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Calibration of Wrist-Mounted Robotic Sensors by 
Solving Homogeneous Transform Equations 

the Form AX = XB 

Abstruct-In order to use a wrist-mounted sensor (such as a camera) 
for a robot task, the position and orientation of the sensor with respect to 
the robot wrist frame must be known. We can find the sensor mounting 
position by moving the robot and observing the resulting motion of the 
sensor. This yields a homogeneous transform equation of the form A X  = 
XB,  where A is the change in the robot wrist position, B is the resulting 
sensor displacement, and X is the sensor position relative to the robot 
wrist. The solution to an equation of this form has one degree of 
rotational freedom and one degree of translation freedom if the angle of 
rotation of A is neither 0 nor ?r radians. To solve for X uniquely, it is 
necessary to make two arm movements and form a system of two 
equations of the form: A , X  = XB, and A& = X&. A closed-form 
solution to this system of equations is developed and the necessary 
conditions for uniqueness are stated. 

I. INTRODUCTION 
HE INVESTIGATION into the solution of the T homogeneous transform equation of the form AX = XB,  

where A are B are known and X is unknown, is motivated by a 
need to solve for the position between a wrist-mounted sensor 
and the manipulator wrist center IT6). Throughout this paper, 
the homogeneous transform T6 is used in the same manner as 
in Paul's text [28]; it is used to represent the position and 
orientation of the robot wrist frame with respect to the robot 
base frame. In some literature, OT6 is used instead of T6. 

We want to find the sensor position relative to the robot 
wrist instead of to other robot links, because of the following 
reasons: 1) The sensor is usually mounted to the wrist (last link 
of the robot), to allow itself all 6 degrees of freedom. If, for 
example, the sensor is mounted on the fifth Pink of the robot, 
its motion will be limited to 5 degrees of freedom. 2 )  Robot 
motions are conventionally specified in terms ofthe position of 
the last robot link (the wrist); it is therefore natural to find the 
sensor position relative to this link. 39 Once the sensor position 
relative to the last link is found, it is straightforward to find the 
sensor position relative to other links, using encoder readings 
and link specifications. 

Much research has been done on using a sensor to locate an 
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object. The three-dimensional position and orientation of an 
object can be found by monocular vision, stereo vision, dense/ 
sparse range sensing, or tactile sensing. Monocular vision 
locates an object using a single view, and the object 
dimensions are assumed to be known a priori 121, [6], [SI,  
[IO], 1139, [22]1, 1291, 1311, 1321. Stereo vision uses two views 
instead of one so that the range information of feature points 
can be found [l], [6], [12], [14], [20], 1241, 1321. A dense 
range sensor scans a region of the world and there are as many 
sensed points as its resolution allows [3], 171, [17]. 1251. A 
sparse range sensor scans only a few points, and if the sensed 
points are not sufficient to locate the object, additional points 
will be sensed [SI, [15], 1161. Tactile sensing is similar to 
sparse range sensing in that it obtains the same information: 
range and surface normal of the sensed points [4], [ 1 SI, [ 161. 

A sensing system refers to object positions with respect to a 
coordinate frame attached to the sensor, but robot motions are 
specified by the wrist positions ( T6). In order to use the sensor 
information for a robot task, the relative position between the 
sensor and the wrist must be known. 

Direct measurements are difficult because there may be 
obstacles to obstruct the measurement path, the points of  
interests may be inside a solid and be unreachable, and the 
coordinate frames may differ in their orientations. The 
measurement path can be obstructed by the geometry of the 
sensor or the robot, the sensor mount, wires, etc. The 
unreachable coordinate frames include T6 and the camera 
frame: T6 is unreachable because it is the intersection of 
various link axes, the camera frame is unreachable because its 
origin is at the focal point, inside the camera. Instead of direct 
measurement, we can compute the camera position by 
displacing the robot and observing the changes in the sensor 
frame. This method works for any sensors capable of finding 
the three-dimensional position and orientation of an object. 
Figs. 1 and 2 show the cases of a monocular vision system and 
a robot hand with tactile sensors. 

In order to formulate a homogeneous transform equation, 
Fig. 1 is re-drawn in Fig. 3 .  If the robot is moved from 
position T6, to T62, and the position of the fixed object relative 
to the camera frame is found to be OBJ, and OBJl. 
respectively, then the following equation is obtained: 

where X is the unknown transform representing the camera 

0882-4967/89/0200-OO16$01 .OO 0 1989 IEEE 



SHlU AND AHMAD CALIBRATION OF WRIST-MOUNTED ROBOTIC SENSORS 17 

Fig. 1 .  Finding the mounting position of a camera by solving a homogene- 
ouh tmnsform equation of the form A X  = X B ,  where A is the robot 
motion, B is the resulting camera motion, and X i s  the camera mounting 
pohitiun. 

Fig. 2. Finding the mounting position of a robot hand equipped with tactile 
sensorb, by solving a homogeneous transform equation of the form A X  = 
X B ,  where A is the robot motion, B is the resulting motion of the hand 
coordinate frame, and X is the mounting position of the hand. 

Fig. 3 .  If the robot is moved from position T6] to Tsz and the position of the 
fixed object relative to the camera frame is found to be OBJl and OBJz, 
respectively. then the following equation is obtained: TslX OBJ, = T62x 
OBJ?. where X is the unhown transform representing the camera mounting 
position relative to the robot wrist frame. 

mounting position relative to the robot wrist frame. Premulti- 
plying both sides of the equation by T6i1 and postmultiplying 
them by OBJ,'. we have 

T , ; ' T ~ ~ X = X O B J ~  OBJ;~. (26 

T6i1 T6, can be interpreted as the relative motion made by the 
robot and we denote it by A :  thus 

(31 

Similarly, we denote OBJ2QBJr1 by B and it can be 

interpreted as the relative motion of the camera frame. 

B = OBJ;! OB3 1 I .  (4) 

The transform matrices A and B are known since jr,, and T62 
can be calculated by the robot controller from the joint 
measurements, and OBJl and OBJ2 can be found by the vision 
system. The case of the tactile sensor shown in Fig. 2 is 
similar to that of the vision system, where a homogeneous 
transform equation of the form A X  = X B  results. 

