If 
oL = 0.5, every pixel value in the distance map will hold a value which is obtained by dividing by two the value 
which is obtained when ce --- 1. In other words, the distance values are proportional to a. This is stated and 
proved in Theorem 1. In order to work the following algorithm requires that maxint  + 1 = 0 in the same way 
as the Rosenfeld-Pfaitz-La~' algorithm does. 
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Table 5 
Pixel values of an arbitrary 5 x 5 neighborhood in image G (x, y). The same neighborhood is also in image .T(x, y) 
G(i-2,  j - 2 )  ~ ( i - 2 , j -  1) G( i -2 , j )  G ( i - 2 , j +  1) G ( i - 2 , j + 2 )  
G( i -  I , j - 2 )  G( i -  I , . j -  I) G ( i - I , j )  G( i -  1,j+ 1) G( i -  l , j + 2 )  
G(i,j - 2) G( i , j -  1) ~(i,j) G(i,j + I) G(i,j + 2) 
~7(i+ l . j -  2) G ( i + l , j -  I) G(i+ l,j) G(i+ l,j + l) ~ ( i + l , j + 2 )  
G(i+2, j - 2 )  G(i + 2 , j -  1) G(i + 2,j) ~(i + 2,j + 1) ~(i + 2,j + 2) 

First iteration 
The first iteration round proceeds in the "direct video order" (from top to bottom, and from left to right) 

calculating the new point .T'*(e). The points marked with asterix * hold already once calculated distance values 
while the point .T(e) has the initial value, which is the maximal representative integer number. With the kernel 
of Table 3 the first iteration proceeds as follows. 

F * ( e ) = m i n [ . T ( e ) , m i n ( l + d a + . T ' * ( a ) , l + d b + . Y ' * ( b ) , l + d c + F * ( c ) , l + d d + ~ ' * ( d ) ) ] ,  (3) 

where 

d a = a l G ( e ) - ~ ( a )  l, d b = a l ~ ( e ) - G ( b )  l, d c = a l G ( e ) - G ( c )  I, d d = a [ G ( e ) - G ( d )  I. (4) 

The new F ( e )  ( F * ( e ) )  is calculated from already calculated points . T ( a ) , F ( b ) , . T ( c ) , F ( d )  and the 
corresponding subtractions of G(a) ,  G(b) . . . .  from G(e).  

Second iteration 
The second iteration round proceeds in the "inverse video order" (from bottom to up, and from right to left) 

calculating the new point .T*(e). The points marked with asterix * hold already calculated distance values 
while the point .T(e) has a value obtained when applying Eq. (2). With the kernel of Table 4 the second 
iteration proceeds as follows. 

f * ( e ) = m i n [ . T ( e ) , m i n ( l + d f  + F * ( f ) , l + d g + . T * ( g ) , l + d h + . T * ( h ) , l + d k + . T ' * ( k ) ) ] ,  (5) 

where 

d f = e e l G ( e ) - G ( f )  I, d g = c ~ [ G ( e ) - ~ ( g )  I, d h = a l G ( e ) - G ( h )  I, dk=a[G(e)-G(k)l. (6) 

Theorem 1. Let 6x ( x , y )  be the distance value between points x E X and y E X c given by the DTOCS 
algorithm if a = 1. If  O.O < a < 1.0, the distance dx(x ,  y) given by DTOCS between all points x and y is 
proportional to a. 

V x ~  X, VyEXC:  d x ( x , y ) = a 6 x ( x , y ) .  (7) 

Proof. Let the images .T(x ,y)  and G(x ,y)  be two-dimensional buffers. Let the 3 x 3 kernel (Table 2) be 
at an arbitrary place in the image F ( x ,  y),  which is the distance image, and in the G(x, y) image, which is 
the original gray-value image. Let the center point of the kernel, e, be at .T(i, j )  in the distance image and at 
~ ( i , j )  in the gray-level image. The first pixel a of the kernel lies at G ( i -  l , j  - 1) and . T ( i -  1, j  - 1). The 
last pixel k lies at . T ( i +  l , j +  1) and G ( i +  1 , j +  1). See Table 5. 

