A Model for Time-Synchronized Sensing and Motion to
Support Human-Robot Fluency

Tarig Igbal, Michael J. Gonzales, and Laurel D. Riek
University of Notre Dame
_ Notre Dame, IN, USA
{tigbal,mgonza14,Iriek}@nd.edu

ABSTRACT

The timing of actions in human-robot interaction (HRI) is
important for achieving fluency. In order to accurately sense
what people are doing and respond appropriately, it is im-
portant that the data captured by a robot and any external
sensors are time-synchronized. In this paper, we propose
a timing model to handle real-time data capture and pro-
cessing to ensure all actions made by our robot occur in a
time-synchronous manner. We implemented our model in
ROS, and ran an HRI study to validate it. In pairs of two,
participants [n = 70] interacted with each other and a robot
during a dance-off, and we measured their expressiveness
from multiple Kinect sensors. Our results suggest that our
model is successful and effective in time-synchronizing all
external sensor data and robot actions for our system. In
addition, our model is not limited to specific types of cam-
eras or sensors, and grants flexibility in capturing various
types of data from different sources to paint a more accu-
rate picture of the environment.

Keywords

Human-robot interaction, social robotics, timing models

1. INTRODUCTION

For humans and robots to work together effectively, it is
important that both robots understand people and people
understand robots. To address this, the concepts of fluency
and legibility have become important topics in robotics re-
search. Fluency means that robots convey their motion in
a way that is legible (understandable), enabling humans to
predict a robot’s actions, intentions, and goals, and interact
fluently with it [20, 13, 24, 8, 11].

One of the most critical elements for achieving fluency is
timing. Timing is used as a measure of efficiency for com-
municating intent and instructions to a robot [10]. Appli-
cations such as situated dialogue, music and entertainment,
performance characteristics, and expressive gestures, all of

which use timing as a measure for efficiency of interaction,
influence how users perceive and respond to robots. Similar
to the concept of feedback in human computer interaction
(HCI) [27, 34], if robots do not act, react, or provide feed-
back in accordance with human expectations, the interaction
has failed.

One crucial problem related to timing of robotic systems fo-
cuses on temporally synchronizing actions of the system so
that appropriate actions and responses occur at the right
time. If a human makes a cue that will alter the actions of
a robot, all parts of that robot, including its sensors, move-
ment, and activities, should appropriately follow the same
timing scheme so that it may perform the next set of actions
in a synchronized manner. If this is not the case, a robot’s
actions may occur at the wrong time, data captured using
various sensors may represent mismatched timing patterns,
and the robot’s interaction with a human might be affected.

Synchronizing the actions of a robotic system is particularly
important considering a robot’s actions may act as cues for
humans. For example, a sociable robotic aide for medical
adherence may make some cue to a human so that they take
their medicine at a specific time [16], or an entertainment
robot may play music and move so that a participant will
dance. Similarly, the actions of people may affect when a
robot stops performing one action, and begins performing
another.

Timing of actions play a significant role in various social
activities performed in human environments, including turn
taking, engagement in group tasks, among others [36, 28, 9,
31, 19, 32, 21, 30, 29, 33, 18]. Timing of actions may influ-
ence social and task level strategies [9]. Thomaz et al. [36]
proposed a turn taking model and developed an autonomous
floor relinquishing model for a robot during a human-robot
interaction scenario based on their model. To predict the
engagement of a human-robot pair during an interaction,
Rich et al. [28] developed a computational model to mea-
sure engagement. Timing is also important in other fields of
HRI, such as assembly manufacturing [37].

To act accordingly and in a timely fashion with humans,
it is important for robotic systems to be able to sense hu-
man activities on time through the data received from its
attached sensors. Generally a single sensor can only pro-
vide limited information about the environment to a robot,
whereas multiple sensors can provide information from dif-

Figure 1: DJ Rob

ferent viewpoints [38]. As a result, some research has focused
on incorporating data from multiple sensors together in or-
der to improve the perception of the environment of a robot
22, 17).

One challenge, however, is that incorporating this data in a
time-synchronized manner may not always be easy. In the
case that these sensors are attached directly to the robot, it
is likely that such data will be time-synchronous. However,
in the case of a decentralized system of sensors, sensor data
is fused locally within a set of local systems, rather than
by a central unit, i.e, in a robot [38]. The coordination of
sensor data is achieved by communication between the local
systems.