Matrix equations of the form A X  = X B  have been 
discussed in linear algebra [ I l l ;  however, the results are not 
specific enough to be useful for our application. In order to 
solve for a unique solution, we must have a geometric 
understanding of the equation and use properties specific to 
homogeneous transforms. Using Gantmacher's results Ill],  
the solution to the 3 x 3 rotational part of X (RxS is any linear 
combination of n linearly independent matrices: Rx = k l M l  
+ .. .  + k,M,, where n is determined by properties of 
eigenvdues af RA and RB (rotational parts of A and B ) ,  k l ,  
. . a ,  k, are arbitrary constants, and M I ,  . . . , M, are linearly 
independent matrices. Gantmacher's solution is for general 
matrices; the given solution may not be a homogeneous 
transform. To restrict the solution to homogeneous trans- 
forms, we must impose the conditions that the 3 x 3 rotational 
part of the solution be orthonormal and that the right-handed 
screw rule is satisfied. These restrictions will result in 
nonlinear equations in terms of k l ,  . . , k, . Formulating the 
problem in the above manner does not solve the problem 
because of the following reasons: 1) There is an infinite 
number of solutions to an equation of the form A X  = XB. In 
order to find a way to solve for a unique answer, we must have 
a geometric understanding of the equation; however, the 
above formulation does not enable us to do so. 2 )  Only 
iterative solutions are possible, since nonlinear equations are 
involved. 3) The solution cannot be expressed symbolically 
and in closed form. 

The approach in this paper is based on the geometric 
interpretations of the eigenvalues and eigenvectors of a 
rotational matrix. The solution is discussed in the context of 
finding the sensor position with respect to T6; however, the 
results are general and can possibly be useful for other 
applications which require the solutions to homogeneous 
transform equations of the form A X  = XB.  

Since this paper investigates the solution to the homogene- 
ous transform equation of the form A X  = X B  in the context 
of finding a sensor's mounting position, we will relate the 
mathematics to this problem throughout the paper. Section IS is 
a review on expressing a homogeneous transform in terms of 
rotation about an axis of rotation and translations in the x, y ,  
and z directions. Some properties of the eigenvalues and 
eigenvectors of rotational matrices are also explored. Section 
IIS discusses the general solution to the equation and its 
geometric interpretation. Section IY deals with the solution to 
a system of two such equations and the conditions for 
uniqueness. Section V contains an example showing how we 
can solve for a sensor position using the proposed method. 
Section VI addresses the issues of noise sensitivity. 
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11. HOMOGENEOUS TRANSFORMS AND ROTATION ABOUT AN 
ARBITRARY AXIS 

Homogenedus transforms [28] can be viewed as the relative 
position and orientation of a coordinate frame with respect to 
another coordinate frame. The elements of a homogeneous 
transform T is usually denoted as follows: 

We also denote [n,, M y ,  n,] as a, [ox, Q,, o,] as 0 ,  and [a,,, 
a,, a,] as a. n, 0, and a can be interpretated as unit vectors 
which indicate the x, y ,  and z directions of coordinate frame 
T; p can be viewed as the origin of T. The vectors n, 0 ,  a, and 
p are referenced with respect to a frame represented by a 
transform to which T is post-multiplied. If there is no 
transform to the left of T, then n, 0 ,  a, and p will be vectors 
relative to the world or absolute frame. 

We will refer to the upper-left 3 x 3 submatrix of T as the 
rotational submatrix since it contains information about the 
orientation of the coordinate frame. A rotational submatrix can 
be expressed as a rotation around an arbitrary axis. From [28], 
the matrix representing a right-hand-rule rotation of I9 around 
an axis [k,, kyr kilT is 

positive. From Paul’s text, if n ,  is most positive 

0.r + n; 
2k,y vers 0 

k,  = 

where sgn (e) = + 1 if e 2 0 and sgn (e )  = - 1 i f  e < 0, 
(Note that OUT definition of sgn (e) is different from that in 
Paul’s text. We will discuss this later on ) If o, 15 the mo\t 
positive 

where vers I9 = (1 - cos 0) .  
Given the rotational part of a homogeneous transform in the 

form of (5 ) ,  the angle of rotation and the axis of rotation can be 
solved for symbolically, provided the rotational submatrix is 
not an identity matrix. If we are given an identity matrix 
(which is equivalent to zero rotation), it will not be possible to 
determine k ,  since zero rotation about any vector will yield an 
identity matrix. In this pager, we will follow the convention 
that 0 5 I9 s T. From Paul’s text [28], we have the following 
two equations: 

( I Oh) 

ny + 3 ,  

2k, vers 0 
k ,  = 

o,+ a,  
2k, vers 9 

kZ = 

Finally, if a, is the most positive 
~~ - ~ ~~ - 

k,k, vers I9 +cos I9 

k,k, vers I9 - k, sin I9 

k,k, vers 6 - kZ sin 6’ 

k,k, vers 6 + kZ sin 0 

k,k, liers H i  k ,  sin H 
k-k ,  vers 0 -  k sin 9 

k,k- vers 0 + cos H 
kxk, vers 19+ k, sin I9 k,k, vers I9+cos 0 

1 

2 cos I 9 = -  (n,+o,+a,- 1) (7) 

and 

1 

2 
sin 0 =  i - ~ , ) + ( a , - n ~ ) + ( n , - ~ 2 ) .  (8) 

Since 0 5 I9 5 T, we only take the positive sign of (8). Thus 
we have only one solution for I9 

0 = atan 2(d(oz- a:) + (a,- n:> + (n,- 021, n,+ o,+ a,- 1). 

