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Abstract— Augmenting a robot with the capacity to under-
stand the activities of the people it collaborates with in order
to then label and segment those activities allows the robot to
generate an efficient and safe plan for performing its own ac-
tions. In this work, we introduce an online activity segmentation
algorithm that can detect activity segments by processing a
partial trajectory. We model the transitions through activities
as a hidden Markov model, which runs online by implementing
an efficient particle-filtering approach to infer the maximum
a posteriori estimate of the activity sequence. This process is
complemented by an online search process to refine activity
segments using task model information about the partial
order of activities. We evaluated our algorithm by comparing
its performance to two state-of-the-art activity segmentation
algorithms on three human activity datasets. The proposed
algorithm improved activity segmentation accuracy across all
three datasets compared with the other two approaches, with
a range from 11.3% to 65.5%, and could accurately recognize
an activity through observation alone for 31.6% of the initial
trajectory of that activity, on average. We also implemented the
algorithm onto an industrial mobile robot during an automotive
assembly task in which the robot tracked a human worker’s
progress and provided the worker with the correct materials
at the appropriate time.

I. INTRODUCTION

Robots currently have the capacity to help people in
several fields, including health care, assisted living, and
manufacturing and factory settings. In many of these scenarios,
robots must share physical space and actively collaborate with
humans [1–4]. The performance of many of these human-
robot teams depends upon how fluently all team members can
jointly perform their tasks [5–7]. In order to successfully act
within a group, people must be able to predict the intentions
of other group members and use that knowledge to determine
when, where, and how to act for the team’s benefit [8]. In
human-robot interaction scenarios, a robot similarly requires
the ability to precisely identify and monitor other members’
actions so that it can predict future actions and adapt its
own plans accordingly [9, 10]. In particular, a robot requires
the ability to segment others’ activities online by detecting
the start time of each activity and distinguishing it from the
end time of the previous activity. This capacity is crucial
to efficient and safe human-robot interactions within factory
environments, where humans and robots often work in close
physical proximity to one another [11].

Researchers across many fields have attempted to ad-
dress this concern, which is defined as the online activity
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Fig. 1: Three activities similar to the activities from the Auto-DA dataset:
A) moving to the dashboard, B) collecting the speedometer unit, C) placing
the speedometer unit onto the dashboard.

segmentation problem. Prior techniques [12–15] are well-
suited for data segmentation via post-processing but are
not applicable to human-robot interaction scenarios, because
either the algorithms become computationally expensive to
run online, or they cannot function adequately with only a
partial observance of data.

In this paper, we introduce FOSAPT (Fast Online Seg-
mentation of Activities from Partial Trajectories), an online
activity-segmentation algorithm able to identify and label
activity segments by processing just a part of the full activity
trajectory. We model the transitions through the activity
classes as a hidden Markov model (HMM) in a manner
similar to Fearnhead and Liu’s approach [16]. FOSAPT runs
efficiently in an online setting by inferring the maximum a
posteriori estimate of the sequence of activity classes, using
particle filtering to make the inference tractable. However,
FOSAPT’s particle-filter approach is complemented by an
online search process to refine activity segments via task
model information about the partial order of activities, along
with predictive models of the timings of future activities.

We evaluated FOSAPT by assessing its performance on
three human activity datasets (UTKinect [17], Static-Reach
[18], and Auto-DA) compared with two state-of-the-art activ-
ity segmentation algorithms from prior literature: the online
change point detection (CPD) algorithm [16] and the transition
state clustering algorithm [12]. One of the datasets, Auto-DA,
is derived from a real-world manufacturing task involved
in automotive final assembly, in which 12 manufacturing
associates performed variations of the task (see Fig. 1).

In our empirical evaluation, FOSAPT accurately segmented
72.2% of the activity segments, on average, across all four
variants of the task orders in the Auto-DA dataset. We also
observed that FOSAPT could accurately recognize and label
an activity by observing only 31.6% of that activity’s initial
trajectory, on average. FOSAPT achieved an improvement
to accuracy ranging from 11.3% to 65.5% compared with
the other two approaches across all three datasets. Finally,
we applied our algorithm to a demonstration in which a
collaborative robot tracked a human worker’s progress during
a dashboard assembly task and provided the worker with the
correct materials for assembly at the appropriate time.