Due to the fact that integration of time-synchronous data
may directly affect robotic actions, the issue of synchronous
data plays a crucial role in the context of HRI, among other
fields. The problem of time synchronized data is approached
in a number of fields, including: distributed systems [6],

wireless sensor networks [14], robotics systems [12], and swarm

robotics systems [23]. Moreover, in HRI, socially-interactive
robots need to operate at a rate at which humans inter-
act, in real-time, in addition to managing synchrony be-
tween sensors and data [15]. This makes the issue of time-
synchronized data capture and processing much more diffi-
cult to manage in HRI.

In order to address these issues, we designed a timing model
for a robotic system which can handle time-synchronous
data in real-time. Our timing model is designed to han-
dle real-time data capture and processing, and to ensure the
occurrence of all the actions across our system in a time-
synchronous fashion. In addition, our model is not limited
to any specific type of sensors, but rather a wide variety of
sensors, including video sensors, audio sensors, accelerome-
ters, among others.

We evaluated our model using an entertainment robot, called
a DJ Rob, which interacted with dancing participants and
measured their expressiveness in real time (See Figures 1
and 2). This measure of expressiveness, along with timing,
was used to direct our robot to perform specific actions and

Figure 2: Two participants performing in a dance-off

to provide user feedback. Our results suggest that our model
was successful and effective in synchronizing all sensor data,
actions, and activities in our system.

2. SYSTEM MODEL

Our timing model is designed using a client-server archi-
tecture (See Figure 3a). The server node was responsible
for communicating with all client nodes. Each client node
was an independent system, and may or may not be con-
nected with its own sensors. A client node may respond to
server messages, capture data using its own sensors, process
the captured data, and return the processed result to the
server. The server node controlled the duration of the data
capture and processing of each client system.

We implemented the model using the Robot Operating Sys-
tem (ROS) publisher-subscriber architecture [3]. ROS is an
open source platform which provides libraries and tools to
develop robotics applications. All nodes in our system run
the Electric version of ROS.

In our model, different parts of the model communicate
with each other via ROS topics [4]. An ROS topic is a
standard unidirectional message passing protocol and uses a
publisher/subscriber based model. A publisher can publish
messages via an ROS topic, and any number of subscribers
can subscribe to that topic. Different parts of the model can
communicate with each other by publishing or subscribing
to a specific topic.

The server node of our system consists of two modules: the
control module (CM), and the decision module (DM). The
main task of the CM is to communicate and control the client
nodes. This module also communicates with other modules
of the server, and is responsible for synchronous data capture
and processing in all client nodes. After capturing and pro-
cessing the sensor data, all client nodes communicate with
the DM of the server, and sends the processed result to
the DM. The decision module can make decisions based on
the processed data received from the clients. The decision
module may also communicate with robots, controlling their
movement.

Server

Decision Module
(D)

Contral Module

L

L

Client 1 Client 2

|
Client Process
Module (CPM)

¥
Client Process
Module (CPM) e w
Data Caplure

and Process
Module (DPM)

ClientN
¥

Client Process
Module (CPM)

Data Capture
and Process
Madule (DPM)

Data Caplure
and Process
Module (DPM)

(a) Our proposed system model

[Sensor(s)] [Sensor(s)]

Server

Decision Module
(DM)

Control Module

»
L

Client 1 Client 2
Y ¥

Client Process
Module (CPM)

Client Process
Module (CPM)

y
Client Process
Module (CPM)

Perfarm Activity

Turtle bot

Data Capture
and Process
Module (DPM)

Data Caplure
and Process
Module (DPM)

(b) Implementation of our proposed model

Figure 3: The architecture of our proposed timing model, shown in (a), and our implemented system, shown in (b). Using
our model, each client may either connect to various sensors or robotic agents to perform specific actions.

Each client node consists of a client process module (CPM)
and a data capturing and process module (DPM). The CM
of the server node communicates with the CPM module of
the client nodes. Based on the message received from the
CM, the client process module is responsible for synchroniz-
ing the local machine time to a global time server. After
synchronizing the time, the CPM is responsible for sending
an acknowledgement (ACK) message to let the CM know
that the time-synchronization is complete.

These processes also subscribe to the ROS topic broadcasted
by the CM. If the CM sends a message to start capturing and
processing sensor data, then the CPM communicates with
the DPM to make sure that the data capture and process-
ing starts and ends on time. After getting specific message
from its own CPM, the DPM starts capturing and process-
ing data for a specific period of time. Following data cap-
ture, the DPM publishes the processed data. The DM of
the server node and robot nodes subscribe to this broad-
casted topic from the DPM. The overall system model is
presented in Figure 3a. The arrow represents the direction
of communication between modules.