(9) 

We can now find k using I9 computed by (9). The set Qf 
equations used depends on whether n,, o,, or a, is most 

( I oc ) 

( 1  I C )  

a,+ n; 
2k, vers 0 

k ,  = 

0, + ff,“ 
2k, vers 0 

k,  = 

(12h)  

( 1 2 C )  

From a geometric point of view, when 9 = K. there ‘ire two 
solutions to k ,  one opposite to the other Also. when 9 = T ,  

we can see from (6) that oz - a. = 0, a, - n- = 0, and n, - 
0, = 0. In this case, we can use either sgn ((1) = t i or 
sgn (0) = - 1 for (loa), ( l l a ) .  and (12a), we have two 
solutions for k .  However, it IS desirable to  use some 
convention so that we can solve for k uniquely even when 6 = 
n. To do this, we define sgn (0) = + 1, so that we have unique 
8 and k for each rotational matrix 

In order to provide some background for later proots, we 
will present the exponential representation of a general 
rotational matrix which wa5 discussed in  [??I], 1261 Further- 
more, we will express k and 0 in terms of the eigenvector\ m i  
eigenvalues of a rotational matrix A general rotCitiondl n id t r ix  
can be represented as the exponent of 3kew-syrnmctric 
matrix F264 

( 1 3 )  Rot ( k ,  0) = e k H  
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where 

Lemma 1: The eigenvalues of a general rotation matrix not 
equal to identity are 1, eJB. and e-JB. Let e'' and e-'' be 
denoted by X and x. Then 0 can be calculated by 

8=atan 2(lRe ( h - x ) \ ,  h+X). (14  

Proof: Fisher [9] has shown that the eigenvalues of K are 
0. j ,  and - j .  Since these eigenvalues are distinct, K from (13) 
can be diagonalized [26]. Let E be the diagonalizing matrix 
whose columns contain linearly independent eigenvectors, we 
have 

(15) 

By definition 

(KO); 
eKb=C i!. 

i = o  

Using this definition and after simplification, we obtain 

This diagonalized form shows that the eigenvalues of eK8 or 
Rot fk.  8) are 1 ,  eJo, and e-J8. Since h = eJB and = e-J8, or 
A = cos 0 + j sin 0 and >\ = COS 0 - j sin 0,  

1 

2 
cos 0 = -  (h+X) 

and 

1 
sin 8 =  -- j ( X - X ) .  

2 

Since we cannot distinguish between X and X from the 
eigenvalues of a rotational matrix, we should rewrite the 
equation for 5in 0 in a way that we do not need to distinguish 
between X and x. Knowing that 0 5 0 5 a, we have 

s i n 0 =  Re -(X-h) . 
~ c ) I  

Thus we have Lemma 1. 
U 

Lemma 2: For a general rotation matrix not equal to 
identity, the eigenvector corresponding to the eigenvalue 1 can 
be expressed as a vector with real components and is either 
parallel or antiparallel to the axis of rotation. Furthermore, if 
the angle of rotation of the matrix is not equal to a, the 

remaining two eigenvectors cannot be expressed as real 
vectors. 

Proof: Fisher 191 has shown that the eigenvectors of K 
are as follows: c1 [k,, ky ,  k,] corresponding to an eigenvalue 
of (9, 

c2 [sin 0- jk ,  cos /3, -cos P-jk,  sin 0, j-]? 

corresponding to an eigenvalue of j 0 ,  and 

c3 [sin /3 + j k ,  cos 0, -cos + j k ,  sin 0, - j-1' 
corresponding to an eigenvalue of - j6 ,  where cI, c2, and c3 
are arbitrary complex constants and /3 = tan-' (ky/k,). From 
the proof of Lemma 1, we have 

0 

eKo=E [ i ; j J B ]  E-1 
(17) 

where E is the eigenvector Eatrix ~f K. Thus the eigenvectors 
of eKB corresponding to eigenvalues of 1, eJO, and e-J8 will be 
the same as the eigenvectors of K corresponding to 0, j 0 ,  and 
- j 0 ,  except that they may differ by a constant multiplier. We 
can see that the eigenvector of a rotation matrix can be 
expressed as a real vector (when c1 is real), and that it is either 
parallel or antiparallel to the axis of rotation k .  

If the angle of rotation is not equal to 0 or a, the three 
eigenvalues are distinct and the eigenvectors associated with 
each eigenvalues are unique (ignoring the scaling factors) and 
can be written symbolically as shown earlier in this proof. The 
eigenvectors associated with eJ8 and e-J8 cannot be expressed 
in terms of real vectors because this will require that both sin /3 
and cos /3 be zero simultaneously, contradicting the identity 
sin' /3 + cos2 /3 = 1. (Notice that this lemma does not hold 
when 8 = a. In this case, we will have - 1 as an eigenvalue 
with multiplicity 2 ,  and the eigenvectors associated with e@, 
and e-JB will no longer be unique.) 

0 
Lemma 3: If R is a rotation matrix and R Rot ( k ,  0) = 

Rot (k ,  0)R and 8 # 0 or a, then R = Rot (k ,  p ) ,  where 0 is 
arbitrary. 

P r ~ ~ f i  We will first prove that R and Rot (k ,  0)  have the 
same set of eigenvectors (up to a scaling factor). Since Rot ( k ,  
0) is a rotation matrix, it can be diagonalized and Rot (k ,  0) = 
EM-'.  Substituting this into R Rot ( k ,  0) = Rot ( k ,  0 ) R  and 
rearranging, we have hE-IRE = E-IREA. Denoting 
E-'RE by R ' ,  we have AR' = R ' h .  From Lemma 1, the 
eigenvectors of Rot (k ,  0)  are 1, eJ8, and e-J8. Rewritting R' 
in terms of its 9 elements (r ,  to r9) ,  we have 
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Expanding the above, we have 

Equating elements of both sides and knowing 8 # 0 or n, we 
can conclude that all but the diagonal elements of R ' are zero. 
Recalling that R = ERIE- ' ,  we now have 

Thus R must have the same set of eigenvectors as Rot ( k ,  e) ,  
except the scaling constants. 

If is the angle of rotation of R ,  then the eigenvalues r l ,  r5, 
and r9 must be a certain permutation of 1, eJP, and e-J@. In 
fact, rl = 1, otherwise a contradiction will result when 0 # 0 
or a. From Lemma 2, Rot (k ,  0)  has one eigenvector (first 
column of E )  corresponding to an eigenvalue of 1 and the 
remaining two eigenvectors (second and third columns of E )  
are complex. If rl in (20) is not one, then either r5 or r9 equals 
one and its associated eigenvectors (second or third column of 
E )  must be real. This contradicts that both the second and 
third columns of E are complex. 

