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Abstract

Eye tracking and gaze estimation techniques have been extensively investigated by re-

searchers in the computer vision and the psychology community for the last few decades.

Still it remains a challenging task due to the individuality of the eyes, variability in shape,

scale, location, and lighting conditions. Eye tracking has many applications in neuro-

science, psychology, and human-computer interaction. Gaze estimation plays a vital role in

the field of human attention analysis, human factors in industrial engineering, marketing

and advertising, human cognitive state analysis, gaze-based interactive user interfaces, and

monitoring driver vigilance systems.

Eye-tracking technology was originally a pioneer method in reading research, but has

led to the development of many different methods to track eye movements and estimate

gaze. Historical eye-tracking technologies include Electrical Oculography (EOG) and Coil-

Systems, which require additional electrical hardware mounted on the skin or specialized

contact lenses to measure the eye movements. These methods proved quite invasive, instead

current commercial eye trackers and gaze-estimation systems use video images of the eyes

along with additional hardware, such as infrared sensors.

In this thesis, we design and implement a low-cost eye-tracking system using only an

off-the-shelf webcam. This eye-tracking system is robust to small head rotations, changes

in lighting, and all but dramatic head movements. We also design and implement a gaze-

estimation method which uses a simple yet powerful machine learning-based calibration

technique to estimate gaze positions.

The empirical evidence shows that our implemented eye tracker can track both eyes

successfully and detect the pupil accurately in about 83% of frames regardless of the head

movements and different lighting conditions. Additionally, we observe that the overall ac-

curacy of the gaze estimation system is about 88% of the times throughout our experiments

- albeit in extremely low resolution.
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Chapter 1

Introduction

Eye tracking is the science of measuring the movement of the eyes. Humans move their

eyes to bring a portion of their visual field into high resolution, so that they can see the fine

detail of that portion. Eyes also move in response to visual, auditory or cognitive stimulus.

Eye tracking and gaze estimation have many applications in neuroscience, psychology,

and human-computer interaction. A group of researchers are interested in the physiological

movements of the eyes; they are not concerned about where the person is looking in space.

On the other hand, another group of researchers are interested in gaze position. The

gaze position is the point in the persons field of view where the person is actually looking

[28]. Current commercial eye trackers use cameras along with additional hardware, such

as infrared sensors. In this thesis, we present design and implementation of a low-cost eye-

tracking system using only an off-the-shelf camera which is robust to small head rotations,

changes in lighting, and all but dramatic head movements. We also present design and

implementation of a gaze-estimation system which uses a simple yet powerful machine

learning-based calibration technique to estimate gaze positions.

This chapter provides a brief introduction to the human visual system, a high-level

discussion on different types of eye movements and various types of eye-tracking methods

used by the research community, a statement of the contribution of this thesis, and a

brief overview of the following chapters. Section 1.1 briefly describes the human visual

system. Sections 1.2 and 1.3 present different types of eye movements and various eye

tracking methods. The research contribution of this thesis and a high level overview of the

remaining chapters are in sections 1.4 and 1.5 respectively.
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1.1 Human Visual System

Humans see the world with their eyes, which are located side by side in close proximity.

Both eyes see the same object in the world separately, each eye producing an independent

signal representing its visual field. The human brain then produces a unified image from

these signals. Different parts of a typical eye region are shown in figure 1.1.

Light rays are reflected from an object and enter the eyes through the cornea. The

cornea is the transparent covering and a focusing system of the eye. In the visible portion

of the eye, the iris is the colored portion which regulates the amount of light that passes

into the eye through the pupil. The pupil is the small hole within the iris that allows the

light to pass through. It is an adjustable opening in the center of the iris, which actually

regulates the amount of light that passes through. Usually the pupil is darker than the iris

regardless of the color of the iris. The light rays then pass through the lens. These lens

can change its shape, so it can further bend the rays and focus them on the retina at the

back of the eye. A thin layer of tissue called the retina is at the back of the lens inside the

eye. Many light-sensing nerve cells called rods and cones are situated in this area. Cones,

about 6% of the total number of cells, are concentrated in an area called the macula. Cones

provide clear vision and help capture the colors and fine details of an object. Rods, which

make up about 94% of the total light-sensing nerve cells, are located outside the perimeter

of the macula and all over the outer edge of the retina. Rods are very sensitive to light;

they help humans see in dim light and at night. They also provide peripheral vision which

helps a person to detect motion. Light is converted into electrical signals by rods and cones.

The optic nerves send these electronic signals to the brain which produces the image from

these signals [1]. A mapping of eye features is shown in figure 1.2.

2



Figure 1.1: Human Eye

1.2 Types of Eye Movements

Our eyes are constantly moving, even when we are asleep. Eye movements can be divided

into many different classes, and some common ones are described below:

Fixation:

Fixation is a relatively low velocity eye movement. The eye stays relatively still and is

fixated on a certain point to acquire information from a scene; most of the information is

acquired during fixation. Fixation may involve very small random drifting eye movements.

The total duration of fixation on a point varies from 120 ms to 1000 ms, typically from 200

ms to 600 ms and the typical fixation frequency is less than 3 Hz [28].

Saccade:

Saccade movements are the rapid eye movements that the eyes make while jumping from

one point to another. Saccades are also studied as the eye movements between fixations.

Saccades usually have high acceleration and velocity. The usual duration of saccade move-

ments is only 40 ms to 120 ms [28].

3



Figure 1.2: Eye Features1

Pursuit:

Pursuit movements occur when the eyes follow a moving object in order to keep it in focus.

Pursuit movements are involuntary. Normally eyes smoothly track a moving object, but

sometimes the eyes perform some rapid saccades to catch up and reacquire focus of the

object [28].

1.3 Types of Eye-tracking Methods

There are several methods used by the research community for tracking the eyes. The

following section is a rough taxonomy of eye tracking methods.

Electrical Oculography (EOG):

In this method some skin electrodes are placed around the eyes. These electrodes measure

the changes in the electrical field as the eyes move, and from these data the eye movements

1Courtesy: Antti Aaltonen, Computer Human Interaction Group, Tampere University
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are estimated. This method performs better when measuring relative eye movements rather

than absolute movements. This system is limited in accuracy and very susceptible to noise.

Coil Systems (Mechanical Method):

A coil eye tracking system estimates the eye movements from the data obtained by a

magnetic coil inserted as a part of contact lens. The user needs to wear the contact lens

before the study. This method is also susceptible to noise and the coil can be fragile.

Video Image Analysis:

Video image analysis method is now dominating in the field of eye tracking and gaze

estimation. A video camera is used in these methods to observe the user’s eyes. Image

processing techniques are then used to analyze the image and track the eye features. Based

on calibration, the system determines where the user is currently looking. A detailed

description of different video image analysis method is presented in Chapter 2.

1.4 Contribution of this Thesis

The contributions of this thesis are:

1. Developing a real time eye-tracking system using particle filters which is robust to

small head rotations, changes in lighting, and all but dramatic head movements.

The real time video image is captured with an off-the-shelf web-camera. A machine

learning technique is used to evaluate the particle weights.

2. Developing a gaze-estimation system, which uses a simple yet powerful machine

learning-based calibration technique to estimate the gaze region from the output

of the eye-tracker.

3. Conducting quantitative study to evaluate the performance of the implemented eye-

tracking and the gaze-estimation system.

5



1.5 Overview of the Next Chapters

In Chapter 2 relevant studies of different eye-tracking and gaze estimation methods are

presented. That chapter also covers description of the different ideas and technologies used

by researchers. We present a detailed discussion on the proposed design and implementation

of the eye-tracking and gaze estimation method in Chapter 3. Then we present experimental

results as well as analyses in Chapter 4. Finally, Chapter 5 consists of the concluding

remarks and future work.
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Chapter 2

Related Work

Eye detection and gaze tracking have been extensively investigated by researchers in the

computer vision and the psychology community for the last few decades. Eyes are one of the

most salient features of the human face. To understand a person’s desires, needs, emotional

state, cognitive processes and interpersonal relations, eyes and their movements are very

important [7]. Again, in applications like human attention analysis, human cognitive state

analysis, gaze-based interactive user interfaces, monitoring driver vigilance system and

driver fatigue detection system, gaze estimation and tracking play a vital role [7][15][12].

Video-based eye tracking is divided into three aspects: detecting the eyes in the image,

interpreting eye positions from the image and then tracking them in every frame. A general

overview of the eye and gaze tracker is shown in figure 2.1 [7].

In the detecting and tracking of the eyes, it is essential to identify the parameters of

the model of the eyes from the image data. The eye model can be identified from the

intensity distribution of the eye region, iris shapes, eye shapes, head pose etc. Hansen, et

al. present a very good and useful review of current progress and state of art in video-

based eye detection and tracking methods in [7] and [9]. According to them the eye model

detection techniques can be classified as shape-based, feature-based, appearance-based and

hybrid methods.