One of the main challenges in synchronized data acquisi-
tion is capturing and processing data in a time-synchronized
manner. All events that occur at the same time should have
the same time stamp in the captured data among all clients.
If the events do not represent captured data from each sen-
sor for the same period of time, then it is difficult to make
a proper global decision based on the processed data. For
example, if event data captured from different sensors are
reported from different periods of time, then the decision
taken based on the time stamps represents an erroneous re-
sult.

In addition, in the case of sensors connected via wired /wireless
connections, we encounter the issue of network latency. De-
pending on the proximity and network congestion, differ-
ent nodes will receive the broadcasted message at different
times.

To overcome these difficulties, we implemented a simple mes-

sage passing protocol using ROS topics, presented in Fig-
ure 4. In our protocol, the CM broadcasts a ‘sync_time’
message. All CPMs of the client nodes and robot nodes
subscribe to this topic. Depending on network traffic, dif-
ferent client nodes receive this message at different times.

When a CPM of a client node receives this message, it syn-
chronizes its local time to a global time server using the
Network Time Protocol (NTP) [26]. At the same time, the
server also synchronizes its time to the global server. Fol-
lowing time synchronization, all CPMs broadcasted an ac-
knowledgement message via an ROS topic. The CM in the
server node subscribes to this message and listens for an
ACK message from all client nodes to indicate synchronized
time in all nodes.

When all client nodes are time-synchronized, the control
module of the server broadcasts a ‘capture_data’ message.
This topic consists of three fields. The first field is the
‘CR_T" field, which represents the current time of the server
system. The second field is the ‘STR_AFT’ field, which rep-
resents a time value in seconds. This field tells the CPM
of the client systems to start data capturing and processing
after STR_AFT seconds from the CR_T time. Finally, the
last field ‘DUR’ represents the duration for data processing
in seconds.

Depending on network traffic, different nodes may receive
the ‘capture_data’ message in different times. The client pro-
cess module of a client node tells its DPM to start capturing
and processing data. All DPMs will wait for a global time
to occur, calculated by adding STR_AFT with the CR_T
value. As all client nodes are synced with the same global
time, all clients begin capturing sensor data at the same
time. STR_AFT value should be chosen carefully based
on the network congestion, so that all the clients receive
the ‘capture_data’ message within STR_AFT seconds after
broadcasted from the server. After the ‘DUR’ period is over,
the DCP module broadcasts the processed result via an ROS
topic.

After receiving the processed results from the clients, the

Server Client1 Client2 ClientN

Broadcast
sync_time

foe

epic Broadcast
7‘ ack topic

\/{/ g

Broadcast L. _—]
capiure_data L MCRT
E %‘I‘\\
]
i
=
o \I
Start data
L * caplure
@
E o
= =
(=]
Broadcast
Mprocessed_data
topic

N

Figure 4: Message passing protocol of our system

DM can make a global decision. Depending on the decision,
the DM may instruct the robot connected to the server to
act accordingly based on its surroundings, or perform an
action.

3. MODEL VALIDATION

To validate our model, we implemented a system to capture
and process RGB-D data from sensors, as well as control
robot movements and music in a time-synchronous fashion.
This system is composed of three clients and a server: two
Microsoft Kinect sensors each connected to a seperate com-
puter, a mobile Turtlebot robot (called DJ Rob) [5] who
performed specific actions based on pre-defined events, and
a stationary system which handled music playback and sys-
tem actions.

We developed a game in which two participants performed in
a dance-off. This dance-off consisted of participants dancing
to music for a 60 second duration. During this time, DJ
Rob danced along with participants by moving forward and
back, allowing his head to bobble, and turning between each
participant to simulate judging their dance moves. Figure 2
shows two participants performing in a dance-off.

During the dance-off, we measured expressiveness using the
Kinect sensors, and processed that data in real-time using
our clients. Based on the processed data, the server makes a
decision and causes a DJ Rob (who is decorated to look like
a dance jockey) to perform a specific set of actions based on
timing information and RGB-D data (see Figure 1). Fig-
ure 3b shows different parts of our implemented system.

We defined expressiveness as the enthusiasm in the body
movements during our study. According to Barakova et al.
[7], and Lourens et al. [25], amplitude and acceleration of

the movements of the body joints are sufficient to estimate
expressiveness in game settings. Based on these findings,
Tetteroo et al. [35] used an area of movement per time unit
as a measure of expressiveness. To assess quantitatively, we
used a similar measure of expressiveness used by Tetteroo
et al. [35] in our study. We calculated expressiveness by
taking the average of the product of speed and distance of
body joint movements over time.