Consider Eq. (5): 

F *( e )  = min [U(e ) ,min (1  + df  + j r . ( f ) ,  l + dg+,Y'*(g),  1 + dh + JZ*(h), 1 + dk + F * ( k ) ) ] .  

The first term on the right-hand side of =, .T'(e), is obtained at the first iteration step and is given by Eq. (3). 
It is inserted into Eq. (5): 
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~* ( e )  = m i n [ m i n [ . T ( e ) ,  min[  1 + ,~lG(e) - G(a ) [  + ~ ' ( a )  . . . .  ] ], 

min( 1 + a [G(e )  - G ( f ) [  + b r ( f )  . . . .  ) ]. 

According to the pixel coordinates in Table 5, F ( e )  = ~ - ( i , j ) ,  ~ ( e )  = G ( i , j )  etc. Elaborating b r ( f )  gives 

~ ( f )  = m i n [ b r ( i , j  + 1) , ra in(1 + ~[G( i , j  + I)  - G(i - 1 , j ) l  + ~r(i - 1 , j )  . . . .  ). 

Inserting this into the equation gives 

F*  (el) = min[min[) t - ( i ,  j ) ,  min[ 1 ÷ a[G(i ,  j )  - G(i  - 1 , j  - 1 )l + 3r( i - l , j  - 1) . . . .  ] ], 

min i (1  + ozl~( i , j )  - G ( i , j  + 1)] 

+ m i n [ . T ( i , j  + 1 ) , m i n ( l  + otIG(i , j  + 1) - G ( i -  1 , j ) [  + . T ( i -  l , j )  . . . .  ) ] ] .  

Since F ( i , j )  = . T ' ( i -  1 , j  - 1) = . T ( i , j  + 1) = . T ( i -  l , j )  =maxint, it follows that 

.T* (e)  = m i n [ m i n [  1 + ~lG( i , j )  - ~ ( i -  1 , j  - 1)l + maxint . . . .  ], 

m i n [ ( l  + alG( i , j )  - G( i , j  + 1)1 + m i n [ 1  + a]G( i , j  + 1) - ~ (  i - 1 , j )  I + m a x i n t  . . . .  ]]]. 

Since maxint + 1 = 0, it follows that 

F * ( e )  = m i n [ a l G ( i , j )  - G ( i -  1 , j  - 1)] . . . .  ), 

m i n [ ( a l G ( i , j )  - ~ ( i , j  + 1)1 + m i n ( a l ~ ( i , j  + 1) - ~ ( i -  i , j ) [  . . . .  ) ] ] ,  

.T*(e)  = m i n [ ( a l G ( / , j )  - G ( i -  1 , j  - 1)l . . . .  ), 

m i n [ ( a l G ( i , j )  - G ( i , j  + I)[  + a m i n ( ] G ( i , j +  1) - ~ ( i -  1 , j ) l  . . . .  ) ] ] ,  

F*  (e)  = rain[ (a lG( i ,  j )  - G(i - 1, j - 1 )1 . . . .  ), 

min[a ( lG( i ,  j )  - G ( i , j  + 1)1 + ]G(i , j  + 1) - G ( i -  1 , j ) l )  . . . .  ] ] ,  

F * ( e )  = a m i n [ ( I G ( i , j )  -- ~ ( i - -  l , j - -  1)1 . . . .  ), 

( lUG, J)  - G ( i , j  + 1) I + I U ( i , j +  1) - G ( i -  1 , j ) l  . . . .  ) ] ,  

F * ( e )  = o ~ m i n [ . . . ] .  [] 

Corol lary.  Eqs. (3)  and (5)  can be written in the following way: 

first iteration: 

second iteration: 

where 

d a =  I (G(e)  - G ( a ) ) [  . . . . .  d f =  [ (G(e)  - • ( f ) ) [  . . . . .  

