
Photogrammetria - Elsevier Publishing Company, Amsterdam - Printed in The Netherlands 

T H E  PROJECTIVE T H E O R Y  OF R E L A T I V E  ORIENTATION 1 

E. H. THOMPSON 

University College London, London (Great Britain) 

(Received June 28, 1966) 

SUMMARY 

The paper shows how the problem of relative orientation may be treated 
in the plane if the three space coordinates are regarded as homogeneous plane 
coordinates. The elementary theory of this approach is developed and the paper 
concludes by deriving a form for the relative orientation matrix in terms of the 
coordinates of te two epipoles. This matrix seems to be the simplest so far 
obtained in many attempts to solve this intractable problem. 

PROJECTIVE TRANSFORMATION 

Central projection of space to a plane, which is the geometrical model of 
photography, is not strictly a projective transformation, because the matrix of the 
transformation is singular when regarded in projective terms. We can see this in 
Fig. 1. 

X' 

R ¥, 

Z' 

Fig. 1. 

In this figure a is the image in the (positive) picture plane of a point A in 
space with coordinates X, Y, Z. In terms of a picture coordinate system, in 
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68 E. H. THOMPSON 

which the axis SZ '  is normal to the picture plane, the coordinates of the image 

are given by: 

X '  ~ f )']1 X ~- )121 Y -~ )'31 Z 

(1) 
y ,  = [ ),1,, X + ;,~., Y + ~,,:~ Z 

;'1:~ X + V'-':~ Y + )':~:~ Z 

Z ' = f  

where ;'u is a typical element of the orthogonal matrix R that represents the 
rotation of the picture coordinate system with respect to the unaccented system; 

and / is the principal distance. 
If we use homogeneous coordinates, putting X = x/(,~ etc., then eq.l is 

equivalent to: 

x' / )'~ 1 7-'1 ),al 0 ~ 

)'r '  7"'-' ;':v, 0 ' 

' = ] ) :~ 7'23 ;':~:~ 
. "  1 1 ;.~ 

, \ , f  f f 
in which the matrix of the transformation is clearly singular. It is, I think, for this 
reason that the treatment given to photogrammetric problems is not usually on 
projective lines, although it will have been noticed that authors of text books 
seem unable to avoid reference to projective transformation. This present paper 
takes the matter a little further forward and gives a projective theory of relative 
orientation. In particular the projective significance of the epipoles is emphasised 
and if this raises the criticism that they have no practical significance it is one that 
might have been made over a number of years to authors of photogrammetric text 

books who cannot resist mentioning them without making the slightest use of 
them. At least some use is made of them here. 

Although the present treatment seems to have mainly a theoretical interest, 
the paper concludes with an application to the calculation of a relative orien- 

tation. In addition perhaps these few researches will revive an interest in a subject 
that must surely have some importance to photogrammetry. 

RELATIVE ORIENTATION CONDITION 

It has been shown (THOMPSON, 1959) that the condition that a pair of rays 
lie in a plane containing the base (epipolar or basal plane) can be put in the form: 

(X '  Y ' Z ' )  Bz  0 - x = 0 (2) 
- B r  B x  , 
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Enlarging Rectification 

of aerial photographs for the production of air photo mosaics for national, regional and 
town planning, for engineering construction, and for geological and vegetational studies. 

Brilliant enlargements without loss of even the smallest image detail thanks to the 
Wild Reprogon f : 5,6 high-performance objective. Even illumination of the negatives by 
mercury vapor lamp through spherically corrected Fresnel condensors. Simple 
operation through automatic focussing; automatic fulfilment of the Scheimpflug condition 
in the E4. Enlargement range: 0,75 x to 7x. 

For enlarging the low-priced 

Wild VG1 
Enlarger 

For rectification and enlarging the 

Wild E4 
Rectifier-Enlarger 

Switzerland 

V i s i t  our  large exh ib i t i on  at  t h e  X | t h  | n t e r n a t i o n a i  C o n g r e s s  of  P h o t o g r a m m e t r y  L a u s a n n e ,  
Swi tze r land ,  8 -  20  July 1 9 6 8 .  
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SOVIET 
ANTARCTIC 

EXPEDITION 
The Soviet Antarctic Expedition was organized in 1955 in connec- 
tion with Soviet participation in the Antarctic programme of the 
International Geophysical Year. It was not a single expedition, but 
rather a continuing effort of exploration and scientific investigation 
that is still in progress, several years after the close of the I.G.Y. 

Members of the Expedition carry out regular scientific observations 
at six of the 24 continental Antarctic stations; four of the seven 
scientific stations in the interior of the continent belong to the 
USSR. All these Soviet stations carry out systematic observations 
in geology, glaciology, hydrology, geomagnetism, ionospheric 
physics, telluric currents, auroras, cosmic radiation, seismology, 
meteorology, actinometry and aerology, and every year, extensive, 
multidiscipline oceanographic investigations are carried out in the 
Great Southern Ocean. 