Expressiveness is thus defined as:

T Joints
expressiveness = g E (speed x distance) joint /T

time=1 joint=1

Based on the skeletal information, the DPM module of our
system calculates the measure of expressivity. For body joint
tracking, we used the OpenNI-based PI_tracker package [2]
to perform skeletal tracking of participants using the Kinect
sensors. This tracker gives us coordinates and orientations
of 15 body joints. Each client node tracked the skeletal joint
position of a participant standing in front of its sensor.

Following each session, each client published their respec-
tive expressiveness measure to the decision module of the
server node through an ROS topic. Based on the value of
expressiveness, the DM determined the more expressive per-
son based on the largest calculated value of expressiveness.
The DM then broadcasts the more expressive participant’s
number, which is processed by DJ Rob, causing it to perform
a gesture toward the more expressive participant.

To assess our system model, we conducted a controlled pi-
lot, followed by a real-world experiment with 70 participants
(in pairs of two) at a National Robotics Week event held on
campus at the University of Notre Dame [1]. Our exper-
iment allowed us to assess the effectiveness of our system
model in a real-world environment. For these sessions, all
actions made by our robot, as well as music, data capture,
and processing are all controlled using our time-synchronous
model. These actions are designed to begin at the same time,
such that any actions made by dancers is not missed while
measuring expressiveness. We captured all data in real-time
and processed the result at the end of a one-minute duration
to determine the winning action made by DJ Rob.

4. RESULTS

In general, our overall system model correctly handled all
data capture, processing, and actions for our system in a
time synchronous manner. In our pilot experiments, we first
validated that the robot determined ‘no winner’ in the case
no expressiveness was measured from either client while the
music was playing. As the robot determined ‘no winner’,
it did not perform any predefined actions with the partic-
ipants. We then validated that our robot could determine
a winner in the case that a participant only made a small
number of movements, while the other did not move. We
alternated this level of expressiveness between the first and
second user to ensure that our system successfully captured,
processed, and synchronized data with the server, so that
the robot could successfully determine the more expressive
person. In each of these cases, our robot was successful in
performing the correct action.

Client1 Client2
____________________ Frame capture
o N started

page el ke meleueie Offsat

Frames/Time
|
|

T e e Frame capture
stopped

Figure 5: Capturing data in two clients

In addition, our system performed as expected in our real-
world experiment. We performed 35 tests, where a pair of
participants performed in a dance scenario. During all the
tests with our participants, our robot was successful in de-
termining a winner based on the expressiveness measure.
To verify that the robot performed the correct action, we
manually reviewed each log file following each session with
participants to verify that the robot’s decision matched that
of the participant who had the higher calculated value of ex-
pressiveness. In all cases, our robot correctly moved toward
the more expressive person with the higher value of expres-
siveness reported to the server.

While both clients began capturing data at the same time,
we found a small difference in timing between the corre-
sponding frames captured from each device. This is due
to the fact that the frames captured from each device may
have some small offset from each other due to the device’s
sampling rate and when it is first powered on. For example,
while both clients may start capturing data at time zero and
each Kinect has a 20 frames per second (FPS) frame rate,
the first Kinect might record its first frame at a slight offset
from the second. See Figure 5 for an example of this issue.

Considering the frame rate for both Kinects is 20 FPS, each
frame is captured on average every 0.05s. Based on our data,
the computed average difference between the captured time
of the first frames for our two clients across all of our ex-
perimental sessions was 0.017 seconds, which is significantly
smaller than the time between two consecutive frames.

While we did see a small difference on the millisecond level
in our data capture, such a difference will always occur in
devices depending on when the first frame occurs, and is neg-
ligible. This difference is a result of each sensor’s sampling
rate, without respect to the time of the client itself. In au-
dio recording devices, for example, such a difference will be
much smaller considering a higher sampling rate, and should
not affect synchronization when capturing data. Thus, our
results suggest that all data was captured and processed in
a time synchronous way across all parts of our system.

5. DISCUSSION

Timing of actions by both the human and robot is an im-
portant factor in HRI. It is important in HRI for robots
to perceive human actions and act accordingly in a timely
manner. To achieve appropriate action synchronization, it
is essential that sensor data and the entire robotic system
is time-synchronized. Our proposed timing model addresses

these issues of real-time data capture and processing from
multiple sensors. Our model also ensures the occurrence
of all the actions across the system in a time-synchronous
fashion.