Proof.  The proof  is the same as the proof  of  Theorem 1. E3 

F * (  e)  = cr min [.T'(e),  min( 1 + da + .T'*(a) . . . .  ) ], 

~ *  (e)  = a m i n [ ~ ( e ) ,  min( 1 + d f  + .T* ( f )  . . . .  ) ], 

(8) 

(9)  

5. Definit ion of  the W D T O C S  

Let the discrete 8-path denote a possible discrete path linking two points according to the 8 neighbors of  
every pixel in the square grid. The Weighted Distance Transform on Curved Space (WDTOCS)  between two 
points is defined as the minimum of  all possible paths linking those points. Along this path, each subdistance 
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Fig. 2. The height displacement of EDTOCS for all 4 horizontal 
and vertical neighbors for a pixel e, i.e. xi E N4(e). 

Fig. 3. The height displacement of EDTOCS for all 4 diagonal 
neighbors of a pixel e. 

betweeen two points is Euclidean, but the whole distance is not. Using Definition l and the same notation as 
with DTOCS, the WDTOCS is defined as follows. 

Definition 3. Let the distance between ai and ai+l be 

dx(ai ,  a i + l ) = V / ( G ( a i ) - - G ( a i + l ) ) 2 + l ,  i = 1 , 2  . . . . .  n - -  1, if ai+l E N 4 ( a i ) ;  

dx(ai ,  a i + l ) = V / ( ~ ( a i ) - - G ( a i + l ) ) 2 + 2 ,  i = 1 , 2  . . . . .  n - -  1, if ai+l C ( N s ( a i ) \ N 4 ( a i ) ) .  

See Figs. 2 and 3. The length of  the path y is A ( y )  = ~in=-~ ~ dx(ai ,  ai+l). The WDTOCS distance image is 
defined by 

f'x(x)=min(A(y),yC~x(x,y)), yCOX, ~x(x,y) ~ O, (10) 

.7;,x (y)  =0.  (11) 

6. The WDTOCS algorithm 

The WDTOCS algorithm was first introduced in (Toivanen, 1994) under the name EDTOCS. It requires 
only two passes over the image with a chosen kernel. In order to implement the WDTOCS algorithm, two 
surface models are needed: the original gray-level image, and another, which determines the region or regions 
in which the transform is calculated. The transform is performed on this image. The part of  the surface where 
the distance function is calculated, X, is initialized to maximal representative number of  the memory and its 
complement X c to 0. It should be noted that the region X in which the following transform is performed may 
consist of  several disjoint regions. The algorithm, which applies the WDTOCS, proceeds as follows. Let G(x)  
denote the original gray-level image and let .T'(x) denote the binary image which determines the region(s) in 
which the transform is calculated. 5C*(x) means an already calculated point..T'* (e)  denotes the new distance 
value of  the point e in the image 5 r .  Let N4(e) denote the 4 horizontal and vertical neighbors of  a pixel e 
similarly as in the city block kernel. Fig. 2 shows the Euclidean distance between pixel e and its 4 neighbors 
N4(e).  G(e )  denotes the gray-value of  the center point in the 3 x 3 kernel and G(xi) denotes the gray-values 
of  the pixels xi C Na(e) .  Fig. 3 shows the same for all the 4 diagonal neighbors of  a pixel e. 

First iteration 
The first iteration round proceeds in the "direct video order" (from top to bottom, and from left to right) 

calculating the new point .T'*(e). The points marked with asterix * hold already once calculated distance values 
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while the point 5V(e) has the initial value, which is the maximal representative integer number. Using the kernel 
of Table 3 the iteration proceeds as follows. 

~* (e) = min [ : ' ( e ) ,  min(da + 5 r* (a) ,  db + .F* (b), dc + .T* (c),  dd + 9 t'* (d ) )  ], (12) 

where 

da=c~ ( v ~ e ) - - G ( a ) i 2 + / 3 ,  

d c =  o,d(~(e ) -~('C))2 nt_-/3, 
db = a v / ( G (  e) - G(b)  )2 + 8, 

dd = crx/( ~( e ) - G( d) )2 +""6. (13) 

In (Toivanen, 1994) /3 = 2 and 8 = 1 corresponding to the WDTOCS definition presented in Definitions 1 and 
3. Borgefors ( t986)  presented optimal propagating weights for a binary case 3 x 3 mask. These weights are 
/3 = 1.36930 and 8 = 0.95509. 