The Soviet Antarctic Expedition has collected enormous amounts 
of new and valuable data. Most of this information has been 
published in the Russian language in a series of Information Bulle- 
tins which have been translated into English, edited, and are now 
being published. This work was commenced by the Geophysical 
and Polar Research Center of the University of Wisconsin and 
continued by the staff of Scripta Technica, Inc., Washington, D.C. 

V o l u m e  I - xiv + 404  pages ,  53 tables,  105 illus., 1964, £5.5 .0  

V o l u m e  II - x + 318  pages ,  64 tables,  108 illus., 1964, £5.5 .0  

V o l u m e  III - xii + 37"/ pages ,  79 tables,  122 illus., 1965, £5.5.0 
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Air Survey Contractors 
S c h i p h o I - A i r p o r t l A m s t e r d a m l N e t h e P l a n d s  
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at the Xllh International Congress for Photogrammetry 
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CARL ZEISS, Oberk°chen/W(~rtt. Z E l ~ ~ 

Truly universal plotters permit aerotriangulation, large-scale mapping, 
first-order numerical plotting and plotting of terrestrial stereograms. 
They allow the direct plotting of photographs with a wide range of different 
focal lengths, considerable tilt angles and very short base lengths. 
The C-8 Stereoplanigraph is such an instrument designed for plotting vertical 
photography with focal lengths between 100 mm and 600 mm, 50 ° oblique. 
photography, 30 ° wide-angle convergent photography, for coordinate 
readout by means of printing counter, for output of data in the form of 
punched cards or paper tape by means of the Ecomat unit, for continuous 
plotting of cross sections with the PR Profilometer, for direct connection 
to Orthoprojector or profile storage, for plotting 23 cm X 46 cm photography 
and for one-man operation with the aid of the St 2 Printing Head. 
The C-8 system is as versatile as ever. 

! Z E ! S S |  
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PROJECTIVE THEORY OF RELATIVE ORIENTATION 69 

Where X, Y, Z are the coordinates of any point on the left-hand ray; X ,  
Y', Z' are the coordinates of any point on the right-hand ray; and B,, B~j, B: are 
the base components. The origins are respectively the left and right-hand vertices. 

If R and R' are orthogonal matrices representing the rotations of the left 
and right-hand pictures respectively then eq.2 becomes: 

(x' y' z') R 'v B R = 0 (3) 

where the coordinates are now referred to the picture coordinate systems respec- 
tively, and B is the base component matrix. 

We now note that eq.3 is homogeneous in the three coordinates of a point 
and in the three base components. We may therefore regard these equations as 
setting up a condition in a plane in which the coordinates and base components 
are to be taken as the homogeneous coordinates of points in this plane. If this 
is an allowable point of view, then it should be possible to interpret eq.3 in these 
terms. This was done in an earlier, not very accessible, paper (THOMPSON, 1964) 
and it is repeated here for completeness. 

The transformation: 

A (4) 

when A is a matrix of order 3 )< 3, may be regarded in two ways. Usually it is 
looked upon as transforming a point, whose homogeneous coordinates are x, y, z, 
to a new point. The transformation is, of course, projective and is known as a 
collineation since, under it, straight lines transform to straight lines. Owing, 
however, to the duality of projective geometry eq.4 may also be regarded as trans- 
forming the point y, y, z to the line l', m', n', where l', m', n' are given by: 

m '  = A 

t1' 

Such a transformation is known as a correlation. If a point x', y', z' lies on 
the line l', m', n' then we have: 

l ' x ' + m ' y ' ÷ n ' z ' = O  

that is: 

(x' y' z') A = 0 (5) 

/ 

which is eq.3 again. 
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70 E. H. T H O M P S O N  

The condition eq.5 may thus be interpreted in projective terms as the con- 
dition that the point (x" y" z') lies on the line induced by a correlation whose matrix 
is A. Alternatively it may be interpreted as the condition that the point x, y, z lies 
on the line given by: 

= A I' 

In the relative orientation problem the points  of the correlation are clearly 
the image points on the photographs. What are the lines? 

We note, first, that the matrix R 'r B R in eq.3 is singular and has rank 2, 
for R' and R are non-singular while B is singular and of rank 2; and the rank of 
a matrix remains unchanged when multiplied by a non-singular matrix. Let us 
therefore investigate the properties of eq.5 when A is singular and of rank 2. 