2.1 Shape-based Approach

In shape-based approach the eye is modeled by the iris and the pupil contours and the

shape of the eyelids. Many eye tracking applications model the exterior shape of the eye

7



Figure 2.1: Components of Video-based Eye Detection and Eye Tracking ([7])

and the shape of the iris and the pupil as a simple elliptical model. Ellipse parameters are

calculated by voting-based methods or model fitting methods [7]. Kim and Ramakrishna

use a voting-based approach to model the iris as an ellipse [18]. To find the center of the

iris, horizontal scanning is done in the eye region. The pupil is considered as the center of

the longest horizontal line. Kothari and Mitchell also model the iris as an elliptical shape

[19]. They use spatial and temporal information to detect the eyes. The iris is darker

than the white portion of the eye (the sclera). So if the horizontal and vertical gradients

are taken, the direction of the gradient will be outward from the center of the iris. Using
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this observation, the authors propose a voting-based method to locate the center of the

iris. An extrapolated line is drawn at each edge point in the direction opposite to the

gradient direction. The approximate center of the iris is obtained by the area through

which the maximum number of lines pass. Perez, et al. use thresholding and a contour

searching method to determine the iris radius [21]. Hansen and Pece also model the iris as

an ellipse, but the model is obtained through an Expectation Maximization and RANSAC

optimization [9]. Another ellipse fitting algorithm is proposed by Zhu and Yang [38]. The

authors assume that the iris contour points rest on an ellipse and they use these points to

estimate the parameters of the ellipse by solving a least-square fitting problem. They also

propose a sub-pixel edge detection method to get the accuracy in sub-pixel level.

Instead of modeling the iris as an ellipse, often the iris is modeled as a circle mostly for

efficiency reasons. Tian, Kanade, and Cohn use an annulus shape half circle mask to get

the radius and center of the iris [26]. The authors use the Canny edge operator [3] to get

the edge map, and then use the mask to get the parameter of the circular model of the iris.

Sirohey, Rosenfeld, and Duric use a similar approach to get the radius and center of the

iris [23]. The author use the gradient magnitude and direction of the edge points in that

annulus region to model the iris. To detect the upper-eyelid, they use the edge segments

to fit a third-degree polynomial. Wang and Yang model the iris as circle [34]. They use

homomorphic filtering, clustering and thresholding to detect the eye region candidate, then

a classifier is used to get the eye pair regions from the candidates. Edge information of

the eye pair regions is then used to detect the iris by Circular Hough transform. On the

other hand, complex shape-based methods try to model the eye shape with more detailed

information. Yuille, et al. model the eye region as a deformable template [37]. The authors

model the two eyelids as parabolas and the iris as a circle. The deformable model changes

its parameters with the change of the eye state by an energy minimization function. Tian,

Kanade, and Cohn use the dual-state parametric eye model for detecting the state of the

eyes [26]. The authors use their own eye model for the closed eye state, but use a modified

version of the model proposed in [37] for the open eye model. A complex eye model is also
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used in [33], [32], [36] and [35].

2.2 Feature-based Approach

In feature-based methods the goal is to identify local features i.e. the limbus, pupil, corneal

reflection etc. for eye localization and to model the eye parameters [7]. Instead of detecting

the eye features, Kawato and Tetsutani try to detect the region between the two eyes [16].

They name it “between-the-eyes” region. Usually the area between the eyes is brighter

than the two sides of this region, as the eyes are on both sides of the region and this area

contains the nose and the forehead region. Thus this region is easier to track, and the eyes

can be localized by searching both sides of this area. They search for the ‘between the

eyes’ template in every frame and localize the eyes depending on this area. In their work,

Sirohey and Rosenfeld detect the face region using the skin color [24]. Then in the skin

region, the eyes are detected using linear and non-linear filtering. They use linear filtering

(four Gabor wavelets) to detect an eye in the face region and non-linear filtering to detect

the eye corners.

2.3 Appearance-based Approach

The appearance-based methods are also known as image template-based methods. Single

template-based methods are limited by eye movements and changes in the head pose. If

the person changes the pose of the head, the single static template-based method fails.

Image template-based methods also have problems when there is a change in scale and

rotations. Usually a large number of different training examples of eye regions are collected

with different eye states, eye orientations and head poses and with different illumination

conditions. Then a classifier is modeled using the pixel information of these training ex-

amples [7]. Several modified version of Haar feature presented by Viola and Jones in [30]

and [31], are also used to detect the eye and extract eye features.
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2.4 Hybrid Approach

Hybrid approaches are the combination of the shape-based, feature-based and appearance-

based methods. An active appearance model is used by Hansen, et al. in [10] and [8], which

is referred to as the combination of shape and appearance models by [7]. Hansen, et al.

also propose a combination of particle filtering and expectation maximization algorithms

[9]. Particle filtering is used for iris tracking as iris movement is fast and there is no pre-

dictable pattern of iris movement. Again, expectation maximization is used for accurately

estimating the pose. Color distribution of the face region and eye region is also used to

detect and track the eyes. Horng, et al. use color information of the image to detect the

face region [12]. Similar approach is also used by Tsekeridou, et al. [27] and Stiefelhagen,

et al [25]. After detecting the face region, in [12], the face region is divided into smaller

parts to search for the eyes. In the smaller windows the eyes are searched for using edge

information and thresholding. Eye tracking is done by template matching. After detecting

the skin region, the face region is detected by modeling the face as an elliptical shape and

face mirror-symmetry in [27]. In their implementation, the authors search the eyes in the

upper half of the face region. Filtering and some relative geometric constrains are used to

detect the eyes as well as other facial features. The authors use a two-dimensional Gaussian

distribution of a normalized skin color model in [25]. Then, pixel-wise search for skin color

is reformed, and the largest connected regions of skin color pixels are considered as the face

region. In the skin color region, the eyes are detected as the two dark regions satisfying

several anthropometric constraints. Hansen, et al. use color information of the eye model

to track the eyes using a mean-shift tracker [10].

Beside these video-based methods, eye detecting under active infrared illumination is

the dominating technique in eye tracking and gaze determination. Sometimes more than

one camera which can capture IR images are used. If a light source is located very close

to the optical axis of the camera, the pupil reflects most of the light. As a result, in the

eye image the pupil is seen as a bright area. On the other hand, when the light source is
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further from the optical axis, then the pupil is seen as a dark area. Dark and bright areas

are used to locate the pupil position in the active light approaches. Active light sources are

used in [41], [17], [11], [15], [39]. Active light approaches are now dominating commercial

eye and gaze trackers. These approaches work very well indoors, but not as well outdoors.

Kawato and Tetsutani use more than one camera for accurately detecting the eye features

and tracking head movements [16]. Wang, et al. use specialized camera for zoomed in high

resolution eye image for accurately detecting the eye features [33] [32].

2.5 Gaze-estimation Technique

Eye gaze determination is the main goal of the gaze tracker. Eye gaze can be modeled as

gaze direction or gaze point from the image data. However, the problem of estimating the

gaze only from the eye model data is that usually people move their head as well as eye when

gazing at something. So, somehow, the head movement should be modeled with the eye

data to get the gaze directing or point of regard [7]. A very common approach to minimize

the head movement is to use some sort of headrest or making the eye tracker head mounted.

By these methods, the head movement can be tracked by another camera. To estimate the

point of regard (for example a point in a monitor), the point in image coordinates needs to

be mapped to a monitor screen coordinate system by a mapping function. The mapping

function parameters are determined through a calibration procedure.

A very simple linear gaze mapping function is described by Zhu and Yang [38]. The

user needs to look at several known screen points and the corresponding eye corner and

iris center is recorded. They use a 2-D linear interpolation from the vector between the eye

corner and the iris center to the gaze angle. To simplify, they employ the approximation

θ ≈ sin(θ) when θ is very small. Kim and Ramakrishna use internal eye geometry as well

as the current eye position to determine the point of regard [18]. They use a simple marker

in between the eyes as the reference model. Calculation of the eye movement is based on

this reference marker. In the mapping function, the position of the marker, radius of the
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iris and the vector from the marker to the iris center are used as parameters. The gaze

point is calculated using these parameters by a linear approximation. Wang and Sung

propose another gaze tracking approach [32]. The point of regard is determined here from

the intersection between the eye gaze vector (which is considered a vector from the eyeball

center to the center of the iris) and the gaze plane (the screen). The internal geometry of the

eyeball and the distance from the screen to the user is used in the mapping function. Wang,

et al. use one eye image to approximate the gaze [33]. The eye corners are used to determine

the pupil movement. The user is supposed to look at several predefined points on the gaze

plane, that is the screen, and the gaze parameters are recorded for calibration. Based on

these parameters, linear approximation is done. Hansen and Pece show that only four points

are necessary for gaze estimation where the geometry is fixed, but unknown to the system,

under some assumptions [9]. Hansen, et al. propose a mapping function estimated based on

a Gaussian process interpolation method in [10] and [8]. Mean and variance functions are

used and the mean values of the interpolated points is the corresponding estimated point

of gaze. The confidence of the interpolated point is estimated by the variance. Calibration

is performed by twelve points on the screen. Stiefelhagen, et al. use a neural network

for the gaze estimation [25]. Both eye regions of 20 × 10 pixels size are fed to the neural

network. The output of the neural network is 2× 50 output neurons for Gaussian output

representation of x and y coordinates of the point of regard.