From Lemma 2, the real eigenvector corresponding to an 
eigenvalue of one is either parallel or antiparallel to the axis of 
rotation. Since Rot ( k ,  19) and R have the same eigenvector 
associated with an eigenvalue of one, they must have their axes 
of rotation parallel or antiparallel to one another and R can be 
expressed as Rot (k ,  P ) ,  where 

3 
is arbitrary. 

111. SOLUTION TO THE EQUATION A X  = X B  
We will solve for the rotational and translational compo- 

nents of X separately in order to make the geometric 
interpretation easier. Dividing a homogeneous transform into 
its rotational and translational components, A X  = X B  
becomes 

a rotational matrix is 1. Thus a rotational matrix has a 
determinant of 1 and is always invertible. RA and RB are 
similar, since RA = RRBR-'. RA and RH must have the same 
eigenvalues since similar matrices have the same eigenvalues 
[26]. From Lemma 1, RA and RB must have the same angle of 
rotation. 

cl 
Before we formally state and prove the solution to RARx = 

RxRH in Theorem 1, we first examine the geometry of 
the problem. Let us rewrite RA and RB as Rot ( k A ,  0)  and 
Rot ( k ~ ,  e), respectively. We will show that kA referenced to 
the base frame (basekA) and kH references to the frame Rx 
( R X k B )  both point in the same direction if a common frame of 
reference is used. Notice that, from Lemma 4, RA and RB have 
the same angle of rotation. We can now rewrite (22) as 

Rot ( k A ,  O)Rx=Rx Rot ( k ~ ,  0). (24) 

For the following discussion, we will think of R x  as a 
coordinate frame relative to the base frame. Using the geo- 
metrical interpretation of post-multiplication of homogene- 
ous transforms [28], the left side of the equation can be 
interpreted as rotation of Rx frame with respect to hasekil by an 
angle 8. Similarly, the right hand side of the equation is the 
rotation of Rx frame with respect to R X k H  by 0.  As a result, 
(24) can be interpreted as follows: Rx is a coordinate frame 
such that rotating Rx about a vector basekA by any angle P is 
equivalent to rotating R x  about RxkH by the same amount, 
where basekA is referenced with respect to the base frame (the 
world frame), and R X k B  is referenced with respect to Rx.  This 
is shown in Fig. 4.  In order that rotating Rx about haseki, being 
the same as rotating it about R X k B ,  basekA and RxkH must be the 
same physical vector in three-dimensional space. 

We will now show that the solution to (24) has one degree of 
rotational freedom. A formal proof will be given in Theorem 
1. If Rx is a solution to (24) and it is rotated about the axis of 
rotation ( R ~ k B  or basekA) by an angle, it will still satisfy (24). 
Thus the solution to (24) has one degree of freedom. To show 
this mathematically, rotation of a particular solution RXP about 
the axis by any angle can be written as RXP Rot ( k ~ ,  6 )  or 
Rot ( k A ,  P)RXp. We will use the later form for the rest of the 
paper. Since RXP is a particular solution 

where R is a 3 x 3 rotational matrix, P is a 3 x 1 translation 
vector, and 0 is a row of 3 zeros. Multiplying out and equating 
the first row of (21), we have Also, since 

Rot ( k ~ ,  O)R,yp=RXp Rot ( k ~ ,  0). 

= R,yp Rot (kB, 19). 

We will show that RA and RE have the Same angle of rotation 
and that the rotational matrix Rx has one degree of freedom. 
Also, if Rx is fixed, Px has one degree of freedom. 

RA R = R RB for any rotation matrix R ,  then RA and RH must 
have the same angle of rotation. 

Proofi From Lemma 1, the product of the eigenvalues of 

Using the commutative properties of rotational matrices with a 
common axis of rotation and that 

Lemma 4: If RA and RB are rotation matrices such that Rot ( k ~ ,  -p)-l=Rot ( k ~ ,  P )  

we have 

Rot ( k A ,  0) Rot ( k A ,  P)Rxp= Rot ( k ~ ,  P)Rw Rot ( k ~ ,  0 )  
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baqe frame 1 

x 

;ieszr;lt;erespect to 

R, frame rotated about  
base A yanangle H 

x' 

'\ $4: R frame rotated about 
W. '' k, by an  angle 8 

Fig. 4 .  Rotating Rx about basekA by 0 is equivalent to rotating Rx about R ~ k a  by the same angle. kA is the axis of rotation of A and ks 
is the axis of rotation of B in the homogeneous transform equation A X  = XB. 

Substituting this into (26) we have 

Fig. 5.  The rotational and translational degrees of freedom of the solution to 
A X  = X B .  The frame in the figure can rotate about ba'ekA and slide along 
the axia as shown. 

from which we can see that Rot ( k A ,  /3)RxP is a solution. In 
Fig. 5 ,  it is shown that a general solution has one degree of 
rotational freedom; any particular solution rotated about base kA 
by any angle is also a solution. 

Definition: A homogeneous transform equation of the form 
A X  = X B  is solvable if there exists a homogeneous 
transform U such that B = U-IAU. 

Theorem I :  The general solution to the rotational part of a 
solvable homogeneous transform equation of the form RA Rx 
= RxRB, the angle of rotation of A being neither 0 nor T ,  is 

Rx=Rot  (kA, P)RXP (25) 

where kA is the axis of rotation of RA, RxP is a particular 
solution to the equation, and /3 is any arbitrary angle. 

Proof: Assume Rot ( kA ,  /3)RXP is not a general solution. 
Then. there must exist some rotation matrix R' such that 

RAR' = R'RB (26) 
and R ' f Rot (kA , p )  RXP for any /3. Since RxP is a particular 
solution to ( 2 2 ) ,  RARxp = RxpRB, or RB = R$RARXp. 