We indicate the (homogeneous) coordinate vector of a point by p or p' and 
of a line by l or F. Consider three non-collinear points Pl, P2, P3 to which corre- 
spond the lines !1', I~', !:(. We have: 

(i1' 1._,' !:/) = A (Pl p~ P:0 

Suppose p, / is  a point that lies on all three lines, then: 

(11' !~' 1:~') r po' = 0 

and this equation will have solutions for p~/, other than (0 0 0) 7, which is inad- 
missible, if and only if (11'!._/I:/) in singular. But this matrix is given by 

A (Pl P~ P:s) and A is singular. Moreover A has rang 2 and (Pl P2 P:0 is non-singular, 
since the three chosen points are not collinear and their coordinate vectors are 
therefore linearly independent. Thus (11' !~' I:~') has rank 2 and P0' is uniquely 
determined apart from an arbitrary scalar factor. The three lines If ,  !,/, l:s' are thus 
distinct and are concurrent in a determinate point. It follows that all the lines 
of the correlation are concurrent in this same point which is, of course, the right- 
hand (accented) epipole, any line !' being a right-hand epipolar ray. In the same 
way we may consider three non-collinear points pl', p,.,', P:~' and their three cor- 
responding lines ii, !.,, 1:~ given by: 

(1~ ie I:0 : A r (Pl' p.,' p:~') 

The left-hand, unaccented, epipole will then be the solution of: 

(il i._, I:~) ~ p.  = 0 

Evidently the two epipoles will have the same coordinates if, and only if, 
A = ± A T, that is to say if A is symmetric or skew symmetric. 

We introduced the three arbitrary non-collinear points to demonstrate the 
existence of the epipoles in the correlation. Since, however, epipoles are points at 
which all lines are concurrent we can choose lines which are the transforms of 
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PROJECTIVE THEORY OF RELATIVE ORIENTATION 71 

special points and thereby set up simple equations from which to find the epipoles. 

Since any line Ap passes through the accented epipole p j  we have p(,T Ap 
= 0 for all p. 

Put pT successively equal to (0 0 1), (1 0 0) and (0 1 0), i.e., choose as 
our three points, the origin and the points at infinity in the direction of the x and 
y axes respectively. 

We have at once: 

A r p j  = 0 (6) 

Similarly, for the unaccented epipole: 

A p,) = 0 (7) 

THE EPIPOLES IN SPECIAL CASES 

There are two cases of special interest in relative orientation. In the first 
the x-axis coincides with the base and the skew-symmetric matrix in eq.2 takes 
the form: 

0 
1 

and eq.6 becomes: 

R ~ 0 R'  Po' = 0 

- -  1 

But R is non-singular and may be removed and the equation to be solved is then: 

( 0 0 0 '1 
7:.' )'a"' 7aa P0' = 0 

- -  ) ' 2 1 '  - -  9 ' 2 2 '  - -  '~2;.('// 
where ~.~j' is a typical element of R'. 

If the coordinates of the epipoles are x(,', y,,'. z,,' the solution is seen to be: 

x. '  Yo' _ z,,' 
, t , 

9 ' 1 1  )~ '12 ) ' l a  

we have taken note of the fact that an element of an orthogonal matrix is 
to its co-factor. In the same way the unaccented epipole will be the solution 

after 
equal 
of:  

i.e., 

(! o !t 0 

I 

xo/711 : yo/y12 ~--- Zo/713 

R po = 0 

Photogrammetria, 23 (1968) 67-75 



72 E. H. THOMPSON 

In the second case we take R : I and po' is the solution of: 

- B z  0 x R" po'  = 0 

B v - .O x 

which is easily verified as being: 

r + 
X. y.  

7, ,' Bx + 7=',' By + y: , '  Bz :,~._," Bx 4- :,,,,,' B y  g- y:c_,' Bz  

Z 0  r 

this being equivalent to: 

p. '  : R ''r B> 

, B z  

for a point  to lie cn its own corresponding line. Such points will be given by: 

( x y  z) A = 0 

This is the equat ion of a conic known as the co inc idence  conic.  

Readers  will r emember  that  in the s tandard form of the equation of a conic 
the square matr ix  is symmetric .  It is easily verified that there is no change in eq.8 
if we substitute the symmetr ic  matr ix  J/., (A + A ~') for  A. We now show that  the 
meets of corresponding epipolar  rays lie on the coincident conic. 

Fig 2. 

Consider  any point P1 defining an epipolar  ray E P I ,  E being the unaccented 
epipole (Fig.2). If the coordinate  vector  of P1 is p~ and )~ is a scalar then p~, + 2 pl 
will be the coordinate  vector  of a point on EP1. The  line corresponding to this 
point is given by: 

1' : A (po + 2 pl) 

But Ap,> : 0 and hence: 

i' : )~ A p l  
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Thus the single line 1' corresponds to all points on EP1 for multiplication by 

a scalar 2 does not change the ratio of the homogeneous coordinates of the line. 
If now P is the intersection of EP1 and 1', the line corresponding to P will 

be !' (for i' corresponds to all points EP1) and thus P will be a point of the coin- 
cident conic since it lies on its corresponding line. 