When light falls on the curved cornea, several reflections occur from the boundary

between the cornea and the lens. The first corneal reflection is known as glint [7]. In

the case of active illumination approaches, this corneal reflection is used to determine

the pupil movement. Usually, the vector from glint to the pupil is used as the measure

to determine pupil movement. Regression-based gaze mapping is very common in active

illumination approaches. The regression is made based on the vector from glint to the

pupil. Kiat and Ranganath propose a one-time calibration procedure [17]. The calibration

data is stored for future reuse. Neural networks are used here to map the complex and

non-linear relationship of pupil and glint parameters to screen coordinates. The radial
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basis function neural network (RBFNN) is used as it is fast to train. Two RBFNNs are

used, one to determine the row and another one to determine the column coordinates. Zhu

and Ji use generalized regression neural networks (GRNN) for gaze determination [41].

Six parameters are used as the input of the input layers of the GRNN, the pupil glints

displacement, the ratio of the major to the minor axis in the elliptical model of the iris,

pupil ellipse orientation and the glint image coordinates. The output of GRNN is one of the

eight regions on the screen. A hierarchical gaze classifier is introduced to improve the gaze

estimation result. Hennessey, et al. use a high resolution camera to extract the eye features

with more detail [11]. Then, eye glint points and the eye model are used in a 3-D method

based calibration to estimate the point of gaze on the screen. In the implementation of Ji

and Yang, the user is asked to look at nine known regions on the screen [15]. Then for

every region the eye data is recorded which consists of the glint point and the pupil-glint

displacement. Then, the calibration parameters are determined from these data using a

least squares method. Support vector regression is another approach used to map the eye

parameters to the screen coordinates. For non-linear regression, a support vector machine

converts the input space into a higher dimensional space so that the problem can be solved

as a linear regression problem in the higher dimensional space. Huang, Dong, and Hao use

SVR for gaze estimation on the screen from the center of iris coordinate [14]. They find that

a radial basis kernel function for the SVR works best with their data. Two video cameras

are used by Zhu, Ji, and Bennett for detecting the pupil and glint on active illumination

[40] . The point of regard is then estimated by SVR using the pupil-glint vector and the

3-D coordinate of the pupil center. A very good survey on eye gaze tracking is presented by

Hansen and Ji [7]. Another good survey on mapping functions in gaze tracking is presented

by Sheela and Vijaya [22].
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Chapter 3

Methodologies

3.1 Overview of the Work

A high level overview of the proposed eye-tracking and gaze estimation system is presented

in figure 3.1. The detailed description of the feature extraction in the first frame is presented

in Section 3.2. Eye tracking, head movement compensation and gaze estimation steps are

described in Section 3.3, Section 3.6 and Section 3.7 respectively.

3.2 Feature Extraction in the First Frame

For eye tracking and gaze estimation, detecting the eye is the first task to perform. In this

application, in the first frame, the user needs to initialize the approximate position of the

eyes manually. It is a very common approach in the eye tracking literature to initialize

the locations with the user input. The initial points should be anywhere inside the eye

region, but preferably in or near the iris. Now the next task is to find the pupil, which

is considered as the center of the iris here. The detailed procedure to find the center of

the iris is described in Section 3.2.2. Before that in Section 3.2.1, the noise removal and

morphological filtering is described, which is prerequisite of Section 3.2.2, helping to detect

the center of the iris more accurately.

3.2.1 Morphological Filtering

For each eye, a small rectangular window is considered, keeping the user-initialized points

as the centers. As the eyes are in these two window regions, we need now only consider
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Eye gaze

Figure 3.1: Overview of the Eye Tracking and Gaze Estimation System

these two window images for feature extraction. A right eye image is shown in figure 3.2.

The iris center and radius detection is performed only on red channel of the RGB image.

This is due to the fact that, according to [29], the iris usually exhibits a very low value

of red for both dark and light irises. On the other hand, the surrounding sclera and skin

contain significantly higher red values. The figure 3.3 is the red channel image of figure 3.2.

The images of the eye regions are very noisy. Working with this noisy image may produce

poor results, so before starting to work with the eye region images, the images need to be

filtered to remove noise. We use the median filter to remove noise. Median filtering is

a non-linear image filtering technique and the filtering is done only on red channel value

of the eye image. The median filter takes a small neighborhood region of the image, and

16



Figure 3.2: Eye Region

Figure 3.3: Red Channel Eye Image of Original Figure 3.2

replaces the central pixel with the median value of this neighborhood. If there is any noisy

pixel value, the median filter replaces that pixel value with the median value, which is a

more probable value than the noisy one. Here, a 5×5 neighborhood structure is considered.

By median filtering, not only are the noisy values of the image replaced, but also all the

edges are preserved. A filtered image of figure 3.3 is shown in figure 3.4.

Figure 3.4: Filtered Eye Image

In the filtered image, the iris is found as the region with a circular shape, but it is still

noisy. If the edge map of this image is taken, there will be many noisy edges inside the

iris region which will generate false results. The cornea always reflects some light when the

light source is in front of the user, this phenomenon is named as glint. A glint is shown in

figure 3.5.

To eliminate the glint from this image, we use morphological erode and dilate operations.
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Figure 3.5: Glint in Eye Image

Erosion operation is equivalent to computing a local minimum over a neighborhood region,

called the kernel. The kernel can be any shape and size. A point of the kernel is defined

as an anchor point and the kernel is scanned over the image region replacing the anchor

point’s value with the minimum value of the region overlapped by that kernel generating a

new image. On the other hand, dilation operation is the opposite operation of erosion. In

dilation, the kernel is also scanned over the image region, and replaces the anchor point’s

value with the maximum value of the region overlapped by that kernel. The erosion and

dilation operations on a gray level image can be defined by the following equations:

erode(x, y) = min
(x′,y′)∈kernel

image(x+ x′, y + y′)

dilate(x, y) = max
(x′,y′)∈kernel

image(x+ x′, y + y′)

Now suppose A is an image region, and B is the kernel. The erode or dilate operation can

be viewed as the convolution of A and B. The erode operation is denoted as A	B and the

dilate operation as A⊕B. The erode operation is shown in figure 3.6 and dilate operation

is shown in figure 3.7 (images are taken from [2]).

Now the morphological erode operation is applied on the filtered eye image. As the

glint is brighter than the rest of the iris, after the erosion, glint is eliminated. However,

the area of the iris expands after the erosion, as the surrounding area of the iris is lighter

than the iris. To minimize this effect, the morphological dilate operation is applied on the

resultant image. As the sclera is brighter than the iris, the area of the iris is shrunk by

the dilate operation. Since the same kernel size is used for both operations, the iris is now

in the original shape, but the glint is gone. The resultant image after applying erode and

dilate is shown in figure 3.8.
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Figure 3.6: Morphological Erosion ([2])

3.2.2 Pupil Detection Using Linear Filtering

The pupil is the hole inside the iris region through which the light rays pass to the eye

ball. Usually the pupil is darker than the iris, regardless of the color of the iris. The iris

and pupil are both circular and concentric. Here the pupil center is determined by the iris

center. In the face, the full iris is not always visible. Most of the time, a portion of it is

covered by the eyelids. However as the light passes through the pupil, the pupil needs to

be uncovered to see something.

Recall that the iris is always darker than the sclera, regardless of the color of the iris.

Thus, the the iris and sclera edge is relatively easy to detect. The Canny edge operator

([3]) is used to get the edge map of the eye image. The result is shown in figure 3.9. Here

the iris and sclera edge is relatively clear. The shape of the lower part of the iris is circular,

and the upper part is occulted by the upper eyelid. So, a half circular mask is used to filter

out the iris edge. A similar approach is also used in [26] and [23]. The half circular mask

is considered 3 pixel thick. So, the mask is like figure 3.10. Here, (x0, y0) is considered as

the center of the mask and r0 is the radius.