Second iteration 
The second iteration round proceeds in the "inverse video order" (from bottom to up, and from right to left) 

calculating the new point f '*  (e) .  The points marked with asterix * hold already once calculated distance values 
while the point ~ ( e )  has a value obtained when applying Eqs. (12) and (13). Using the kernel of Table 4 the 
second iteration proceeds as follows. 

~-* (e) = min[ .T(e) ,  min(df  + f '*  ( f ) ,  dg + Y~* (g),  dh + U*(h) ,  dk + F'* (k))  ], (14) 

where 

df  = o~x/(~( e) - G ( f )  ) ~ + 8, .g - - + 

dk-- - +/3. (15) 

Again, in (Toivanen, 1994) /3 = 2 and ~ = 1 corresponding to the WDTOCS definition presented in Definitions 
1 and 3. Borgefors (1986) presented optimal propagating weights for a binary case 3 x 3 mask. These weights 
are/3 = 1.36930 and 8 = 0.95509. 

Theorem 2. Eqs. (12) and (14) are equal to the following equations: 

first iteration: .~*(e) =~min[ .7: (e) ,min(da+.~*(a)  . . . .  ) ] ,  

second iteration: U*(e) = cemin[.~(e),min(df  + JV*(f) . . . .  ) ] ,  

where 

da= v/(G(e)- G(a)) 2 +/3 ..... df= J(O(e)_'~(f))2 +~ ..... 

(16) 

(17) 

Proof. The proof has been presented in (Toivanen, 1994). [] 

7. Performance of the DTOCS and the WDTOCS 

Definition 4. Let one iteration step denote applying Eq. (3),  (5),  (12), or (14). Let one iteration round denote 
applying two iteration steps, i.e. Eqs. (3) and (5) for DTOCS, or (12) and (14) for WDTOCS. 

Definition 5. The correct distance map of DTOCS denotes a distance map which is constructed according to 
the DTOCS definitions (Definitions 1 and 2), and the correct distance map of WDTOCS denotes a distance 
map which is constructed according to the WDTOCS definitions (Definitions 1 and 3). 
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Table 6 
The upper part of the original image 

t~J. Toivanen/Pattern Recognition Letters 17 (1996) 437-450 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 0  
0 2 3 3 3 2 0 0 0 0 0 0 2 3 3 3 2 0  
0 2 3 4 3 2 1 0 0 0 0 0 2 3 4 3 2 0  
0 2 3 4 3 2 1 0 0 0 1 1 2 3 4 3 2 0  
0 2 3 4 3 2 1 1 0 1 1 1 2 3 4 3 2 0  
0 2 3 4 3 2 1 1 1 1 1 1 2 3 4 3 2 0  

Table 7 
The distance map obtained by GRAYMAT presented in (Levi, 1970) 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 10 10 l0 10 10 0 0 0 0 0 0 10 10 I0 10 10 0 
0 l0 35 35 35 l0 0 0 0 0 0 0 10 35 35 35 l0 0 
0 10 35 70 45 20 5 0 0 0 0 0 10 35 70 35 10 0 
0 IO 35 70 45 20 5 0 0 0 5 5 20 45 70 35 10 0 
0 lO 35 70 55 30 15 5 0 5 15 15 30 55 70 35 10 0 
0 10 35 70 65 40 25 15 5 15 25 25 40 65 70 35 10 0 

Table 8 
The distance map obtained by the Gray-Weighted Distance Trans- 
fornl presented in (Rutovitz, 1968) and later used in (Piper, 1987) 
and (Verwer, 1990) 

Table 9 
The distance image obtained by DTOCS with split 3 x 3 kernel 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 0  0 3 3 3 3 3 0 0 0 0 0 0 3 3 3 3 3 0  
( 1 2 5 5 5 2 0 0 0 0 0 0 2 5 5 5 2 0  0 3 5 5 5 3 0 0 0 0 0 0 3 5 5 5 3 0  
(i) 2 5 9 5 2 1 0 0 0 0 0 2 5 9 5 2 0  0 3 5 7 5 3 2 0 0 0 0 0 3 5 7 5 3 0  
() 2 5 9 5 3 I 0 0 0 1  1 2  5 9 5 2  0 0 3 5  7 5 4 2  0 0 0 2  2 3 5 7 5 3 0 
0 2 5 9 6 3 1 1 0 1 1 2 3 5 9 5 2 0  0 3 5 7 6 4 2 2 0 2 2 3 4 5 7 5 3 0  
0 2 5 9 6 3 2 l 1 1 2  2 4  6 9  5 2  0 0 3 5  7 6 4 3  2 2 2 3 3 5 6 7 5 3 0 