R ' - RA R' = R ijRARxP. (27) 

Rewriting RA as Rot ( k ~ ,  0) and rearranging, we have 

Thus Rot (kA,  0) and R ' R i b  are commutative. Moreover, we 
know that 0 # 0 or T. If R 'R;; # I ,  from Lemma 3 ,  the axis 
of rotation of R'R;; must be parallel or antiparallel to k A .  
Thus there must exist a y such that R'R;; = Rot ( kA ,  y). 
We have R' = Rot (kA,  y)RxP,  which is a contradiction. If 
R'R;; = I ,  R' = RXP Rot ( kA ,  0) ,  which is also a 
contradiction. 

U 
Next we will look at the translation part of the equation A X  

= XB. It has one degree of freedom, as shown in Fig. 5. 
From (231, we have 

(RA-I)Px=RxPe-PA. (29) 

If Rx is already solved for, the only unknown in this equation 
will be Px. We thus have a system of 3 linear equations having 
the x,  y ,  and z components of Px as unknown. Px has one 
degree of freedom because (RA - I )  has a rank of two, as will 
be shown next in Theorem 2 .  

Theorem 2: The translational part (Px) of the solution to a 
solvable homogeneous transform equation A X  = XB, where 
RA # I and Re # I ,  has one degree of freedom. 

Proof: We can see that RA - I is similar to a matrix of 
rank two if RA # I ,  since 

0 
RA - I =  EAAE- -EIE-l = E  0 X - 1 [I 0 ,!,].-I* 

(30) 

Thus RA - I must have a rank of two. Thus from (29), there 
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may be no solution or there are infinite number of solutions to 
Px.  The first case is ruled out since the physical system 
guarantees the existence of a solution. The solution must exist 
and consist of all the vectors in the null space of RA - I 
translated by a particular solution to (29) [30]. The null space 
of RA - I has a dimension of 3 - rank (RA - I ) ,  thus the 
solution to (29) has one degree of freedom. 

0 
Finally, we need to find a particular solution to the 

rotational part of A X  = XB. From the geometric interpreta- 
tion of the general solution, we will show that any transforma- 
tion that rotates kB into kA is a solution. 

Lemma 5: 

Rot (Rk ,  0 ) = R  Rot ( k ,  0 )R-’  (31) 

for any axis of rotation k ,  any 0 C [0, a], and any 3 X 3 
rotation matrix R .  

Proof: For the purpose of this proof, we will represent a 
rotation matrix in a form used by [23]. Let [n o a ]  be a 
homogeneous transform dnd [n’ 0’ a ’ ]  be the former 
transform rotated by Rot (k ,  0) .  Thus 

Rot ( k ,  0)= [n’ 0 ’  a ’ ] [ n  o a ] - ’ .  (32) 

If we premultiply n,  0 ,  a,  n ’ ,  o f ,  a ’ ,  and k by R ,  the angular 
relationship between Rn, Ro,  Ra, R n ‘ ,  R o t ,  Ra’ ,  and Rk 
will be the same as before the premultiplication, because of the 
angular preservation property of R as a rotational matrix. 
Since n’ = Rot (k ,  0 )n  before the premultiplication, Rn’ = 
Rot (Rk, 0)Rn. Similar relationships hold for other vectors as 
well; therefore 

[Rn’ Ro‘ Ra’]  =Rot ( R k ,  0)[Rn Ro  Ral 

and 

Rot (Rk ,  0 )=[Rn’  Ro‘ Ra’ ] [Rn  Ro Ral-’ 

From (33) 

Rot (Rk ,  0 ) = R [ n ’  0 ’  a ’ ] [ n  o a ] - ’ R - ’  

= R  Rot ( k ,  0 )R- ’ .  

Theorem 3: Any rotation matrix R that satisfies 

kA = RkB 

is a solution to 

RARx=RxRB 

where kA is the axis of rotation of RA and kB is the axis of 
rotation of RE.  

Proof: Let us rewrite (35) as 

Rot (kA, o)Rx=Rx Rot (kB, 0). (36) 

Substituting R into Rx and RkB into kA,  the left-hand 
side becomes Rot (RkB, 8 ) R .  By Lemma 5 ,  this becomes 

R Rot (kB, 0 ) R - l R  = R Rot (kB, e ) ,  which is the same as the 
right-hand side when Rx is replaced by R .  

U 
Since any rotational matrix R satisfying 134) is a particular 

solution, one method to find a particular solution is a rotation 
about an axis perpendicular to both k B  and kA . Thus 

R,yp=Rot (U, U )  (37) 

where 

and 

The above method will not work when k,,! and kB are 
parallel or antiparallel to one another since it will produce a 
zero vector. However, particular solutions for these two 
special cases can be found easily by other methods. In the first 
case, the identity rrratrix will be a valid particular solution. I n  
the second, case, any rotation matrix with its rotation axis 
perpendicular to kA and its angle of rotation equal to 7~ will be 
a particular solution. 

IV. SOLVING FOR A UNIQUE SOLUTION USING Two 
SIMULTANEOUS EQUATIONS 

We have seen that the solution to a homogeneous transform 
equation of the form A X  = X B  has two degrees of freedom. 
However, in our application, we need to find a unique solution 
for T6TCAM. We can find a unique solution to this equation i f  
we have two equations of the form 

and 

In order to obtain two such equations, we need to move the 
robot twice and use the vision system to find the corresponding 
changes in the camera frame. It is also desirable to know when 
this method will not yield a unique solution and the physical 
interpretation of this situation. 

