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SUMMARY

The paper shows how the problem of relative orientation may be treated
in the plane if the three space coordinates are regarded as homogeneous plane
coordinates. The clementary theory of this approach is developed and the paper
concludes by deriving a form for the relative orientation matrix in terms of the
coordinates of te two epipoles. This matrix seems to be the simplest so far
obtained in many attempts to solve this intractable problem.

PROJECTIVE TRANSFORMATION

Central projection of space to a plane, which is the geometrical model of
photography, is not strictly a projective transformation, because the matrix of the
transformation is singular when regarded in projective terms. We can see this in
Fig.1.

Fig.1.

In this figure a is the image in the (positive) picture plane of a point 4 in
space with coordinates X, Y, Z. In terms of a picture coordinate system, in

1 Paper presented at the International Symposium on Spatial Aerotriangulation, February
28-March 4, 1966, University of Illinois, Urbana, Ill. (U.S.A.).
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which the axis SZ’ is normal to the picture plane, the coordinates of the image
are given by:

X' = fj,j}l X + ya21 Y +);’:s12

713 X + Yy Y + 783 Z (l)
Y = f }’lzX -+ peH Y + yas 2

713 X + V2 Y + P z

z=f

where »; is a typical element of the orthogonal matrix R that represents the
rotation of the picture coordinate system with respect to the unaccented system;
and f is the principal distance.

If we use homogeneous coordinates, putting X = x/m etc., then eq.l is

equivalent to:

-V hei] V33
v/ \f} f f/ o/

in which the matrix of the transformation is clearly singular. It is, I think, for this
reason that the treatment given to photogrammetric problems is not usually on
projective lines, although it will have been noticed that authors of text books
seem unable to avoid reference to projective transformation. This present paper
takes the matter a little further forward and gives a projective theory of relative
orientation. In particular the projective significance of the epipoles is emphasised
and if this raises the criticism that they have no practical significance it is one that
might have been made over a number of years to authors of photogrammetric text
books who cannot resist mentioning them without making the slightest use of
them. At least some use is made of them here.

Although the present treatment seems to have mainly a theoretical interest,
the paper concludes with an application to the calculation of a relative orien-
tation. In addition perhaps these few researches will revive an interest in a subject
that must surely have some importance to photogrammetry.

RELATIVE ORIENTATION CONDITION

It has been shown (THOMPsON, 1959) that the condition that a pair of rays
lie in a plane containing the base (epipolar or basal plane) can be put in the form:

0o -B B, X
X'YZ)| B 0 By Y] =0 @)
-By By 0 ) \Zz
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SOVIET
ANTARCTIC
EXPEDITION

The Soviet Antarctic Expedition was organized in 1955 in connec-
tion with Soviet participation in the Antarctic programme of the
International Geophysical Year. It was not a single expedition, but
rather a continuing effort of exploration and scientific investigation
that is still in progress, several years after the close of the .G.Y.

Members of the Expedition carry out regular scientific observations
at six of the 24 continental Antarctic stations; four of the seven
scientific stations in the interior of the continent belong to the
USSR. All these Soviet stations carry out systematic observations
in geology, glaciology, hydrology, geomagnetism, ionospheric
physics, telluric currents, auroras, cosmic radiation, seismology,
meteorology, actinometry and aerology, and every year, extensive,
multidiscipline oceanographic investigations are carried out in the
Great Southern Ocean.

The Soviet Antarctic Expedition has collected enormous amounts
of new and valuable data. Most of this information has been
published in the Russian language in a series of Information Bulle-
tins which have been translated into English, edited, and are now
being published. This work was commenced by the Geophysical
and Polar Research Center of the University of Wisconsin and
continued by the staff of Scripta Technica, Inc., Washington, D.C.
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PROJECTIVE THEORY OF RELATIVE ORIENTATION 69

Where X, Y, Z are the coordinates of any point on the left-hand ray; X',
Y’, Z’ are the coordinates of any point on the right-hand ray; and B,, B,, B. are
the base components. The origins are respectively the left and right-hand vertices.

If R and R’ are orthogonal matrices representing the rotations of the left
and right-hand pictures respectively then eq.2 becomes:

X
Xy Z)RTBR |y =0 3)
z

AY

where the coordinates are now referred to the picture coordinate systems respec-
tively, and B is the base component matrix.

We now note that eq.3 is homogeneous in the three coordinates of a point
and in the three base components. We may therefore regard these equations as
setting up a condition in a plane in which the coordinates and base components
are to be taken as the homogeneous coordinates of points in this plane. If this
is an allowable point of view, then it should be possible to interpret ¢q.3 in these
terms. This was done in an earlier, not very accessible, paper (THomMpsoN, 1964)
and it is repeated here for completeness.