To detect the pupil, this half circular mask is placed in every position of the eye edge
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Figure 3.7: Morphological Dilation ([2])

Figure 3.8: Eye Image After Using Morphological Operations

image to compute the number of edge pixels located in the annulus region. The value of r0

is changed in each position. The parameters of the iris are determined by the center (x0, y0)

and the radius r0 for which the number of edge pixels in the half circle annulus region is

maximum. Figure 3.11 shows the result of the selected region in which the number of edge

pixels is maximum. The result of the iris and pupil detection is shown in figure 3.12. Here

the center of the half circle mask is considered as the center of the iris and the pupil.

3.3 Eye-tracking

Real time eye-tracking is implemented using particle filters. A particle filter is sophisti-

cated Bayesian model estimation technique. The probability distribution of object states
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Figure 3.9: Edge Map of Eye After Using Canny Edge Operator

Figure 3.10: Half Circular Mask

is approximated using a set of discrete hypotheses (or particles). Each particle represents

the center of a region in the image. In this section, the detailed tracking procedure is

described. Prior to describing the detailed eye tracking method using a particle filter for-

mal definition of particle filtering is presented in Section 3.3.1. Support Vector Machine

classifier, described in Section 3.3.5, is used to evaluate probability of having an eye at

location with a particle in the center. Training sets used to train the SVM classifier are

described in Section 3.3.2. Histograms of oriented gradients is used as the feature in the

SVM classifier, which is described in Section 3.3.3. The integral image technique, a very

rapid feature calculation method, is described in Section 3.3.4.

3.3.1 Particle Filtering

Generalized particle filtering works as follows. First, a population of N samples is created

by sampling from the prior distribution at time 0, P (X0). Then the update cycle is repeated

for each time step:
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Figure 3.11: Maximum Edge Pixels are Detected in the Red Region

Figure 3.12: Result of the Iris and Pupil Detection

• Each sample is propagated forward by sampling the next state value xt+1 given the

current value xt for the sample, using the transition model P (Xt+1|xt).

• Each sample is weighted by the likelihood it assigns to the new evidence, P (et+1|xt+1).

• The population is resampled to generate a new population of N samples. Each

new sample is selected from the current population; the probability that a particular

sample is selected is proportional to its weight. The new samples are unweighted.

In our implementation, each particle represents the center of a region in the image. The

particles are weighted by the output of the support vector machine classifier in each step.

3.3.2 Training Set

To train the classifier, eye images taken from the BioID face database ([6]) are used. The

BioID database consists of 1521 face images (384 × 288 pixel, grayscale images) of 23

different persons. The face images have been recorded during several sessions at different

places. The database is available for public usage ([6]). Some examples of BioID face

database are shown in figure 3.13. Manually set eye positions are also available on this
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site. The positive eye examples are taken from these images. Two eye images, taken from

each face image, serve as eye examples, so a total of 3042 eye images are taken as positive

examples for the eye classifier. For each example, a square window around the pupil is

used, with side length equal to 1/3 the distance between the pupils, thus making the

training examples scale-invariant. This distance is chosen because it always encompasses

the iris, but it is narrow enough to exclude other, confounding features, such as eyebrows or

hair. Examples of eye images are shown in figure 3.14. The non-eye images were similarly

generated, except that arbitrary locations in the image were chosen, excluding the eyes.

The total number of non-eye images is also 3042. Some examples non-eye images are shown

in figure 3.15.

Figure 3.13: Some Images from BioID Dace Database

Figure 3.14: Example of Eye Images (top row: right eye images, bottom row: left
eye images)
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Figure 3.15: Example of Non-eye Images

3.3.3 Histograms of Oriented Gradients

Histograms of Oriented Gradients (HOG) are feature descriptors widely used in computer

vision and image processing for the purpose of object detection. Local object appearance

and shape can often be characterized well by the distribution of local intensity gradients.

The implementation of HOG descriptor is achieved by compiling a histogram of intensity

gradient directions using a fixed number of predetermined bins, weighted by the gradient

magnitude. Dalal, et al. use histograms of oriented gradients (HOG) for human detection

in [4] and [5]. The HOG is used here for eye detection. As the eye region, especially the iris

and sclera has high contrast, HOG is very effective in eye detection. A HOG feature vector

for each square window in the training set is computed. The image window is divided into

four sub-windows, and a histogram of intensity gradient directions, weighted by gradient

magnitude is computed for each of the sub-windows separately. For each sub-window, an

8-bar histogram is calculated. So, the total gradient directions are divided into 8 parts.

The gradient magnitudes with those directions are summed up to calculate the histogram

value. Then, this 8-bar histogram is normalized. The MIN MAX normalization technique

is used here. After the normalization, the four 8-bar histograms of the four sub-windows

are concatenated into a 32-element feature vector of that window for classification.

Calculation of gradient magnitude and gradient direction of a sample eye image is

shown in figure 3.16. In the first step the horizontal and vertical gradient of the image are

calculated. From these images, the gradient magnitude and gradient direction images are

obtained. After calculation of the gradient magnitude and direction images, the process of

calculating the HOG is shown in figure 3.17.

HOG feature vectors are calculated for both eye and non-eye images as the training
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Figure 3.16: Gradient Magnitude and Director Calculation

Figure 3.17: Histograms of Oriented Gradients Calculation for Four Sub-windows

example for the classifier.

3.3.4 Integral Image

Integral image techniques are used by Viola and Jones in [30] and [31], by which the features

in an rectangular region can be computed very rapidly. The integral image at any location

(x, y) is computed by the sum of all pixel values above and left of the pixel, including the

pixel. Suppose Img is the original image, and IntgImg is the corresponding integral image.

IntgImg(x, y) =
∑

x′≤x,y′≤y
Img(x′, y′)
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Now, with equation 3.1 and equation 3.2 the integral image can be computed with only one

pass over the original image. Another array CRSum is used for the cumulative row sum.

Here, CRSum(x,−1) = 0 and IntgImg(−1, y) = 0 is defined. Integral image calculation

is shown in figure 3.18.

CRSum(x, y) = CRSum(x, y − 1) + Img(x, y) (3.1)

IntgImg(x, y) = IntgImg(x− 1, y) + CRSum(x, y) (3.2)

Figure 3.18: Integral Image, the Value at Point (x,y) is the Sum of All the Pixel
Values Above and Left

After calculating the integral image, the sum of pixel values of a rectangular region

in the original image can be calculated in constant time. Suppose the calculated integral

image is shown in figure 3.19. Now, the sum of the pixel values of region C can be calculated

from four points, P1, P2, P3 and P4. The value at P1 is the sum of all pixel values of region

A. Similarly, the value at P2 is the sum of all the pixel values of region A and B, and the

value P4 is the sum of all the pixel values of the region A and D. The sum of the pixels

values of region C can be calculated in constant time using equation 3.3.

RegionC = P3 − (P2 + P4) + P1 (3.3)
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Figure 3.19: The Sum of Pixels in Region C is Calculated from the Integral Image
by P3 + P1 − P2 − P4

The integral image technique is used for calculating the histogram of oriented gradients

of a particular region. Histogram of oriented gradients is calculated for each bin using

the integral image technique. As 8 bins are considered while computing HOG, the whole

gradient direction range is divided into 8 parts. Then 8 gradient magnitude images, one

for each part, are calculated. In each image, only those graduate magnitude values are

considered whose directions are fallen in that range. From these images, 8 different integral

images are calculated, one for each part. After computing these integral images, the HOG

is calculated using these integral images in constant time for a particular region,. After

this implementation, it is possible to calculate HOG values for several regions of interest

in a larger image in constant time, after an initial cost to compute the integral images. In

figure 3.20 and figure 3.21, computation of the HOG is described. After this computation,

HOG value of any rectangular region of this image can be calculated in constant time.

Thus it is also possible to generate a 32-element feature vector for any region in constant

time.
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Figure 3.20: Gradient Magnitude and Director Calculation

Figure 3.21: Integral HOG

3.3.5 Support Vector Machine

A support vector machine (SVM) is a supervised machine learning technique that can be

used to classify different objects. The SVM classifier is trained first with different classes of

object features and their labels. With this training data, a model is generated by the SVM

by building a hyperplane or a set of hyperplanes in a multidimensional space which best

separates the features of the training classes. It also tries to separate the different classes
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so that the margin between different classes are as wide as possible. In classification, new

test examples are mapped into that model space and the class is predicted based on which

training class the point falls in. A very good guide of SVM is presented by Hsu, Chang,

and Lin [13].