We anticipate that our model will be useful and beneficial
to a number of domains. For example, capturing data from
multiple sensors around a room will help a robot have an
accurate and real-time picture of the environment around
it. In addition, multiple robots could be synchronized in
this way to send data from their own respective sensors to
a main server to process for a specific time-sensitive task.

Such a model may also be beneficial for researchers in the
fields of surveillance or computer vision. Our model may
provide an efficient way to keep a global synchronous time
space across different parts of a surveillance network. In
addition, many computer vision algorithms may take ad-
vantage of incorporating data from multiple sensors with
camera data for better results using our model.

Furthermore, our model is not limited to specific cameras
or sensors. A wide variety of sensors, including audio sen-
sors, accelerometers, among others can be used. Our work
gives researchers flexibility in capturing various types of data
from a number of sources and fusing them together to obtain
a more accurate picture of their surroundings in real-time.
Based on this work, we are currently in the process of de-
veloping a portable and reusable Robot Operating System
(ROS) stack to handle time synchronous actions across all
parts of our system interacting with humans.

6. REFERENCES

[1] National Robotics Week 2013.
http://engineering.nd.edu/NDNRW, Jan. 2014.

[2] Pi Tracker Package.
http://wiki.ros.org/pi_tracker, Jan. 2014.

[3] Robot Operating System (ROS).
http://www.ros.org/, Jan. 2014.

[4] Ros Topic. http://wiki.ros.org/rostopic, Jan.
2014.

[5] Turtlebot Robot.
http://wuw.willowgarage.com/turtlebot, Jan. 2014.

[6] K. Arvind. Probabilistic clock synchronization in
distributed systems. IEEE Trans. Parallel Distrib.
Syst., 5(5):474-487, May 1994.

[7] E. I Barakova and T. Lourens. Expressing and
interpreting emotional movements in social games
with robots. Pers. Ubiquitous Comput., 14(5):457-467,
Jan. 2010.

[8] M. Cakmak, S. S. Srinivasa, M. K. Lee, S. Kiesler, and
J. Forlizzi. Using spatial and temporal contrast for
fluent robot-human hand-overs. In Proceedings of the
6th international conference on Human-robot
interaction, pages 489-496. ACM, 2011.

[9] C. Chao and A. Thomaz. Timing in Multimodal
Turn-Taking Interactions: Control and Analysis Using
Timed Petri Nets. J. Human-Robot Interact.,
1(1):4-25, Aug. 2012.

[10] J. W. Crandall, M. A. Goodrich, D. R. Olsen Jr, and
C. W. Nielsen. Validating human-robot interaction
schemes in multitasking environments. /IEEFFE

[17]

[18]

[19]

[22]

[23]

[24]

Transactions on Systems, Man and Cybernetics, Part
A: Systems and Humans, 35(4):438-449, 2005.

K. Dautenhahn, S. Woods, C. Kaouri, M. Walters,

K. L. Koay, and I. Werry. What is a robot companion
- friend, assistant or butler? In IEEE/RSJ
International Conference on Intelligent Robots and
Systems, (IROS 2005)., pages 1192-1197, 2005.

E. Dias, André and Almeida, Jose and Martins,
Alfredo and Silva. Real-Time Visual Ground-Truth
System for Indoor Robotic Applications. Pattern
Recognit. Image Anal., pages 304-313, 2013.

A. D. Dragan, K. C. Lee, and S. S. Srinivasa.
Legibility and predictability of robot motion. In 2013
8th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 301-308.
IEEE, 2013.

J. Elson and K. Romer. Wireless Sensor Networks : A
New Regime for Time Synchronization. ACM
SIGCOMM Comput. Commun. Rev., 33(1):149-154,
2003.

T. Fong, I. Nourbakhsh, and K. Dautenhahn. A
survey of socially interactive robots. Rob. Auton.
Syst., 42(3-4):143-166, Mar. 2003.

M. J. Gonzales and L. D. Riek. A sociable robotic aide
for medication adherence. In Proceedings of the 5th
International Conference on PErvasive Technologies
Related to Assistive Environments, PETRA 12, pages
38:1-38:4, New York, NY, USA, 2012. ACM.

G. Hager and H. Durrant-Whyte. Information and
multi-sensor coordination. Uncertainty in Artificial
Intelligence, 2:381-394, 1988.