II. RELATED WORK

Researchers across many fields have attempted to address
the problem of activity segmentation, with two primary
approaches having been explored thus far: supervised and
unsupervised learning of segmentation models. Many su-
pervised approaches involve two primary steps for activity
segmentation: extracting spatiotemporal features from the data
source, then training temporal models to identify segments
[19–22]. For example, Lea et al. [19] developed temporal
convolutional networks (TCNs), a class of time-series model,
that uses a hierarchy of temporal convolutions to perform fine-
grained action segmentation. These methods work well when
full trajectory information is available during the segmentation
process; however, they are not suitable for online segmentation
scenarios in which segmentation must be performed on partial
data, which is the focus of our interest.

On the other hand, the unsupervised segmentation ap-
proaches attempt to discover underlying structures within
the data to cluster similar trajectories together [12, 23–25].
For example, Krishnan et al. [12] introduced the transition
state clustering (TSC) method, an unsupervised segmentation
approach that clusters transition states together from a set of
demonstrations. TSC assumes that the low-level dynamics of
a segment are noisy, but that high-level dynamics follow
a consistent, spatially and temporally correlated partial
order of events across demonstrations. The models used in
many unsupervised approaches assume particular structures
within the prior probabilities and trajectory data, and an
unsupervised method designed for one dataset often fails
to perform satisfactorily on another dataset with a different
underlying structure.

Another prominent segmentation approach involves statisti-
cal model-based changepoint detection algorithms [14, 16, 26–
28]. For example, Fox et al. [14] developed the Beta Process
Autoregressive HMM (BP-AR-HMM), a Bayesian, non-
parametric approach to jointly modeling multiple related
trajectory time-series. In the same vein, Fearnhead and Liu
[16, 27] developed a statistical approach to online changepoint
detection problems by introducing a sampling method similar
to particle filters to reduce computational cost. They assumed
that if an observation sequence and a set of candidate models
are given, then the observation sequence is generated from
specific underlying models, and the points at which the
underlying models change are detected as changepoints.
Konidaris et al. [28] built upon this idea and implemented a
model-based changepoint detection process for constructing
skill trees to acquire skills from human demonstrations.

Although these methods work for activity segmentation
in various scenarios, they either become computationally
expensive to run online or do not perform adequately with
only partial observance of data. In order to address these
problems, we incorporate a supervised learning model with
a statistical changepoint detection algorithm and a particle
filtering-based sampling approach to performing online human
activity segmentation onto a robot. This algorithm is able to
function with only partial observance of trajectory data.

III. METHODOLOGY

In this section, we introduce the FOSAPT (Fast Online Seg-
mentation of Activities from Partial Trajectories) algorithm.
This segmentation algorithm takes a partial trajectory as input
and can recognize and track activity segments as it progresses
in real time. FOSAPT is also capable of further refining the
start and the end times of an activity accurately as that activity
ends. This approach is both computationally inexpensive and
suitable for real-time implementation onto robots.

A. Problem Formulation

Given a set of trajectory spanning time t = 1 to T with cor-
responding trajectory frames F = (f1, f2, . . . , fT ) and a set
of activity labels A = (a1, a2, . . . , am), the activity seg-
mentation problem is defined as identifying the mapping
of trajectory frames to activity labels. In this work, we are
interested in online activity segmentation with only partial
observance of trajectory data.

We define the times at which an activity label changes in
the trajectory frames as denoted by changepoints, τ . Consider
that the trajectory data consists of n activities; we can then
denote (0 < τ1 < τ2 < . . . < τn−1 < T ) and τ0 = 0 and
τn = T as the changepoints in trajectory frames.

The trajectory frames between two changepoints are
denoted as a segment, s. We define a segment of frames
as s(i, j) = (fi, . . . , fj), where f ∈ F and i = τp
and j = τp+1. Thus, given a set of activities A, activity
segmentation produces a set S that contains an allocation of
non-overlapping frame intervals in F with labels drawn from
A. Thus, s(i, j, a) ∀s ∈ S, i, j ∈ T such that i < j, a ∈ A.

Online partial trajectory activity segmentation assumes a
partial set of trajectory frames s(i, k) = (fi, . . . , fk) as input,
where i = τp, k ≤ j = τp+1. The output is s(i, k, a) such that
s(i, k, a) ⊆ s(i, j, a), (i, k, j) ∈ T , (i < k ≤ j), and a ∈ A.