In figure 3.22, two classes of objects are present. An SVM plots the examples on a

feature plane and tries to find the optimum plane that can separate the two classes. In this

case, a line will suffice in the two dimensional plane. The solid line divides the classes, the

dashed lines drawn parallel to the separating line mark the distance between the dividing

line and the closest points to that line. The distance between the dashed lines is called the

margin. The points that constrain the width of the margin are the support vectors. While

generating the model, the SVM tries to maximizes the margin. The figure 3.22 is taken

from [20].

Figure 3.22: Example of a Support Vector Machine Classification

After computing the HOG feature vectors for each example, a Support Vector Machine

classifier is trained with two classes of objects, eyes and non-eyes. Instead of a binary clas-

sification value, a continuous output is considered whose value increases with the likelihood

of that class. It is obtained by returning the Euclidean distance of the test vector from the

classification boundary.
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3.3.6 Tracking the Eyes with Particle Filter

Two particle filters track both eyes separately. Particle filters are advantageous for track-

ing because they maintain multiple hypotheses about the location of the tracked object.

A window around the particle position is considered as a candidate. On each frame, some

hypotheses about the eye location (particles) may be on the eye while others are not exactly

on the eyes. In subsequent frames, as more information becomes available, the algorithm

can discard the particles of the poor hypotheses, and propagate only the most likely hy-

potheses to the next iteration. In each iteration (frame), the particle filter maintains a fixed

number of particles. Generally, more particles result in better performance, but the number

of particles is limited by the constraint of running in real time. Each particle is evaluated

by running its HOG value through the SVM prediction described in section 3.3.5. The

SVM output value, which is the distance to the classification boundary, is converted into a

particle weight by first normalizing by the minimum value so that all values are positive,

then adding 1, then taking an exponent to exaggerate the difference between higher and

lower values. The particles for time t+1 are produced by sampling particles at time t with

probability proportional to their weight. Each sampled particle is then propagated to the

next generation, with the addition of a noise term. Noise considered here is Gaussian noise.

A technique is used to introduce adaptive behavior into the particle filter. The noise

term in particle propagation is set to the sum of a base level, proportional to the distance

between the pupils, and a variable level, proportional to the number of particles with

high absolute scores. Typical particle filters normalize the particle weights, making them

insensitive to absolute confidence levels, however, this implementation increases the noise

when confidence is low that the particle cloud is tracking an eye. As a result, the particles

are produced in a wider area when they lose the eye. Again, as in the training examples,

the edge length of the sub-windows is 1/3 the distance between the pupils. This takes

advantage of the constrained situation of the face to relieve the burden of determining the

proper scale.
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3.4 Feature Extraction in Each Frame

The particle filter tracks the eye, but does not always pinpoint the pupil location. The

support vector machine does not reliably distinguish pupil points from other eye points

near the pupil. For this reason, the eye features need to be extracted by other methods in

each frame.

3.4.1 Searching for the Dark Region

The mean or median of the particle cloud also does not locate the pupil because some

particles lag behind the eye after eye or head movements. Instead, it is assumed that the

median particle position is at least within a certain radius r of the pupil. Within this

radius, the intensity value of the darkest pixel is searched. It is assumed that the other

dark parts of the faces, e.g. eye brows, hair, are not present in this region. Any pixels

with intensity values that differ from the darkest by less than a threshold are labeled as

candidates for the pupil pixels, and the median location of candidate pupil pixels is the

final candidate for pupil location.

3.4.2 Finding the Iris Center

The final candidate for pupil location is obtained by the method described in section 3.4.1.

A small region surrounding this location is searched using the same method described in

section 3.2 for the iris center. If the distance between the camera and the eyes does not

change, then this radius of the iris also does not change. Thus the radius calculated in the

first frame can be used. So, the iris is searched for within a two-pixel margin of the initial

radius. If the iris is not found, then the iris is searched for using a larger range of radii.

3.5 Pseudo-code of Proposed Eye-tracking Method

Following is the pseudo-code of the proposed eye-tracking method.
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Eye tracking

1. for each frame do

2. Calculate the integral HOG for the region that contains the particles

3. for each particle do

4. Calculate the HOG vector for a region with the size proportional to the estimated

distance between the eyes

5. Evaluate this value using the SVM classi�er

6. Assign this evaluated value as the weight of the particle

7. end for

8. Sample all particles with probability weighted as a function of the SVM scored weight

9. Select a small radius around the median position of the particles

10. Use �ltering to remove noise from this region

11. Find the darkest location within this small region

12. Count number of edge pixels by placing the half circular mask on the eye edge image

in every position of a small radius around the darkest location found in previous step

13. The pupil is the center of the half circular mask with maximum number of edge pixels

14. end for

3.6 Head Movement Compensation

The method described in section 3.3 can reliably track both eyes and detect the eye features

in each frame. Eye tracking is also robust to head movements. However, by detecting the

amount of head movements accurately in each frame, it is possible to estimate the user’s

gaze more accurately, as it is very hard for the users to keep their head still. Although

significant rotations of head, changes in distance from the camera, or large in-plane trans-

lations will still disrupt the calibration, small in-plane translations can be compensated for

with this method.

The head-movement compensation works by an updating template matching method.
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The midpoint between the irises is chosen in each frame. Then, a small window is chosen

as the ‘between-the-eyes’ region, keeping the midpoint of the irises in the center of this

region. This point is chosen as this is a very stable area of the face. Usually the between

the eyes area is brighter than its two sides, as the eyes are on both sides of the region

and this area is the nose and the forehead region. Thus, this region is easier to track [16].

Then, in each frame, the ‘between-the-eyes’ region is stored. In the next frame, the closest

match to this template, within a fixed distance from the previous location is searched for.

The difference between the two locations is the estimated head translation for that time

step. Then the midpoint between the irises is calculated again for that frame and used to

update the ‘between-the-eyes’ template. A similar approach is used in [16]. To find the

head movements with respect to the first frame, the sum of head translations for time 1 . . . t

is calculated.

3.7 Gaze Estimation

Successful eye tracking is a prerequisite of the gaze estimation. Gaze calibration is necessary

for gaze point estimation. The user is asked to look at some predefined points on the screen

while keeping their head fixed. The pupil positions and corresponding screen positions

are collected. After removal of the noisy data, a simple calibration is done. For this

simple calibration, the K-nearest neighbor classification algorithm is used. The detailed

calibration procedure is described in Section 3.7.1.

3.7.1 Calibration Procedure

The calibration procedure is very brief and simple. The calibration panel, that is, the

monitor of the laptop, is divided into some vertical regions. The monitor screen is only

divided into a few vertical regions. If these regions are divided by horizontal regions, then

as the distance of two adjacent regions in the screen becomes very small, making gaze

estimation from the iris data very difficult. For the gaze calibration, the user is asked to
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look at some predefined points on the screen. These points are at the centers of these

regions. The user is asked to look at each point for a short period of time. During this

period the pupil positions from both eyes are taken for several frames. An example of three

calibration points panel is shown in figure 3.23. Figure 3.24 presents an example of the data

acquisition process. Then using the method described in Section 3.7.2, the noisy outliers

are removed, and the best candidate points are determined. Using these best points, the

gaze estimation is done using the K-nearest neighbor algorithm described in Section 3.7.3

and Section 3.7.4.

Figure 3.23: Calibration Panel

Figure 3.24: Calibration Process

3.7.2 Selecting Best Candidate Points

A two step process is used to select the best candidate pupil points for every calibration

region of each eye. The first goal is to remove a certain percentage of the total set of

34



points as outliers. From that result, a certain percentage of points should be considered

as the best candidate. So, in the first step, the center position is calculated from all the

points. The outliers are classified from this set based on their distance from the center.

The outliers are then removed from this point set. After the outliers removal, the center of

the points is calculated again to remove the effect of the outliers on the center. From the

rest of these points, the points are ranked based on their distance to the new center. From

this ranked list, certain percentage of points are considered as the best candidate points.

3.7.3 K-Nearest Neighbor Algorithm

K-Nearest neighbor algorithm (KNN) is a lazy machine learning algorithm. It is based on

voting of the closest samples in the feature space. Any feature is classified by the majority

voting of its neighbors. K is the number of neighbors considered in the classification. The

metric to measure closeness is also important. When training the classifier, only the sample

features are stored, no computation is made. During the classification, all the computation

is done. The training time is very small, but the classification time is relatively large

depending on the number of training samples for KNN.

Suppose, as shown in figure 3.25, two classes of objects (Class A and Class B) are

considered. The test example is shown in + and also the distance from this test example

to its closest three training examples are shown. If 1-nearest neighbor is considered, then

the text example will be classified as Class A. On the other hand, if 3-nearest neighbors

are considered, then the test example point will be classified as Class B.