A unique solution to Rx (the rotational part of X) can be 
found by associating the general solutions of the two equations 
RAIRX = RxRB, and RAZRX = R,yRB2. Let RXP1 Rot ( k t l , .  
PI)  and RXpZ Rot (kAz, p2) be the general solutions to the 
above two equations, we then have 

Let the particular solutions be written as follows: 

L 



SHII,' AND AHMAD CALIBRATION OF WRIST-MOUNTED ROBOTIC SENSORS 23 

Rearranging and writing it in more condensed form, we have 

L 

where the notation (U x U), denotes the w component of the 
cross product U x U. Equation (44) is a system of linear 
equations involving cos PI:  sin P1, COS &, and sin p2. Once 
these values are solved for. we can find p1 and p2 by P1 = atan 
2(sin Pi, cos P I )  and P2 = atan 2(sin P2, COS P2).  Since we 
have more equations than unknowns, from the point of view of 
linear algebra: we can have a system of inconsistent equations. 
However. in an ideal environment where there is no noise, the 
equations must be consistent because they originated from 
physical situations. Since the linear equations are physically 
constrained to be consistent, there are either a unique solution 
o r  an infinite number or solutions; there are no other 
possibilities. We will show in Theorem 4 that the solution is 
unique when kA ,  and kA2 are neither parallel or antiparallel to 
one another and the angles of rotation of A I and A2 are neither 
0 nor T. Let us abbreviate (44) to CY = D, if rank ( C )  = 4, 
we can find four linearly independent rows of C to solve for Y 
uniquely. However, in real applications where noise is 
present, we can find a least square fit solution P by 

P=(CTC)-IC'D. (45) 

The translational part of X is constrained by (23); thus we 
have 

RA,Px + PA] = RXPB, + Px 
and 

RA2P,y+PA2= RxPB2+Px. 

Combining these two equations, we can solve for Px by 

Like the uniqueness conditions for the rotational part, it will be 
\hewn that the translational part will have a unique solution if 
the rotation axes of A i  and A 2  are neither parallel nor 
antiparallel to one another and the angles of rotation are 
neither 0 nor P. Rewriting (44) as EPx = F, a Beast square fit 
5olution can be calculated by 

P ,  = ( E  T E )  ~ 1 E TF. (47) 
Before we go into the necessary conditions for uniqueness, we 
need to prove two more lemmas. 

Lemma 6: If R is a 3 x 3 rotational part of a homogeneous 

transform and its angle of rotation is neither 0 nor T, any row 
of (R - I )  is a linear combination of the transposes of the two 
eigenvectors corresponding to the two nonunity eigenvalues of 
R .  

P T Q O ~ ~  From (30) we have 

where e l ,  e2, and e3 are the eigenvectors of R corresponding to 
the eigenvalues 1, A,  and J,. Writing e' as (eix, eiy, ei,) and 
rearranging (48), we have 

0 

Lemma 7: For two rotational matrices R1 and R2 whose 
axes of rotation are neither parallel nor antiparallel PO one 
another and whose angles of rotation are neither 0 nor T, it is 
impossible that the sets of vectors {e2 ,  e3, f2 ] and (e2,  e3, f3} 
are both linearly dependent, where e2 and e3 are the eigenvec- 
tors of R 1  corresponding to the nonunity eigenvalues of R I ,  
andf, and f3 are the eigenvectors of Rz corresponding to the 
nonunity eigenvalues of R2. 

P ~ o Q ~ :  For any rotational matrix R and its Hermitian R H ,  

RRH = R H R  = I ;  hence R is a normal matrix [27]. Given 
that the angle of rotation of R is neither 0 nor T, R must have 
distinct eigenvalues. From [27, Key Theorem 9.21 in Nobel's 
text, a matrix formed by 3 column eigenvectors of a normal 
matrix with distinct eigenvalues is Hermitian. Hence any 
eigenvector matrix of R is Hermitian. Let el be the eigenvec- 
tor of R I  corresponding to the unity eigenvalue. Note that e l .  fi 
and el -j3 cannot be zero simultaneously. If they are simultane- 
ously zero, we will have a system of two linearly independent 
equations which will constrain el except for a scaling factor. 
Since the eigenvectors of R2 are Hermitian, jl f2 and f l  f3 are 
zero. Similarly, this will constrain f l  up to a scaling factor. 
Thus fi and el must be scalar products of one another. 
However, this contradicts the assumption that the axes of 
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rotation (el and f l )  are neither parallel nor antiparallel to one 
another. Therefore, the two dot products cannot be zero 
simultaneously. To prove that {e2 ,  e3,  f 2 )  is linearly indepen- 
dent, we need to prove that ki = k2 = k3 = 0 if 

k l e 2 + k 2 e 3 + k 3 f 2 = 0 .  (50) 

Taking the dot product of both sides of (50) with el and using 
the fact that eigenvectors of a normal matrix with distinct 
eigenvalues are orthogonal to each other, we will have k3el * f 2  

= 0. If e l . f 2  # 0, then k3 = 0. Equation (50) simplifies to 

kie2+ k2e3=0 .  (51) 

Since e2 are e3 are linearly independent, we have kl  = k2 = 0. 
Therefore, (e2 ,  e3,  f 2 )  are linearly independent if e l - f 2  # 0. 
When e i - f i  = 0, e i - f 3  must be nonzero, from a previous 
argument in this proof. In this case, we can use a similar 
method to prove that {e2,  e3,  f 3 )  is linearly independent. 

0 

Theorem 4: A consistent system of two solvable homogene- 
ous transform equations of the form A i X  = XB1 and A2X = 
XB2 has a unique solution if the axes of rotation for A1 and A2 
are neither parallel nor antiparallel to one another and the 
angles of rotations of A I  and A2 are neither 0 nor a. 

Proof f o r  the Rotational Part: We have already seen 
that the general solution to A X  = X B  has one degree of 
rotational freedom when the angle of rotation of A is neither 0 
nor a; any solution revolving about kA is still a solution. The 
solution to the system of homogeneous transform equations 
A I X  = XBi and A 2 X  = XB2 is found by equating the 
solutions of the 2 individual equations, as shown in (42). Since 
(42) is independent of the choices of the particular solutions, 
we can simplify it by choosing a particular solution which is a 
solution to both equations; i.e., RXpo = RXPl = RXp2. After 
replacing RXP, and Rxp2 in (44) by R,, RXpo cancels out and 
we have 

l - k i i  0 k:2-1 0 r-kxlkyl -kz i  kx2ky2 kz2 

Let us abbreviate (52) as C’ I” = D’. With rhe assumption of 
consistency, a unique solution exists if and only i f  the rank of 
Y’ is 4,  in which case we can pick 4 linearly rows to form 4 
equations to solve for the same number of unknowns. Since 
the rank of C’ is the same as the rank of C’ ‘C’ and that the 
later is a 4 x 4 matrix, C’ has a rank of A i f  and only  if 
C‘ TC‘ bas full rank. Thus we will have a unique solution i f f  
the determinant of C‘ TC’ is not equal to zero. We have used 
the SMP program 1191 to express the determinant of C‘ ‘C’ in  
symbolic form and have simplified it by making the following 
substitutions : 

1) k; i+k; ,+k: ,=  1, i =  1, 2 .  