The transformation:

X
Aly 4)
.Z/'

when A is a matrix of order 3 X 3, may be regarded in two ways. Usually it is
looked upon as transforming a point, whose homogeneous coordinates are x, y, z,
to a new point. The transformation is, of course, projective and is known as a
collineation since, under it, straight lines transform to straight lines. Owing,
however, to the duality of projective geometry eq.4 may also be regarded as trans-
forming the point y, y, z to the line I', m’, n’, where I', m’, n’ are given by:
I X
m)=Aly
\}1’ / Z /
Such a transformation is known as a correlation. If a point x', y', 7’ lies on
the line I, m’, n’ then we have:

's +my +nzZ =0
that is:

X
xyH)Aly) =0 (5)
Z

/

which is eq.3 again.
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70 E. H. THOMPSON

The condition eq.5 may thus be interpreted in projective terms as the con-
dition that the point (x’ y’ z) lies on the line induced by a correlation whose matrix
is A. Alternatively it may be interpreted as the condition that the point x, y, z lies
on the line given by:

2 x
m = AT |y
n d

In the relative orientation problem the points of the correlation are clearly
the image points on the photographs. What are the lines?

We note, first, that the matrix R’ BR in eq.3 is singular and has rank 2,
for R’ and R are non-singular while B is singular and of rank 2; and the rank of
a matrix remains unchanged when muiltiplied by a non-singular matrix. Let us
therefore investigate the properties of eq.5 when A is singular and of rank 2.

We indicate the (homogeneous) coordinate vector of a point by p or p” and
of a line by I or I'. Consider three non-collinear points py, p2, ps to which corre-
spond the lines 1y, 1., 1,”. We have;:

(' L' 1y) = A (py p2ps)
Suppose p,’ is a point that lies on all three lines, then:
"L B)T Po' =0

and this equation will have solutions for py’, other than (0 0 0)” which is inad-
missible, if and only if (I,’lL’ly) in singular. But this matrix is given by
A (p, P2 P3) and A is singular. Moreover A has rang 2 and (p, p» p3) is non-singular,
since the three chosen points are not collinear and their coordinate vectors are
therefore linearly independent. Thus (I;"L’ L) has rank 2 and po" is uniquely
determined apart from an arbitrary scalar factor. The three lines 1,’, L.", 1" are thus
distinct and are concurrent in a determinate point. It follows that all the lines
of the correlation are concurrent in this same point which is, of course, the right-
hand (accented) epipole, any line I’ being a right-hand epipolar ray. In the same
way we may consider three non-collinear points p,’, p.’, ps° and their three cor-
responding lines 1, L, 1, given by:

L L) = AT (P1/ Pz’ P:a’)
The left-hand, unaccented, epipole will then be the solution of:
L1 Po = 0

Evidently the two epipoles will have the same coordinates if, and only if,
A = £ A", that is to say if A is symmetric or skew symmetric.

We introduced the three arbitrary non-collinear points to demonstrate the
existence of the epipoles in the correlation. Since, however, epipoles are points at
which all lines are concurrent we can choose lines which are the transforms of
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PROJECTIVE THEORY OF RELATIVE ORIENTATION 71

special points and thereby set up simple equations from which to find the epipoles.

Since any line Ap passes through the accented epipole p,” we have p,’" Ap
= 0 for all p.

Put p7 successively equal to (0 0 1), (1 0 0) and (0 1 0), i.e., choose as
our three points, the origin and the points at infinity in the direction of the x and
y axes respectively.

We have at once:

A"ps =0 (6)
Similarly, for the unaccented epipole:
Ap,=0 (7

THE EPIPOLES IN SPECIAL CASES
There are two cases of special interest in relative orientation. In the first

the x-axis coincides with the base and the skew-symmetric matrix in eq.2 takes
the form:

0 0 0
0 0 -1
0 1 0
and eq.6 becomes:
0 0 0
RT [0 0 1] Rp,/, =0
0 -1 0,
But R is non-singular and may be removed and the equation to be solved is then:
0 0 0
;’:n' 7’32/ }’33' Po/ =40
-’ ~yze -y /

where »; is a typical element of R’,
If the coordinates of the epipoles are x,’, vo’, 2o’ the solution is seen to be:

, . ,
Xo Yo _ 2o

’

)’11/ 7’121 713
after we have taken note of the fact that an element of an orthogonal matrix is
equal to its co-factor. In the same way the unaccented epipole will be the solution

of:

0 0 0

(0 0 -1 Rp,=0
0 1 0

ie., xn/711 - )’0/;'12 = Zo/}'13
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In the second case we take R = [ and p,’ is the solution of:

0 B, _ By
_B, 0 By| Rp,/ =0
B, - By 0

which is easily verified as being:

’ ’

Xo Yo
;'n/ By + :"_'1/ B, + }’:;I/BZ ) -

z0 )
}'1:4' By + }’2:4/ By + )’3:;’ B,

this being equivalent to:

B4\'
By
By,

p/ = R

for a point to lie ¢n its own corresponding line. Such points will be given by:

X
(xy2aA y) =0
\Z s
This is the equation of a conic known as the coincidence conic.