3.7.4 Gaze Estimation Using the KNN Algorithm

The best iris center points are obtained for each calibration region by the method described

in section 3.7.2 separately for both eyes. Two KNN classifiers are trained using these iris

center points, one for each eye. Training labels for these examples are the corresponding

central points of the region on the screen and the region number. After training the classifier
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Figure 3.25: Example of K-Nearest Neighbor Classifier

for both eyes for all the regions, the calibration process is complete.

For gaze estimation, the user’s iris center positions are used as the test examples. The

test point is now classified using both KNN classifiers. In the ideal case, both classifiers

should classify the test example as the same class and give the same output point on the

screen. However, sometimes deviation from the ideal case is observed. So, another voting

scheme is introduced. For each classifier, the weight of that classifier is assigned by the

nearest number of points that vote positive for the output class. The estimated gaze region

is determined by the output of the classifier with maximum vote. Suppose, the classifier

of the left eye classified one example as output region 2, and the classifier of the right eye

classified it as output region 3. Here 11 nearest neighbor is considered. For the left eye,

the region 2 is classified with 6 positive votes for region 2. So, the weight of this classifier

will be 6. On the other hand, suppose the right eye classifier classified that position as

region 3 with 9 positive votes for this region. So the weight of this classifier will be 9. This

point will be classified as region 3, from the output of the right eye classifier, and region 3

is shown on the screen.
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3.8 Pseudo-code of Proposed Gaze-estimation Method

Pseudo-code of the proposed gaze-estimation method is described below.

Gaze estimation

1. Input:(calibrationStatus,numCalibrationPoints,numTrainingExm,outlierPr,bestExm)

2. if (calibrationStatus == false) then

3. for i = 1→ numCalibrationPoints do

4. Draw a small circle in corresponding position of i on the screen

5. for j = 1→ numTrainingExm do

6. DL(j) = coordinate of left pupil as training data

7. LBL(j) = i, as training label of left pupil coordinate

8. DR(j) = coordinate of right pupil as training data

9. LBR(j) = i, as training label of right pupil coordinate

10. end for

11. end for

12. Remove outlierPr percent points for each calibration region as outliers from (DL,LBL),

(DR,LBR) based on maximum distance from the centroid of DL and DR respectively

13. Select bestExm number of points for each calibration region as best training examples

based on minimum distance from the new centroid point of DL and DR

14. Train classi�er (KNN)L using best training examples, data DL and label LBL

15. Train classi�er (KNN)R using best training examples, data DR and label LBR

16. calibrationStatus = true

17. elseif (calibrationStatus == true) then

18. Get the coordinate of left and right pupil in LP and RP respectively

19. OutL = classi�cation result from classi�er (KNN)L for test example LP

20. WL = number of neighboring points that vote for test example LP in previous step

21. OutR = classi�cation result from classi�er (KNN)R for test example RP

22. WR = number of neighboring points that vote for test example RP in previous step

23. if (OutL == OutR) then

24. Highlight OutL region on screen as gaze-estimation
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25. elseif (WL > WR) then

26. Highlight OutL region on screen as gaze-estimation

27. else

28. Highlight OutR region on screen as gaze-estimation

29. endif

30. endif
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Chapter 4

Experimental Results

In order to measure the validity of the design qualitatively and quantitatively, it has to be

tested with several experiments. This chapter explains the environments and setup of the

testing design. It starts with a description of a system to run and to test the program. Then,

the evaluations of the conducted experiments of the eye-tracker and gaze determination are

described separately.

4.1 Environment and Setup

The prototype system is developed using the OpenCV library and Visual C++ under

Windows7. OpenCV (Open Source Computer Vision) is a library of programming functions

for real time computer vision, which is free for both academic and commercial use. The

images are captured with a ‘Logitech C615 Webcam’ with a resolution of 640× 480 pixels.

The system is implemented on an Intel(R) Core(TM) i3 processor at 2.4GHz with 4GB of

RAM.

4.2 Test Result of the Eye-tracker

The user needs to sit in front of the computer, keeping 1 to 2 feet of distance from the

camera. The camera is fitted on the top of the monitor of the computer. After the system

starts capturing the video sequence, the user needs to click on the video window to start

the eye-tracking. The user needs to click on both eyes in the image to locate the eyes for

the tracker in that frame. The points do not need to be centered exactly on the pupils,
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but points near the iris regions are preferred. Then the system starts to track both eyes

simultaneously in the following frames. An example of experimental setup is shown in

figure 4.1.

Figure 4.1: Experimental Setup

To quantitatively analyze the performance, the pupil positions detected by the eye-

tracker are stored. The video of the user is also stored for hand-labeling purposes. Then

the pupil positions are hand labeled from the video. The disparity is defined here as

the distance between the pupil positions detected by the tracker and hand labeled pupil

positions. The eye regions are around 75 × 50 pixels when the user sits around 1.5 feet

from the camera. Although the radius of the iris varies from person to person, it is found

that the radius is within 10 to 14 pixels range if the user sits in this distance.
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4.2.1 Experiment 1

In the first experiment, the user sits around 1 foot from the camera, facing the monitor.

After the tracker starts tracking the eyes, the user is free to move his/her head. The data

obtained from the eye tracker is recorded in this experiment. The video is also recorded

and hand-labeled later. The length of the first video sequence is 500 frames, in a real time,

frame rate of 10 frames per second.
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Figure 4.2: Tracked and Hand-labeled Right Eye (Row) Positions (Experiment 1)

The row positions of the right pupil in each frame for both tracked and hand-labeled

pupil positions are shown in figure 4.2. Figure 4.4 presents the row positions of the left pupil

in each frame for both tracked and hand-labeled pupil positions. The column positions of

both pupils in each frame for both tracked and hand-labeled pupil positions are presented

in figure 4.3 and figure 4.5. Figure 4.6 and figure 4.7 show the row and column difference in

pixels between the hand labeled pupil positions and the data obtained from the tracker for

the right pupil respectively. Figure 4.8 and figure 4.9 show the row and column disparity

in pixels for the left pupil respectively. Figure 4.10 shows the Euclidean distance (error)

between the tracked and hand-labeled pupil positions in each frame for the right eye. The

euclidean distance (error) between the tracked and hand-labeled pupil positions in each
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Figure 4.3: Tracked and Hand-labeled Right Eye (Column) Positions (Experiment 1)
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Figure 4.4: Tracked and Hand-labeled Left Eye (Row) Positions (Experiment 1)

frame for the left eye is presented in figure 4.11.
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Figure 4.5: Tracked and Hand-labeled Left Eye (Column) Positions (Experiment 1)
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Figure 4.6: Difference in Pixels Between Tracked and Hand-labeled Right Eye
(Row) Positions (Experiment 1)
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Figure 4.7: Difference in Pixels Between Tracked and Hand-labeled Right Eye (Col-
umn) Positions (Experiment 1)
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Figure 4.8: Difference in Pixels Between Tracked and Hand-labeled Left Eye (Row)
Positions (Experiment 1)
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Figure 4.9: Difference in Pixels Between Tracked and Hand-labeled Left Eye (Col-
umn) Positions (Experiment 1)
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Figure 4.10: Distance in Pixels Between Tracked and Hand-labeled (Error) Right
Eye Positions (Experiment 1)
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Figure 4.11: Distance in Pixels Between Tracked and Hand-labeled (Error) Left Eye
Positions (Experiment 1)

4.2.2 Experiment 2

In this experiment, the user sits around 2 feet from the camera, facing the monitor. After

the tracker starts, the user is also free to move his/her head here as in Experiment 1. The

data from the eye tracker is recorded in this experiment and hand-labeled later. The length

of the first video sequence is 500 frames, in a real time frame rate of 10 frames per second.
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Figure 4.12: Tracked and Hand-labeled Right Eye (Row) Positions (Experiment 2)
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Figure 4.13: Tracked and Hand-labeled Right Eye (Column) Positions (Experiment 2)
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Figure 4.14: Tracked and Hand-labeled Left Eye (Row) Positions (Experiment 2)
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Figure 4.15: Tracked and Hand-labeled Left Eye (Column) Positions (Experiment 2)
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Figure 4.16: Difference in Pixels Between Tracked and Hand-labeled Right Eye
(Row) Positions (Experiment 2)
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Figure 4.17: Difference in Pixels Between Tracked and Hand-labeled Right Eye (Col-
umn) Positions (Experiment 2)
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Figure 4.18: Difference in Pixels Between Tracked and Hand-labeled Left Eye (Row)
Positions (Experiment 2)
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Figure 4.19: Difference in Pixels Between Tracked and Hand-labeled Left Eye (Col-
umn) Positions (Experiment 2)