2 )  kx,kx2 + k,,k,, + kl k,, = k A ,  . kA2. 

3) 1 - k t ,  k,:, - k:, k:, - VI k:z - 2kr, kr-2k.vi k..? 

- 2k,y, kr2 kZl  kZ2 - 2 kL , k,? k,, k;? = sin ‘ 0 , ~ .  

The third substitution comes from the fact that 1 k,, x k 4 2  I 
equals i kA1 I /  ItA., I A; Z l 2 .  Tk dc:cr,ni,;ant is firtally simplifiid 
to 

det (C’TC’)=4 sin’ 0 1 2  (sin’ 012-4)(k,4, . k,,!?+ 1 )  

’ (k,4, . k . i2 -  1) .  ( 5 3 )  

The determinant is zero when sin O I 2  = 2 2 ,  which is 
impossible, when sin O I 2  = 0, and when kA , .  kilz = f 1. Thus 
we will have a nonunique solution only when k A  , and k are 
parallel or antiparallel to one another. 

;1 
Proof f o r  the Translational Part: Since E is a 6 x 3 

matrix, we have 6 equations and 3 unknowns. We know that 
these equations cannot be inconsistent since they originated 
from physical conditions. Therefore, we have a unique 
solution for Px if and only if matrix E has a rank of 3, in which 
case we can pick 3 linearly independent rows for E to solve for 
Px. From Lemma 6, any row of (RA ,  - I )  is a linear 
combination of the transposes of the eigenvectors e: and e:  
corresponding to the nonunity eigenvalues, and any row of 
(RA2 - I >  is a linear combination of the transposes of the 
eigenvectors f l  and f: corresponding to the nonunity eigen- 
values. Since the rank of R, is two (from the proof of 
Theorem 21, we can pick two linear independent rows from i t ,  
both are linear combinations of ez  and ei .  We can also pick a 
row from RA2, which is a linear combination off?  and f 3 ,  and 
combine it with the two rows from R A ] .  Since we know that i f  
kAi  is not aligned with kA2.  from Lemma 7. at least one off-: 
andfrmust be linearly independent from e l  and e:. Say a row 
from Rx2 is af l + bf 3’. We can always pick a row where a # 
0 or a row where b # 0 since rank (RA*)  = 2. Thus we can 
always find a. row from RA2 and combine it with two rows 
from RA1 to form three linearly independent rows. We can use 
the corresponding three equations from (46) to solve for a 
unique Px. 

f 1 

V .  A\ EXALIPLE 

We have written a program calling IMSL routines [ 181 to 
test our method. A single-precision version is used on ‘1 V A X  
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780 machine. We will solve for the sensor position relative to 
the robot wrist by moving the robot twice and observing the 
changes in the sensor positions. The two robot movements 
mujt have distinct axes of rotation and their angles of rotation 
must not be 0 or T in order to ensure a unique solution. Let A ,  
and B ,  be the first robot movement and B1 be the resulting 
motion of the sensor. and let A 2  be the second robot movement 
and B2 the resulting sensor motion. Two equations relating the 
mot ions and the sensor-mounting position will result: 

B ,  and B2 are determined by A I  and A 2  and the actual sensor 
mounting position. Let X,,, be the actual sensor mounting 
position. then 

B1 =x,,'~lxzct (56)  

B2 = Xd:,! A2Xact. 157) 

The above two equations are ody used for simulations. In an 
actual robot application, B1 and B2 are found by the sensor 
system: however, A and B l ,  and A2 and B2 are still related by 
(56) and (57). 

- 0.989992 
0.141 120 
0.000000 

0 

A !  = 

- 0.989992 

B 1 =  [ - 0.028036 
0.138307 

0 

- 0.141 120 
- 0.989992 

0. OQOQQO 
0 

- 0.138307 
- 0.91 1449 

0.387470 
0 

and 

A2 = Trans ( - 400 mm, 0 mm, 400 mm) 

* Rot ([0, 1, Q I T ,  1.5 rad). (60) 

The above parameters are chosen to match the setup in our 
laboratory. The camera coordinate frame (X,,,) is nearly 
parallel to the robot wrist frame but is angled slightly towards 
the gripper. The first robot motion ( A , )  is approximately a 
rotation of 3 rad (172") about the camera's line of sight, so 
that the upside-down camera is still pointing to the general 
direction of the object. Notice that we did not choose 180" 
because OUT theorems do not apply to that case. However, we 
chose a value close to 180" because that minimizes the noise 
sensitivities. How close to 180" we should choose depends on 
how accurate our system (robot and vision system) is. For 
example, if we h o w  that the system has a maximum angular 
error of 2 " ,  we must choose the robot motion to be less than 
178". The second motion (Az)  is a rotation of 1.5 rad (86") 
about the y-axis of the robot wrist and the translation is chosen 
such that the fixed object is still in the camera's view. 

We can find the numerical values of the A l ,  B1, A Z ,  B2, and 
X,,, using (6), (56),  and (57). 