C. Hayes, M. O’Connor, and L. Riek. Avoiding robot
faux pas: Using social context to teach robots
behavioral propriety. In 2014 9th ACM/IEEE
International Conference on Human-Robot Interaction
(HRI). IEEE, 2014.

C. J. Hayes, C. R. Crowell, and L. D. Riek. Automatic
processing of irrelevant co-speech gestures with human
but not robot actors. In Proceedings of the 8th
ACM/IEEEFE International Conference on Human-robot
Interaction, HRI ’13, pages 333-340, Piscataway, NJ,
USA, 2013. IEEE Press.

G. Hoffman and C. Breazeal. Cost-based anticipatory
action selection for human-robot fluency. IEFE
Transactions on Robotics, 23(5):952-961, 2007.

T. Igbal and L. Riek. Assessing group synchrony
during a rhythmic social activity: A systemic
approach. In 6th Conference of the International
Society for Gesture Studies (ISGS), 2014.

O. Kermorgant and F. Chaumette. Multi-sensor data
fusion in sensor-based control: Application to
multi-camera visual servoing. 2011 IEEFE Int. Conf.
Robot. Autom., (3):4518-4523, May 2011.

Y. Khaluf, S. Micus, and F. Weiss. Master Election for
Time Synchronization in Swarm Robotic Systems.
2012 IEEE 10th Int. Symp. Parallel Distrib. Process.
with Appl., pages 285-292, July 2012.

G. Klien, D. Woods, J. Bradshaw, R. Hoffman, and

P. Feltovich. Ten challenges for making automation a

25]

[26]

27]

(28]

29]

(30]

(31]

(32]

33]

(34]

(35]

(36]

37]

(38]

“team player” in joint human-agent activity. IEEE
Intelligent Systems, 19(6):91-95, 2004.

T. Lourens, R. van Berkel, and E. Barakova.
Communicating emotions and mental states to robots

in a real time parallel framework using Laban
movement analysis. Rob. Auton. Syst.,
58(12):1256-1265, Dec. 2010.

D. Mills. Internet time synchronization: the network
time protocol. IEEE Trans. Commun.,
39(10):1482-1493, 1991.

M. A. Pérez-Quiniones and J. L. Sibert. A
collaborative model of feedback in human-computer
interaction. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages
316-323. ACM, 1996.

C. Rich, B. Ponsler, A. Holroyd, and C. L. Sidner.
Recognizing engagement in human-robot interaction.
2010 5th ACM/IEEE Int. Conf. Human-Robot
Interact., pages 375-382, Mar. 2010.

L. D. Riek. Wizard of oz studies in hri: A systematic
review and new reporting guidelines. Journal of
Human-Robot Interaction, 1(1), 2012.

L. D. Riek. Embodied computation: An
active-learning approach to mobile robotics education.
IEEE Transactions on Education, 56(1):67, 2013.

L. D. Riek, P. C. Paul, and P. Robinson. When my
robot smiles at me: Enabling human-robot rapport via
real-time head gesture mimicry. Journal on
Multimodal User Interfaces, 3(1-2):99-108, 2010.

L. D. Riek, T.-C. Rabinowitch, P. Bremner, A. G.
Pipe, M. Fraser, and P. Robinson. Cooperative
gestures: effective signaling for humanoid robots. In
Proceedings of the 5th ACM/IEEE international
conference on Human-robot interaction, pages 61-68.
IEEE Press, 2010.

L. D. Riek and P. Robinson. Challenges and
opportunities in building socially intelligent machines
[social sciences]. Signal Processing Magazine, IEEE,
28(3):146-149, 2011.

V. Roto and A. Oulasvirta. Need for non-visual
feedback with long response times in mobile hci. In
Special interest tracks and posters of the 14th
international conference on World Wide Web, pages
775-781. ACM, 2005.

D. Tetteroo, A. Shirzad, M. S. Pereira,

M. Zwinderman, D. Le, and E. Barakova. Mimicking
expressiveness of movements by autistic children in
game play. In 2012 International Confernece on Social
Computing (SocialCom), pages 944-949. IEEE, 2012.
A. L. Thomaz and C. Chao. Turn-taking based on
information flow for fluent human-robot interaction.
Al Magazine, 32(4):53-63, 2011.

R. Wilcox, S. Nikolaidis, and J. A. Shah. Optimization
of temporal dynamics for adaptive human-robot
interaction in assembly manufacturing. In Robotics:
Science and Systems, 2012.

N. Xijong and P. Svensson. Multi-sensor management
for information fusion: issues and approaches. Inf.
Fusion, 3(2):163-186, June 2002.