50



0

2

4

6

8

10

12

14

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

2
5

7

2
6

5

2
7

3

2
8

1

2
8

9

2
9

7

3
0

5

3
1

3

3
2

1

3
2

9

3
3

7

3
4

5

3
5

3

3
6

1

3
6

9

3
7

7

3
8

5

3
9

3

4
0

1

4
0

9

4
1

7

4
2

5

4
3

3

4
4

1

4
4

9

4
5

7

4
6

5

4
7

3

4
8

1

4
8

9

4
9

7

P
ix

e
l 

Frames 

Distance in pixels

Figure 4.20: Distance in Pixels Between Tracked and Hand-labeled (Error) Right
Eye Positions (Experiment 2)

The row positions of the right pupil in each frame for both tracked and hand-labeled

pupil positions are shown in figure 4.12. Figure 4.14 presents the row positions of the

left pupil in each frame for both tracked and hand-labeled pupil positions. The column

positions of both pupils in each frame for both tracked and hand-labeled pupil positions

are presented in figure 4.13 and figure 4.15. Figure 4.16 and figure 4.17 show the row and

column difference in pixels between the hand labeled pupil positions and the data obtained

from the tracker for the right pupil respectively. Figure 4.18 and figure 4.19 show the

row and column disparity in pixels for the left pupil respectively. Figure 4.20 shows the

Euclidean distance (error) between the tracked and hand-labeled pupil positions in each

frame for right eye. The Euclidean distance (error) between the tracked and hand-labeled

pupil positions in each frame for left eye is presented in figure 4.21.

51



0

2

4

6

8

10

12

14

16

18

20
1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

2
5

7

2
6

5

2
7

3

2
8

1

2
8

9

2
9

7

3
0

5

3
1

3

3
2

1

3
2

9

3
3

7

3
4

5

3
5

3

3
6

1

3
6

9

3
7

7

3
8

5

3
9

3

4
0

1

4
0

9

4
1

7

4
2

5

4
3

3

4
4

1

4
4

9

4
5

7

4
6

5

4
7

3

4
8

1

4
8

9

4
9

7

P
ix

e
l 

Frames 

Distance in pixels

Figure 4.21: Distance in Pixels Between Tracked and Hand-labeled (Error) Left Eye
Positions (Experiment 2)

4.2.3 Result Discussion

For pupil detection, from the eye region tracked by the particle filter, the iris is detected

first. Then the center of the iris is considered as the pupil center in this eye-tracking design.

To determine the parameter of the iris, a half circular mask is used which is described in

section 3.2.2. To approximate the shape of the irises as circles when the irises are at the

corner of the eyes, a three pixels thick half circular annulus mask is used to detect the

iris boundary. The pupil is determined by the center of the mask, for which the number

of edge pixels located in the annulus region is maximum. As a result, it is possible that

the tracked pupil center position can be three pixels apart from the original pupil center.

Again, while hand-labeling the pupil center, a deviation of few pixels may occur in both

row and column directions. So, if the Euclidean distance (error) between the tracked and

the hand-labeled pupil position is in between zero pixel to three pixels, then the pupil is

considered as tracked correctly in that frame.
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Table 4.1: Deviation (Error) in Pixels (Experiment 1)

Mean Absolute Error Standard Deviation of Errors

Right Eye 1.98 1.18

Left Eye 1.26 1.11

Recall that during experiment 1, the user sits around 1 foot from the camera, facing

the monitor. For experiment 1 the Euclidean distance (error) between tracked and hand-

labeled pupil position for the right and left eyes are presented in figure 4.10 and figure 4.11

respectively. Table 4.1 shows the mean absolute error and the standard deviation of errors

in pixels for both eyes. From this table, it is found that the mean absolute error for the

right eye is 1.98 pixels and the mean absolute error for the left eye is 1.26 pixels, which

means the average error is less than two pixels for both eyes. This table also presents the

standard deviation of errors for both eyes. Standard deviation of errors are 1.18 pixels for

right pupil and 1.11 pixels for left pupil.

For experiment 1, the table 4.2 shows the frequency of error for both pupils. From

this table it is observed that in 86.40% of frames the error are in between zero to three

pixels for the right eye. The table 4.2 also shows that in 93.60% of frames the error are

in between zero to three pixels for the left eye. The histogram of the deviations in pixels

and the cumulative percent for experiment 1 are presented in figure 4.22 and figure 4.23 for

both eyes respectively. So, from these tables and figures, it is observed that the right pupil

is tracked correctly in 86.40% frames, and left pupil is tracked correctly in 93.60% frames.
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Table 4.2: Frequency of Deviation (Error) for Both Pupils (Experiment 1)

Pixels Deviation Right Pupil Left Pupil

Occurrences Cumulative % Occurrences Cumulative %

0 55 11.00% 103 20.60%

1 80 27.00% 194 59.40%

2 129 52.80% 134 86.20%

3 168 86.40% 37 93.60%

4 48 96.00% 13 96.20%

5 9 97.80% 10 98.20%

6 5 98.80% 1 98.40%

7 6 100.00% 7 99.80%

8 0 100.00% 1 100.00%

9 0 100.00% 0 100.00%

10 0 100.00% 0 100.00%

More 0 100.00% 0 100.00%
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Figure 4.22: Histogram of Deviations (Error) of Right Pupil (Experiment 1)
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Figure 4.23: Histogram of Deviations (Error) of Left Pupil (Experiment 1)
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Table 4.3: Deviation (Error) in Pixels (Experiment 2)

Mean Absolute Error Standard Deviation of Errors

Right Eye 2.23 1.79

Left Eye 2.19 2.15

Recall that during experiment 2, the user sits around 2 feet from the camera, facing the

monitor. For experiment 2, the Euclidean distance (the error) between tracked and hand-

labeled pupil position for the right and left eyes is presented in figure 4.20 and figure 4.21

respectively. Table 4.3 shows the mean absolute error and standard deviation of errors in

pixels for both pupils. From this table, it is found that the mean absolute error for the right

eye is 2.23 pixels and for the left eye is 2.19 pixels. This table also presents the standard

deviation for both eyes for both eyes. Standard deviations of errors are 1.79 pixels for right

pupil and 2.15 pixels for left pupil.

Again, for experiment 2 the table 4.4 shows that in 86.20% of frames the distance (error)

between the tracked and hand-labeled pupil positions are in between zero to three pixels

for the right pupil. From the same table, it is also observed that the distance (error) are

in between zero to three pixels in 83.20% frames for the left pupil. The histogram of the

deviations (error) in pixels and the cumulative percent are presented in figure 4.24 and

figure 4.25 for both eyes respectively. So, from the table and figures, it is observed that for

experiment 2, the right eye is tracked correctly in 86.20% frames, and left eye is tracked

correctly in 83.20% frames.

From these tables and figures, it is observed that there are some large errors for both

eyes in both experiments. After examining the video sequences, it is found that these errors

are mostly due to subject’s blinking. For detecting the iris, the tracker first tries to find the

dark region within a radius of output of the particle filter, which is described in section 3.4.

This dark region is considered to be a part of the iris. But, when the user blinks and the

eyes are closed completely, in that frame the darkest regions are no longer the iris. It is
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Table 4.4: Frequency of Deviations (Error) for Both Pupils (Experiment 2)

Pixels Deviation Right Eye Left Eye

Occurrences Cumulative % Occurrences Cumulative %

0 28 5.60% 40 8.00%

1 80 21.60% 123 32.60%

2 170 55.60% 146 61.80%

3 153 86.20% 107 83.20%

4 31 92.40% 38 90.80%

5 11 94.60% 15 93.80%

6 4 95.40% 5 94.80%

7 3 96.00% 4 95.60%

8 3 96.60% 8 97.20%

9 5 97.60% 3 97.80%

10 7 99.00% 3 98.40%

More 5 100.00% 8 100.00%
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Figure 4.24: Histogram of Deviations (Error) of Right Pupil (Experiment 2)
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Figure 4.25: Histogram of Deviations (Error) of Left Pupil (Experiment 2)
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Figure 4.26: Some Good Tracking Examples

Figure 4.27: Some Bad Tracking Examples While Blinking

observed that the tracker finds a region near the eye corners or random regions near the

eyelashes as the darkest in those frames. The tracker then tries to detect the iris near this

darkest regions, although the iris is not present there. This phenomenon is observed in

experiment 1 during frame numbers 23, 99 to 101, 141 to 142, 181 to 182 and 306 to 307

as shown in figure 4.10 and figure 4.11. From the video, it is observed that during these

frames the subject is blinking and the eyes are fully or partially closed. Again, if the head

is moving while the eyes are fully closed, then the tracker faces difficulty to detect the iris

perfectly for some consecutive frames. In experiment 2, this phenomenon is also observed

from frame number 350 to 360 for both eyes as shown in figure 4.20 and figure 4.21. During
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these frames, the subject is blinking while moves his head. Some good tracking examples

are shown in figure 4.26. In figure 4.27, some images are shown where the tracker faces

difficulties to locate the pupil correctly.