Readers will remember that in the standard form of the equation of a conic
the square matrix is symmetric. It is easily verified that there is no change in ¢q.8
if we substitute the symmetric matrix '/, (A + A") for A. We now show that the
meets of corresponding epipolar rays lic on the coincident conic.

Fig 2.

Consider any point P, defining an epipolar ray EP,, E being the unaccented
epipole (Fig.2). If the coordinate vector of P, is p, and 4 is a scalar then p, + 4 py
will be the coordinate vector of a point on EP;. The line corresponding to this
point is given by:

I'= A + 1p1)
But Ap, = 0 and hence:
=3} Ap1
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Thus the single line I corresponds to all points on EP, for multiplication by
a scalar / does not change the ratio of the homogeneous coordinates of the line.

If now P is the intersection of EP; and I, the line corresponding to P will
be I (for I' corresponds to all points £P;) and thus P will be a point of the coin-
cident conic since it lies on its corresponding line.

This result could have been anticipated from space considerations. The
epipolar rays form two pencils with vertices respectively at £ and E’. Moreover
the pencils are projectively related since their ways meet by pairs on a line (the
meet of the two picture planes). If then these two pencils are arbitrarily placed in
the same plane the meets of corresponding pairs of lines will lie on a conic.

Moreover since A p, = 0 and A" p,’ = 0 the coordinates of the epipoles
satisfy eq.8 and the epipoles therefore lie on the conic. This is a well-known
property of the vertices of two projectively related pencils. The curves shown in
Fig.2 are the two branches of a hyperbola.

The above treatment of the coincidence conic draws attention to an impor-
tant property of the plane treatment of the problem. Pairs of lines, such as pairs
of epipolar rays, will always meet in a plane. In space the epipolar rays meet by
pairs only when correctly oriented: in the plane they will meet when arbitrarily
oriented.

THE EPIPOLAR MATRIX

It is of some interest to develop a general matrix whose elements are com-
posed so far as possible of the coordinates of the epipoles. We have, in fact, to
find a matrix A such that;

Ap, =0 and ATp,/ =0

where p, and py’ are regarded as given.

It is possibly more convenient to work in the non-homogeneous coordinates
of the epipoles, say X, Y, and X/, Y.

We may then write the equations:

[y dyp auy f X0\ 0
Uyy (453 auy ( Yo} = {0
XEY (22 (25 1/ 0
and:
Ay dny az Xy 0
dyy Ayo ds2 Yy =10
SF Aoz asz q 0 ,

\

These six equations may be used to determine the nine elements a; but
clearly we cannot do this uniquely and we have a choice. Let us attempt to obtain
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five of the elements in terms of aus, ags, ass, ass and the four epipolar coordinates.
This we shall see is, in general, possible. We rearrange the above equations in the
form:

(X Y, 1 0 0 0 0 0 0, iap}
adqs
0 0 0 X, 0 Yo o1 0 ol |~
dyy
0 0 0 0 X, 0 0 Y, I b
g, = 0
X, 0 0 Yo 1 0 0 0 0| Jau
0 X, 0 0 0 Yo 0 1 ol ¢
(58]
| 0 0 Xy 0 0 0 Yy 0 1 [LERH

After systematic elimination in the usual way and rearrangement to illus-
trate the truncated triangular form of the resultant matrix we have:

XU Yo 1 O 0 0 0 0 0 i ‘(11 1
Yo Xy Xy , e
0 '*Y“ —'X“ : Y(; 1 0 0 0 0 aiy
, , [253]

’0 0 X XY Xy g 1 0" ay. =0
Yo Y, Y, Qs
0 0 0 Xy 0 Y, 1 0 0 dyy
as»
O O O 0 X() 0 0 Y{) ] ! dyn

which shows that the matrix has, in general, rank 5 and that the first five un-
knowns may be expressed in terms of the remaining four. The results of the back-
substitution are:

Y, , ! .
ap = X“”XO*, (as2 Yo' + azn) + XT)TXT (ass Yo' + asy)

1

29 Y g 39
X, (ase Yo' -+ asp)

1 ’
3 = ~ 3(0“, (asy Yo' + asy)
= ! (ass Yo + ass)
dsy = — Xo 22 To 23

1
as1 = — —— (as2 Yo + ass)
0

The matrix A4 then takes the form:
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Xfé{(jf (as2 Yo' + az) - ]7 (as2 Yo' + a) - 'Xl(;; (azs Yo' + a%)\‘
n XTI)T(, (Yo + )

| - )}‘; (2 Yo + ) s 2
- X]—0 (as2 Yo + agy) (32 s )

This matrix is easily seen to factorise into:

Yy 1
| S 0 0 0 1 0 0\
Xo X
Y,
0 1 0 0 ass  dss X, 1 0
1
\0 0 1 0 [£EF) sy — X\o 0 | ;

The first and third matrices are always non-singular and hence the whole
matrix must, at most, have rank 2 and will have rank 1 unless:

22 azz

+ 0

32 ass

With this restriction then the four a; are at our disposal, but choices that
make the centre matrix relevant to the relative orientation problem are obviously
severely restricted.
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