B. Approach Overview

FOSAPT relies upon a small portion of data as it arrives
and checks the likelihood of the label of that segment via a set
of trained activity classifiers. It then incrementally computes
the likelihood value of a larger segment from smaller segment
likelihoods (instead of calculating the likelihood of the larger
segment again). In FOSAPT, transitions through the activity
classes are modeled as a hidden Markov model. It runs
efficiently in an online setting by inferring the maximum
a posteriori estimate of the sequence of activity classes via
a particle-filtering approach. This method is complemented
by an online search process to refine activity segments using
task model information about the partial order of activities, as
well as predictive models of the timings of future activities.
We present the algorithm in Algorithm 1.

C. Activity Likelihood Calculation from Partial Trajectories

FOSAPT utilizes an activity classification algorithm to
measure the activity likelihood of a set of trajectory frames,
described as the likelihood function (Algo 1 - Line 5). In this
implementation, we utilize RAPTOR [29], a real-time, state-
of-the-art activity classifiers; however, FOSAPT is agnostic
to the choice of the activity classification algorithm.



Algorithm 1 FOSAPT

Input: Partial trajectory < ∆F, j, t >, Activity set < A >, Activity classifiers
< C >, Number of sub-classes < B >, Bin lengths < β >, Particles < P >,
Previously detected segments < S >, Future activity list < FAL >

Output: Activity segments < S >, Particles < P >, Bin lengths < β >

1: pList← φ . temporary particle list
2: for a ∈ FAL do
3: if (|∆F | ≥ β(a)) then
4: for b← 1 : B do
5: l ← likelihood (Cb

a, ∆F ) . classifier fitness
6: pr ← prior (a, FAL) . task structure
7: pmp ← prev MAP (P , j, t, A) . find MAP particle ends at j
8: Pt(j, a) ← (1−Ga(t− j − 1)) * l * pr * pmp.MAP
9: MAP ← Pt(j, a) * ga(t− j) / (1−Ga(t− j − 1))

10: np ← Particle (a, b, j, t, l, Pt(j, a), MAP , pmp)
11: pList = pList+ np

12: for p ∈ pList do
13: P ← merge or insert (p, P ) . merge with other particles, or insert in P
14: P ← resample (P ) . resample particles
15: S ← find all segments (P , S) . find all activity segments
16: β ← dynamic bin length adjustments (β, S) . adjust bin lengths from evidence
17: refine activity segments (S) . this step runs in parallel
18: return S, P , β

We first train a set of activity classifiers C =
(ca1 , ca2 , . . . , cam) for each ai ∈ A, where m = |A|, on
a corpus of recorded trajectory frames, such that activity
classifier cai is trained for activity ai. During the training
phase, we train RAPTOR with an ensemble of sub-classifiers
using a part of the full trajectory frames, and combine those
temporally to generate a full activity classifier, similar to the
idea proposed by Hayes and Shah [29]. We divide activity
ai into B sub-classes. We then train (c1ai , c

2
ai , . . . , c

B
ai) sub-

classifiers separately and combine them temporally to generate
classifier cai for activity ai. A training process such as this
permits the algorithm to utilize sub-classifiers directly (e.g.,
check the likelihood of trajectory frames (fi, . . . , fk) with
cbai , where 1 ≤ b ≤ B for activity ai.)

From the training data, FOSAPT models the marginal
probability of each activity length with a probability mass
function g(·). Thus, we can define P (τk − τ(k−1) = d) =
gai(d), where g(·) is a discrete distribution on the length
of activity ai. The corresponding cumulative distribution
function is Gai(d) =

∑d
f=1 gai(f) [16]. Each activity

classifier is a temporal ensemble of B sub-classifiers, and
FOSAPT models the bin lengths as β from the training data,
where β(a) denotes the bin length of activity a. We explain
how to dynamically adjust this value in Section III-J.

During the testing phase, FOSAPT utilizes these sub-
classifiers to measure the likelihood of a partial set of
trajectory frames being an activity. If ∆F denotes a partial set
of trajectory frames (fj+1, . . . , ft), then the algorithm checks
whether the length of the trajectory frames (|∆F |) is greater
than or equal to the bin length of that activity, before
performing the likelihood computation (Line 3). FOSAPT
then tests the likelihood of ∆F being an activity a with each
sub-classifier Cba, where 1 ≤ b ≤ B (Lines 4 and 5).

D. Task Structure Modeling

For a set of trajectory frames (∆F ), if the algorithm needs
to check all possible combinations of activity classes (∀ca for
a ∈ A), then the process would be computationally expensive.
Thus, FOSAPT leverages prior knowledge of the task’s
sequence of activities to reduce the number of classifiers

on which the trajectory frames are tested. Thus, a classifier
is only used to evaluate a trajectory when a task is supposed
to occur at that moment or at a time in the near future.