The performance of DTOCS and WDTOCS is tested using real-world images. Table 6 shows part of the 
original image taken from (Levi, 1970). The corresponding distance map produced by the Gray-Weighted 
Medial Axis Transform (GRAYMAT) presented in (Levi, 1970) is shown in Table 7. The distance map that 
DTOCS produces on the image of Table 6 is different. See Table 9. This difference is clearly noticeable when 
comparing Tables 7 and 9. Table 8 shows the distance map produced by the Gray-Weighted Distance Function 
presented in (Rutovitz, 1968). The same algorithm is also presented in (Piper, 1987) and it is used as the first 

stage of a cost algorithm in (Verwer, 1990). Also this algorithm produces a different distance map compared 
to DTOCS. The distance values are lower than DTOCS values at points which hold low gray-values, and are 
higher than DTOCS values at points which hold greater gray-values than DTOCS. In other words, the method 
presented in (Rutovitz, 1968; Piper, 1987; Verwer, 1990) calculates a distance map in which the distance 
values are weighted by gray-values. The DTOCS does not weight the distance values directly by gray-values. 
For instance, consider the last row of the original image. The pixel in lower left corner (Table 6) has a 
gray-value 0. The next point on the right hand side is 2. The DTOCS distance between these pixels is then 
2 -- 1 = 3 (Table 9: column 2, last row), which is the distance value of the point. The GRAYMAT gives l0 
(Table 7) and the Gray-Weighted Distance Transform gives 2 (Table 8). Furthermore, consider the 4th column 
of the tables. The DTOCS distance is 7 (see column 4 in the last row of Table 6). The GRAYMAT gives 70 
and the Gray-Weighted Distance Transform gives 9, which is clearly bigger than the DTOCS value and a result 
from weighting the distance values by gray-levels. 

The performance of the DTOCS and WDTOCS are somewhat dependable on the nature of the gray-level 
image on which they are performed. According to the tests made, the DTOCS and WDTOCS almost always give 
a distance map according to their definitions for small neighborhoods after the first iteration round, i.e., after 
applying Eqs. ( 3 ) and (5) once for DTOCS, and Eqs. ( l 2) and (14) once for WDTOCS. If they are applied to 
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Table 10 

The o~iginal image. Pixels marked -59-, -64-, etc. denote back- 
ground pixels, i.e. pixels belonging to X c 

445 

Table 11 

DTOCS distance map after the first iteration round. Erroneous 
pixels are marked with letter x and pixels belonging to X C with - 

107 59 59 69 64 66 66 68 78 52 26 25 14 18 15 15 13 24 

115 70 70 76 69 75 68 63 81 57 14 14 16 13 19 12 15 25 

I l l  64 64 73 67 68 67 69 65 52 7 7 12 12 11 10 12 13 
113 65 65 75 74 71 67 71 67 52 5 5 12 10 7 9 13 10 

114 66 66 74 70 70 63 60 66 53 4 3 11 6 5 4 6 8 

112 59 -59- -64- 66 67 -66- 62 62 x 1 - 3 2 - 3 x 

116 60 60 58 60 67 -64- 59 55 x 2 2 2 5 2 - 6 11 

I I0  65 65 70 57 61 68 64 63 53 8 8 13 4 4 4 1 3 

Table 13 

The original spiral image. The calculation is performed rel~ive to 
52 26 25 14 18 15 15 13 24 point -0-, which is the only point belonging to X C 