This result could have been anticipated from space considerations. The 
epipolar rays form two pencils with vertices respectively at E and E'. Moreover 
the pencils are projectively related since their ways meet by pairs on a line (the 
meet of the two picture planes). If then these two pencils are arbitrarily placed in 
the same plane the meets of corresponding pairs of lines will lie on a conic. 

Moreover since A p. = 0 and A 'r p. '  --  0 the coordinates of the epipoles 
satisfy eq.8 and the epipoles therefore lie on the conic. This is a well-known 

property of the vertices of two projectively related pencils. The curves shown in 
Fig.2 are the two branches of a hyperbola. 

The above treatment of the coincidence conic draws attention to an impor- 
tant property of the plane treatment of the problem. Pairs of lines, such as pairs 
of epipolar rays, will always meet in a plane. In space the epipolar rays meet by 
pairs only when correctly oriented: in the plane they will meet when arbitrarily 
oriented. 

T H E  E P I P O L A R  M A T R I X  

It  is of some interest to develop a general matrix whose elements are com- 
posed so far as possible of the coordinates of the epipoles. We have, in fact, to 
find a matrix A such that: 

where 

of the 

and: 

A p , , =  0 and A T p o ' - 0  

po and p . '  are regarded as given. 
It is possibly more convenient to work in the non-homogeneous coordinates 
epipoles, say X,~, Yo and X0', Y,'. 
We may then write the equations: 

,/all al:~ al:~ [' Xo'x 0 

( a.,, a._,., a..2,:,~ I Yo ) = 
\ a.ll a:~2 a,:::~ , 

k " , , 

a l ., a,22 aa2 ] o' 

a l  :~ a:za aa:~/ , / ,, 

These six equations may be used to determine the nine elements a~i but 
clearly we cannot do this uniquely and we have a choice. Let us attempt to obtain 
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five of the elements in terms of a,22, as.% a23, a.~:~ and the four epipolar coordinates. 

This we shall see is, in general, possible. We rearrange the above equations in the 
form: 

'Xo Yo 1 0 0 0 0 0 0 a 

0 0 0 Xo 0 Yo I 0 a 

0 0 0 0 Xo 0 0 YI, a 

X,/ 0 0 Yo' 1 0 0 0 0 [ 

0 Xo' 0 0 0 Yo' 0 1 

0 0 Xo' 0 0 0 Yo" 0 , :~:~ 

==0 

After systematic elimination in the usual way and rearrangement to illus- 
trate the truncated triangular form of the resultant matrix we have: 

! 
X o  

i: 

Yo 1 0 0 0 0 0 

Yo Xo' X . '  
- XI, - X o  Yo" 1 0 0 0 

0 -X°'_ Xo Yo' X,) y ( ,  0 1 
Y,, Yo Yo 

0 0 Xo 0 Yo 1 0 

0 0 Xo 0 0 Yo 

which shows that the 

0 i a l  1 

ale 
0 al:~ 

(-/21 

0 a 31 

a "2 "2 
O (,/23 

a32  

l a:l:g 

= 0  

matrix has, in general, rank 5 and that the first five un- 
knowns may be expressed in terms of the remaining four. The results of the back- 
substitution are: 

a l l  
1 

Yo (a22 Yo' + ase) + Xo)((,~ (a23 Y,,' 4- aa.a) 
X .  Xo' 

1 
av, ~- - ~," / (a,2,2 Yt,' + aa2) 

a l  3 --- 
1 

(a2:~ Yo' + a:,a) 
y o  t 

l 
ae, = - Xo- (a2,_, Yo + a.~) 

a31 - -  
1 

(a:3.~ Yo + a33) 
Xo 

The matrix A then takes the form: 
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; (a...2 Yo' ÷ aae) - X(/ 

1 (a.,:~ Yo' + a:~) 
XI~ XI,' 
1 

- X,, (a22 Y,, + a.):0 a,,.. 
1 

- - -  (a:~,_, Yo + a~:~) a:~ 
So 

This matrix is easily seen to factorise into: 

(a,.,,2 Yo' 4- a~e) - X , (  (aea Yo' 4- a:~:~)] 

! 
a23 

£/33 

Yo' 1 

(i 0 l-X°'iX°~ ! ~ ( / i  0 0 ' ) a.22 a,_,a / / _ y o  1 0 1  0 O )  __  Xo 0 1 

, , a:~ a~:~/ ,, _ I 

The first and third matrices are always non-singular and hence the whole 
matrix must, at most, have rank 2 and will have rank 1 unless: 

a:v, a:~:~ t 0 

With this restriction then the four ai~ are at our disposal, but choices that 
make the centre matrix relevant to the relative orientation problem are obviously 
severely restricted. 
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