4.3 Test Result of the Gaze Estimator

For gaze estimation, the first step is to make the eye-tracker to track both eyes. The gaze

calibration is done next. For gaze calibration a white screen is shown to the user with

some circles on it. The centers of these circles are predefined screen calibration points. The

user needs to look at one circle for 30 frames, as the overall frame rate is around 10 fps,

he/she needs to look at one circle for around 3 seconds. Then, the user should look at the

next circle and so on. During this calibration process, the user is restricted from moving

his/her head. However, the observation is that, although the user tries not to move his/her

head, a movement of a few pixels may occur. Therefore it is necessary to find the amount

of head movement, which is calculated using the method described in section 3.6. The

amount of head movement is subtracted from the tracked eye positions to get the actual

eye movements during the calibration process.

After the head movement compensation, for each eye the 30 eye positions for each

calibration point are passed to a function to get the best candidate points described in

section 3.7.2. The output of this function is then used to train the KNN classifiers. Two

classifiers are used, one for each eye. The label of these training data is a number associated

with the predefined position on the screen.

After the calibration process, a gaze estimation screen is shown to the user. In each

frame, after head movement compensation, both pupil positions are passed to the classifiers.

The output of the classifiers is a number associated with the corresponding screen calibra-

tion region. If the outputs of two classifiers are different, then a simple voting method is

used as described in section 3.7.4. A highlighted rectangle is then presented on the screen

to show the gaze region of the user. An example of three calibration point gaze estimation
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result is shown in figure 4.28. A point (presented by the black circle) is shown to the user.

Gaze estimation is presented by highlighting the background rectangle.

Figure 4.28: Example of an Gaze Estimation Output

4.3.1 Experiment on Two Calibration Points

In this experiment, two calibration points are used on the screen. The user needs to look at

two points for around three seconds each. After the calibration process, the gaze estimation

is tested. The mouse pointer is kept on one region on the monitor screen for around three

seconds, and the user is asked to look at the mouse pointer. If the rectangle of that region is

highlighted then it is considered that the gaze estimation is performed correctly. Otherwise,

after three seconds, if the region is not highlighted, the estimation is considered as wrong,

and the mouse pointer is moved to another region for testing. For the gaze estimation,

7-nearest neighbor points are considered by the classifiers.

During one experiment, the mouse pointer is kept on each region to test the gaze

estimation. Each region is considered randomly for 30 times during one experiment. This

experiment is repeated 10 times, meaning a total of 300 tests are conducted for each region.

Table 4.5 shows the result of the experiments on two calibration points.
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Table 4.5: Gaze Estimation Result of Two Calibration Points

Ground truth Estimated Result Accuracy

1 2

1 287 13 95.67%

2 9 291 97%

Overall Accuracy 96.33%

4.3.2 Experiment on Three Calibration Points

In this experiment, three calibration points are used on the screen for gaze calibration.

The mouse pointer is kept on one region for around three seconds and the user is asked to

look at the mouse pointer. For gaze estimation, the classifiers consider 7-nearest neighbor

points are also considered by the classifiers. If a rectangle of the region over which the

mouse is hovering is highlighted then it is considered that the gaze estimation is done

correctly. Otherwise, after three seconds, if the region is not highlighted, the estimation is

considered as wrong, and the mouse pointer is moved to another region for testing. During

one experiment, here also the mouse pointer is kept for 30 times by turns on each region to

test the gaze estimation. Result of 10 conducted experiments on three calibration points

are presented in table 4.6.

4.3.3 Experiment on Four Calibration Points

In this experiment, four calibration points are used on the screen for gaze calibration. The

same procedure is used for gaze estimation described in section 4.3.1 and section 4.3.2. Here

also 7-nearest neighbor is used for estimation by the classifiers. During one experiment,

here also the mouse pointer is kept on each region to test the gaze estimation. Result of

10 conducted experiments on four calibration points are presented in table 4.7.
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Table 4.6: Gaze Estimation Result of Three Calibration Points

Ground truth Estimated Result Accuracy

1 2 3

1 286 11 3 95.33%

2 9 278 13 92.67%

3 6 10 284 94.67%

Overall Accuracy 94.22%

Table 4.7: Gaze Estimation Result of Four Calibration Points

Ground truth Estimated Result Accuracy

1 2 3 4

1 273 18 3 6 91%

2 27 254 14 5 84.67%

3 3 20 260 17 86.67%

4 2 11 9 278 92.67%

Overall Accuracy 88.75%

4.3.4 Result Discussion

The summary of the gaze estimation results are presented in table 4.8. From this table it

is observed that, the highest accuracy of 97% is achieved for two calibration points, and

lowest accuracy of 84.67% is achieved for four calibration points.

In case of the gaze estimation, the screen is divided only into vertical regions. This is

due to the fact that, when the iris is near the corners of the eye, the vertical movement

of the pupil is very small and very hard to detect accurately. So, only the horizontal

movements are considered here for gaze estimation.

In these experiments, the errors are found mostly when the calibration points of different
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Table 4.8: Summary of Gaze Estimation Results

Calibration Points Lowest Accuracy Highest Accuracy Overall Accuracy

2 95.67% 97% 96.33%

3 92.67% 95.33% 94.22%

4 84.67% 92.67% 88.75%

regions are overlapped. In that case, the KNN classifier tries to calculate the nearest K

points and gets erroneous neighbors. This observation is proved by the results presented

in table 4.6 and table 4.7; most errors are found in between consecutive regions. It is also

found that the accuracy of gaze estimation is higher in the terminal regions. This is because

the chances of overlapping gaze calibration points are less than those in the middle regions.

Another cause is that if the pupil positions are beyond the terminal gaze calibration points,

the closest regions are only the terminal regions.

Another cause of error is that sometimes the eye tracker provides erroneous people data.

As the gaze calibration points are very close, when the iris movements are too small, for

one or two pixels, then the tracker sometimes provides the pupil positions one or two pixels

apart from the original pupil positions, which results in erroneous gaze estimation.

In these experiments, it is also observed that, if the gaze calibration points are signifi-

cantly apart, then the gaze estimations are nearly 95% correct. However, some errors still

occur due to the wrong eye tracking. But, the gaze estimator faces difficulties when there

are large overlaps between the gaze calibration points. It is worth noting that the extent of

head movement is a crucial factor for gaze estimation - even a movement of 5 pixels might

adversely affect the performance.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis an prototype eye tracking system is demonstrated which reliably track the

pupil in real-time from an off-the-shelf webcam video and is robust to small rotations,

translations, changes in lighting, and all but dramatic head movements. A simple machine

learning-based gaze estimation system is also described.

The empirical evidence shows that the implemented eye tracker can track both eyes

successfully and detect the pupil correctly in more than 86% of the frames regardless of

the head movement when the subject is around one foot away from the camera. Another

experiment shows that the eye tracker can track both eyes successfully and detect the pupil

correctly in more than 83% of the frames regardless of the head movement when the subject

is around two feet away from the camera.

Additionally the empirical evidence shows that the overall accuracy of the gaze estima-

tion system is about 96% for experiments with two calibration points. It is also found that

the overall accuracy of the gaze-estimation system is about 94% for experiments with three

calibration points and about 88% for experiments with four calibration points.

However, the tracker faces difficulties to detect the pupil correctly if the eyes are fully

closed. It is also faces some difficulties for couple of frames when the eyes are closed during

the head movements. In more difficult situations where the eyes are covered by the hair, the

tracker cannot detect the eye features because it finds the hair as the darkest location rather

than the iris. Gaze estimation also faces difficulties when the monitor screen is divided in

horizontal rows. Overlapping gaze calibration points and head movements during gaze
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estimation also hamper gaze estimation.

5.2 Future Work

There is a need to develop an accurate model of facial position, information which could help

restrict the possible eye locations, and allow the tracker to recover if the eye is momentarily

lost, i.e. after a sudden head movement. A 3-D facial model using Microsoft Kinect can be

used in this purpose. Future work will be needed to integrate super resolution technique

for more accurate eye feature extraction. Future work will also be needed to obtain a

reliable model of eye states in order to detect blinking, another phenomenon that hampers

eye tracking. A better eye state model could detect the eye parameters more precisely,

resulting in better tracking and also better gaze estimation. There is a need to implement

a method for detecting the eye corners, which will improve accuracy of the gaze estimation.

There is also a need to provide higher degree of tolerance toward eye glasses and contact

lenses.
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