57 14 14 16 13 19 12 15 25 0 0 0 0 0 0 0 

52 7 7 12 12 11 10 12 13 0 11 11 11 11 II 0 
52 5 5 12 10 7 9 13 10 0 0 0 0 0 11 0 

53 4 3 I1 6 5 4 6 8 0 11 11 I1 0 11 0 
51 I - - 3 2 3 4 0 I1 -0- 0 0 11 0 

56 2 2 2 5 2 - 6 11 0 11 11 11 11 11 0 

53 8 8 13 4 4 4 1 3 0 0 0 0 0 0 0 

Table 12 

The distance image after the 2nd iteration round 

Table 14 Table 15 
DTOCS distance map after the first iteration round. The point The DTOCS distance map after 2 iteration rounds 
belonging to X ¢ is marked with - 

7 7 19 18 17 16 15 7 7 8 9 10 11 12 
6 16 15 15 15 14 14 6 16 15 15 15 15 12 

6 5 4 3 3 13 14 6 5 4 3 3 14 13 
18 12 12 12 2 12 13 6 12 12 12 2 14 14 

17 12 I 2 11 12 7 12 - 1 2 14 15 
16 12 12 12 13 12 12 8 12 12 12 13 14 14 

15 15 14 13 12 12 12 9 9 10 11 12 13 14 

bigger areas, more than one iteration round is needed. Also, if the image is complicated, for instance, the area 
X is composed of several disjoint regions with spirals or other difficult patterns, more than one iteration round 
is needed. As a result, a distance map is generated. This distance map can again be inserted to the algorithm 
replacing the original binary image .Y'(x). Again, a distance map is obtained. If the map generated by the first 
iteration round was correct according to the definition presented for DTOCS in Definitions 1 and 2, and for 
WDTOCS in Definitions 1 and 3, this map equals the first map and does not change during successive iteration 
rounds. Otherwise, some or all the errors in the first map will be corrected during the second iteration round. 
The number of  iteration rounds needed depends on the image, but according to the tests made, the DTOCS 
and WDTOCS algorithms almost always converge to the right distance maps according to their definitions. All 
tests have been run on a Convex 3420 (ConvexOS 10.1) UNIX workstation with no optimizing or vectorizing 
options. In (Piper, 1987) the need for several iteration rounds for other existing sequential local distance 
transforms is dicussed. 

Table 10 shows the original gray-value image, which has been arbitrarily taken from the "Leena" image. The 
distance map generated by the DTOCS after the first iteration phase, i.e. applying Eqs. (3) and (5) once, is 
shown in Table 11. Points that hold erroneous distance values are marked with letter x and the reference points, 
i.e. points belonging to X c, with -. Table 12 depicts the same distance map after the second iteration phase. 
Now the map is correct, and further iterations, if applied to the distance image, would not change the map. 

Table 13 shows a spiral image, which can be considered rather difficult for the two-pass DTOCS algorithm, 
since the distance values may become trapped inside the spiral resulting in false distance values. The reference 
point, i.e. the only point belonging to X c, is marked with -0-. Table 14 shows the distance image obtained 
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Table 16 
The original image. The calculation is done relative to points 
marked with -3 I-, -36-, etc., i.e. points belonging to X c 
53 56 63 60 
56 43 48 47 
49 38 34 33 
36 -31- -36- 40 
34 48 43 60 
45 55 53 76 
55 70 59 68 
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Table 17 
WDTOCS distance image after the 1st iteration round. Erroneous 
points are marked with x. X C points are marked with - 

38 
40 
37 
53 
72 
68 
7 

43 51 17.648 20.587 27.582 24.632 10.586 13.775 18.141 
38 74 20.505 7.549 12.549 x 10.458 9.172 10.952 
60 77 13.495 2 .450  2 .236  3 .317 7 .440  5.099 12.083 

-65- 66 x 4.123 12.042 - 1.414 
-70~ 70 3.3166 12.083 7.071 10.574 2.236 - 1.000 
83 80 14.362 17.162 17.121 x 2.450 13.038 10.100 
79 55 x 13.823 12.919 3 .864  5.612 11.832 21.860 

Table 18 
The WDTOCS distance map after 2 iteratmn rounds. Now the 
map is correct with respect to the definition of the WDTOCS. The 
X c points are marked with - (they hold a distance value 0.0) 