1 1 
i 

1 

0.000000 0 
0.000000 0 
1.0000Q0 0 

0 1 

0.028036 - 26.9559 
0.387470 - 96.1332 
0.92 1456 1 9.4872 

0 

0.070737 0.OOOQOO 0.997495 - 4OQ.000 
0 .0000OO 1 .000000 O.OOOQO0 0. 000000 

0 0 0 1 
- 0.997495 0.000000 0.070737 400.000 

0.070737 0.198172 0.977612 - 309.543 
-0.198172 0.963323 -0.180936 59.0244 
-0.977612 -0.180936 0.107415 291.177 

0 0 0 1 

- 4 2  = 

0.000000 0.198669 0.980067 100 

1 .0OOOQO 0.000000 0.000000 10 
0.00OOQO 0.980067 - 0.198669 50 

0 0 1 

[ B? = 

1 X,'t = 

L o  

A\wme the actual sensor mounting position and two robot Now we can find the axes of rotations ofA1, BI, A*, and B2 
m o ~ o n s  are as follows: by 17), 610)-(12) 

X,,,, = Trans (10 mm. 50 mm, 1100 mm) kA1 = [0.000000, 0.000000, l.OOOOOO] (66) 

. Rot ([ 1 .  0. 01 '> 0.2 rad) (58) kg, = [O.SOOO00, 0.198669, 0.9800471 (67) 

A ,  =Trans (0 mm. 0 mm, 0 mm) k A 2  = [O . 00OQ00 , 1 . 000000 , 0. OOOOOO] (68) 

(59) kB2 = [0.OOQOO0, 0.980067, - 0.1986491 '. (69) . Rot ([O, 0, I]', 3.0 pad) 
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. 

From the above four axes of rotations and from (37)-(39) we 
can find RXPi and RXPZ, which are the particular solutions to 
the rotational parts of (54) and (55 ) ,  respectively. The 
numerical values of these two rotational matrices are 

1 1.000000 0.000000 0.000000 

0.000000 0.198669 0.980067 
O.OOOOQ0 0.980067 - 0.198669 (70) 

and 

1 .OOOOOO 0.OQOO00 0.000000 [ 0.000000 0.198669 0.980067 

Notice that the two particular solutions in this exa 
same and are both equal to the final solution. This is merely a 
coincidence. When other X, A , ,  and A2 are used, the 
particular solutions are generally different from the final 
solution. 

From Theorem I .  the solution is either Rot ( k A , ,  P1)RxP1 or 
Rot (kA2,  P2)RXP2. We can solve for p1 and p2 from (45) and 
(46) and from P, = atan 2(sin p,, cos @,>, i = 1, 2. We found 
O1 to be 0. The rotational part of X(Rx)  can be found by 
computing the numerical values of Rot ( k A 1 ,  P1)RxP1 

Rxp2 = 0.000000 0.980067 - 0.19866 

1.000000 0.000000 0.000000 

0.000800 0.198669 0.980067 
0.000000 0.980067 - 0.198669 

This solution is correct because it is the same a5 the rotationa 
part of the actual sensor position (X,,, ) .  

To find the translational part ofthe solution, we use (47) ani 
(48); it is found to be [l0.0000, 50.0000, 100.OOOl T ,  which 
is the same as that of the actual sensor position. 

VI. NOISE SENSITIVITIES 

To measure the noise sensitivity of our calibration method. 
it is necessary to compare true measurements of the sensor 
mounting position with experimental results using the method 
discussed. However, true measurements are difficult or 
expensive to obtain. In this paper, we will simulate the noise 
sensitivities by perturbing the robot motions (A  I and A ? )  and 
the sensor moti'ons (B, and B,), and observing the resulting 
errors in the sensor mounting position (X). In the rest of thi.; 
section, noise sensitivity will refer to error in the solution per 
unit perturbation, e.g., 0.6-mm solution error per I-mm 
perturbation. 

Noise sensitivities are configuration-dependent. We will use 
the set of values given in last section's example, which are 
chosen realistically for our laboratory setup. Noise sensitivi- 
ties are also dependent on the direction of perturbation. Since H 

homogeneous transform has six degrees of Freedoms, we will 
perturb the translations in x, y ,  and z directions and the 
rotations about the x, y ,  and z axes. 

Fig. 6 shows the translational noise sensitivities due t o  
translational perturbations of robot motion measurements and 
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sensor motion measurements. The translational components of 
A , ,  B ,  , A 2 ,  B2 are perturbed by adding between 1 and 5 mm to 
each of the x, y ,  and z components. The resulting translational 
errors are then calculated by taking the Euclidean distance 
between the actual sensor mounting position (Xact) and the 
calculated position (X), where the distance is the magnitude 
of the p vector (or translation vector) of the compound matrix 
X ~ ' X,,, . Errors due to perturbations in x, y ,  and z directions 
are marked by 0, 0, and A, respectively. Rotational errors 
due to translational perturbations are not plotted because they 
are always zero. 

Figs. 7 and 8 show the translational and rotational noise 
sensitivities due to rotational perturbations. The rotational 
parts of A , ,  B , ,  A2 ,  and B2 are perturbed by rotating them 
around each of their x, y ,  and z axes by 0" to 5 O .  Rotational 
errors are calculated by taking the minimum angle required to 
align the perturbed solution X to the actual mounting position 
X,,, (angle of rotation of the compound matrix XPiXact). 
Errors due to rotational perturbations about the x, y ,  and z 
axes are marked by 0, 0, and A ,  respectively. 

Notice that noise sensitivities vary greatly, depending on the 
direction of perturbation. It may be useful to use this 
information for planning sensor-mount calibration if the error 
characteristics of the robot and the sensor are known. 

VII. CONCLUSIONS 
We have described a method to find the position of a wrist- 

mounted sensor relative to a robot wrist, without using direct 
measurements. This will be useful for calibrating vision 
systems, range sensing systems, and tactile sensing systems. 
The process can be automated and does not require any 
measuring equipment. 

Our method requires the solutisn to a homogeneous 
transform equation of the form A X  = XB, where the angle of 
rotation of A is neither 0 nor a. We found that the solution is 
not unique; it has one degree of rotational freedom and one 
degree of translational freedom. We propose that we use two 
simultaneous equations of the form A iX = XBI and A 2 X  = 
XB2. Physically, this means that we move the robot twice and 
observe the changes in the sensor frame twice. The necessary 
condition for a unique solution is that the axes of rotation of A I 
and A2 are neither parallel nor antiparallel to one another and 
that the angles of rotation are neither 0 nor a. A computer 
program is written for the proposed method. We have 
generated several test cases in which the conditions for 
uniqueness are satisfied; all the computed solutions are found 
to be correct. Another program is written to test the noise 
sensitivity of the method. The matrices A B1, A Z ,  and B2 are 
perturbed and the errors in the resulting solutions are plotted. 
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