Table 19 
The WDTOCS distance map obtained using in Eqs. (13) and (15) 
the values/3 = 1.36930 and 6 = 0.95509 

17.648 20.587 27.582 24.632 10.586 13.775 18.141 17.608 20.549 27.548 24.595 10.475 13.728 18.040 
20.505 7.549 12.549 13.963 10.458 9.172 10.952 20.476 7.514 12.517 13.900 10.430 9.106 10.868 
13.495 2 .450  2 .236  3 .317 7 .440  5.099 12.083 13.465 2 .424  2 .216  3 .298 7 .410  5.090 12.078 
4.899 4.123 12.042 1.414 4.848 4.112 12.038 - 1.383 

3.3166 12.083 7.071 10.574 2.236 1.000 3.298 12.078 7.065 10.540 2.216 - 0.955 
14.362 17.162 17.121 6 .479  2.450 13.038 I0.100 14.339 17.072 17.110 6 .444  2.424 13.035 10.093 
18.576 13.823 12.919 3 .864  5.612 11.832 21.860 18.441 13.712 12.844 3.793 5.572 11.789 21.805 

after the first iteration round. Now the points near the reference point are correct according to the definition of 
the DTOCS. After applying the DTOCS algorithm (Eqs. (3) ,  (4) ,  (5) and (6 ) )  twice, i.e. after the second 
iteration round, the errors disappear. Table 15 depicts the final distance map, which is correct according to the 

definition of the DTOCS. 
Table 16 shows the original image. It has been taken randomly from the well-known "Leena" image. The 

calculation is performed relative to four points belonging to X c and marked with -31-, -36-, etc. These four 

points form two disjoint regions. The first region consists of points -31- and -36-. The second region consists 
of points -65- and -70-. Table 17 depicts the WDTOCS distance map after the first iteration round, i.e., after 
applying Eqs. (12) ,  (13) ,  (14) and (15) once. Points which hold erroneous values are marked with letter x. 

X ¢ points are marked with -. Table 18 shows the distance map after the second iteration round. Now the map 
is correct, i.e. every point p E X has a distance value corresponding to the shortest path from the point to 
the nearest point in the background X c according to the WDTOCS definition. Table 19 shows the WDTOCS 

distance map obtained when in Eqs. (13) and (15) /3 = 1.36930 and ~ = 0.95509. 
When using the weights /3 = 1.36930 and 6 = 0.95509 in Eqs. (13) and (15),  the WDTOCS algorithm 

gives a better approximation to the Euclidean distance map than with the weights /3 = 1 and 6 = 1. Still it 

overestimates the Euclidean distance. The weights 1.36930 and 0.95509 are used as propagating displacements 
on the image plane. 1.36930 is used for the diagonal directions and 0.95509 for the rectangular directions, as 
in (Borgefors, 1986). The height displacement remains the gray-value difference. 

Table 20 shows the difference between the distances generated by the WDTOCS and the distances obtained 
by the DTOCS for both horizontal and vertical, and diagonal points of the 8 neighboring pixels of any pixel x 
in the image ~ ( x ) .  The DTOCS approximates the WDTOCS always to the following greater integer number. 
The first column, G, denotes the difference between gray-values of x and its 8 neighboring pixels. 

Fig. 4 shows how the DTOCS converges to the correct distance map for different image sizes. The well- 
known "Leena" girl image of different sizes was used as the original gray-level image. The 3 x 3 kernel of 
Tables 3 and 4 was used. For instance, with an image of size 32 x 32 pixels, the number of erroneous pixels 
on different iteration rounds was 213, 193, 99, 34, 1 and 0. Fig. 5 illustrates the convergence properties of the 
WDTOCS algorithm with normal 3 x 3 kernel of Tables 3 and 4. For a 32 x 32 image the number of erroneous 
pixels on different iteration rounds was 413, 207, 101, 27, 1 and 0. 
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Table 20 
Comparison between DTOCS and EDTOCS for all pixels q E Ns,(p) in a square grid 
G WDTOCS distances WDTOCS distances DTOCS distances 

horizontal and vertical points diagonal points all 8 points 
0 1 1 . 4 1  1 

I 1.41 1.73 2 

2 2.23 2.45 3 
3 3.16 3.31 4 
4 4.12 4.24 5 
5 5.10 5.19 6 
6 6.08 6.16 7 
7 7.07 7.14 8 
8 8.06 8.12 9 
9 9.05 9.11 10 

DTOCS: Normal 3x3 kernel 
4000, . . . . .  
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E 
:3 

Z 

1000 

\ 

500 ~ :.-. 
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Iteration rounds 

Fig. 4. Convergence of the DTOCS for different image sizes. Normal 3 x 3 kernel. 

The DTOCS and WDTOCS algorithms have a time complexity of  approximately O(n  2) for an n x n image, 
i.e. the same complexi ty as the GRAYMAT (Levi, 1970) and the gray-weighted distance function proposed in 
(Rutovitz,  1968). Fig. 6 shows the CPU time vs. image size for DTOCS and WDTOCS.  Note that for instance 
the image size 100 means a 100 x 100 image. 

Features of  these algori thms are summarized as follows: 

1. The DTOCS gives a gray-level weighted version of  the chessboard distance. The weights are not constant, 
but gray-value differences of  the original image. In the DTOCS distance map, every point  has a distance 
value corresponding to the length of  the shortest path to the nearest background point. The minimal paths 
l inking two points are discrete 8-paths. 

2. The WDTOCS is a weighted distance transform with real numbers which propagates local Euclidean distance 
weights inside a kernel. The weights are not constant, but gray-value differences of  the original image. These 
differences are computed in a different way compared to DTOCS. The obtained whole distance between two 
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points is not Euclidean, but each subdistance along the minimal discrete 8-paths is. The WDTOCS gives a 
better approximation to the Euclidean distance if the optimal binary case weights are used as part of the 
propagating weights. 

3. One iteration round requires only two passes over the image. 
4. It is easily adaptable to other grids. For example, the hexagonal grid is quite straightforward. 
5. Only two image buffers are needed: the original gray-value image and the binary image which defines the 

region(s) of calculation. 
6. The parameter o~ governs the amount in which the curvature is taken into account. 

8. Conclusion 

This paper presents two new distance transforms for gray-level images. The first one, called the Distance 
Transform on Curved Space (DTOCS), performs the distance calculation with integer numbers and gives a 
weighted distance map for an arbitrary gray-level image, in which the value of every pixel is the length of 
the shortest path to the nearest background pixel. The area in which the transform is calculated may consist 
of several disjoint regions. The second transform is called the Weighted Distance Transform on Curved Space 
(WDTOCS). It gives a weighted distance map over a gray-level image. Again, the value of every pixel in the 
distance map denotes the length of the shortest discrete 8-path path to the nearest background pixel. Along 
the 8-path, every subdistance between two neighboring pixels is Euclidean, but the whole distance is not. The 
WDTOCS gives a better approximation to the Euclidean distance if the optimal binary case weights are used 
as part of the propagating weights inside the kernel. 

It is shown that both the DTOCS and WDTOCS converge to the correct distance map with respect to their 
definitions in a few iteration rounds, i.e. when applying the two-pass algorithm 3-10 times. The number of 
iteration rounds depends on the nature of the image and on the size of the image in which the transform is 
performed. The best results are obtained by the ordinary 3 x 3 kernel which is split for forward and backward 
scans. The city block kernel gives poorer results. 

None of the earlier developed transforms (Rutovitz, 1968; Levi, 1970; Piper, 1987; Verwer, 1990) calculate 
the same kind of distance maps as the DTOCS and WDTOCS do. All the other gray-weighted distance function, 
GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray-levels or 
weighting the distance values directly by the gray-levels in some manner. The DTOCS does not weight them 
that way. The DTOCS gives a gray-level weighted version of the chessboard distance map. The weights are not 
constant, but gray-value differences of the original image. The difference between the DTOCS and WDTOCS 
is that the WDTOCS calculates these gray-level differences in a different way. 

Besides the image compression applications presented in (Toivanen, 1992, 1993a, b) the DTOCS and WD- 
TOCS can be used in calculating minimal distances in digitized surfaces and in minimal path-finding problems. 
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