The algorithm constructs a hierarchical task network similar
to the clique/chain hierarchical task network (CC-HTN)
proposed by Hayes et al. [30]. FOSAPT builds this network
using the high-level task sequences of activities from the
training demonstrations, and generates a future activity list
(FAL) incorporating the possible activities that could happen
at a given moment of time from this task network, including
the current activity. Thus, FOSAPT only tests the trajectory
frames for activities that are present in the FAL (Line 2),
reducing the number of expensive likelihood computations.

E. Activity Prior Computation

The algorithm computes a prior probability (pr(a)) for an
activity (a), described as prior(a, FAL) (Line 6), utilizing
the FAL. This value represents the probability of an activity
occurring at that time. One can learn any prior probability dis-
tribution of an activity from the training data. In our case, the
algorithm assumes that all the activities in the FAL are equally
likely; thus, the algorithm is initialized with a uniform prior.

F. Activity Transition Modeling

Taking inspiration from the statistical changepoint detection
method developed by Fearnhead and Liu [16, 27], FOSAPT
can utilize these values to model the activity transitions as a
hidden Markov model. Here, the observed state at time t is
the trajectory frame, {ft}, and the hidden state is the activity
label, at. The probability of a set of trajectory frames that
starts at time (j+1) and ends at t (∆F = fj+1, . . . , ft) being
activity at can be modeled as the product of the likelihood
of ∆F being activity at (l, measured in Line 5) and the
probability of the segment lasting for (t− j − 1) time steps.
Thus, this probability can be defined as P (∆F |at) = l ∗ (1−
Gat(t− j − 1)). Similarly, the transition probability of the
activities can be defined as T (aj , at) = gat(t−j−1)∗pr(at),
where the transition from activity aj at time j to activity at
occurs at time t, and pr(at) represents the prior probability
of activity at (Line 6) [16, 28].

FOSAPT can now compute the maximum likelihood
sequence for the activities (hidden states) given their transition
probability and the trajectory frames (observation). This
enables the algorithm to use an online Viterbi algorithm
to calculate the MAP estimate of the activity changepoint
positions and the orders. Thus, we compute the probability
of an activity a starting at time (j + 1) and continuing at
time t (Pt(j, a)) as follows:

Pt(j, a) = (1−Ga(t− j − 1)) ∗ l ∗ pr(a) ∗ PMAP
j (1)

PMAP
t = max

j,a

Pt(j, a)ga(t− j)

(1−Ga(t− j − 1))
(2)

A particle filter is employed to efficiently keep the
computation tractable [16], where each particle represents a
segment with activity a that starts at time (j+ 1) and ends at
time t. Each particle stores the activity (a), the start and the
end bin numbers (b), the start time and the end of that activity
segment (j and t), the activity likelihood value (l), Pt(j, a),



Fig. 2: A depiction of the particle generation and merging process. Left)
Particles are generated by computing the sub-classifier likelihoods from
∆F1 frames. Center) New particles are generated from ∆F2 frames (green)
and merged with the previously generated particles (orange). Right) Merged,
new, and old particles are in the particle list (new particles from ∆F2 in
green, merged particles in blue, and old particles from ∆F1 in orange).

the MAP value, and the maximum likelihood sequence.
FOSAPT first computes the MAP particle that ends at time
j from previously generated particles (Line 7), and then
computes Pt(j, a) and the MAP value according to Eq. 1
and Eq. 2 (Lines 8-9). It then generates a new particle and
stores it in a temporary particle list (Lines 10-11).

G. Incremental Pt(j, a) Computation Through Merging

Consider a situation in which ai is currently executing.
Given a small set of trajectory frames, ∆F1 ∼ (fi1 , . . . , fj1),
FOSAPT does not have any information regarding how far
the activity has already progressed, which would enable it to
check a specific sub-classifier. Thus, it checks the likelihood of
the segment ∆F1 by testing against all the sub-classifiers (cbai )
of that activity where b = 1, . . . , B (Line 4). After measuring
the likelihood values for all sub-classifiers, FOSAPT generates
B number of particles, and stores all particles in a particle
list, P (Line 13, insert operation). Suppose these particles
are called (c1ai(∆F1), c2ai(∆F1), . . . , cBai(∆F1)).

FOSAPT then waits for another set of trajectory frames
– for example, ∆F2 ∼ (fi2 , . . . , fj2). Following a similar
process, the algorithm then generates another B particles,
with each particle storing the likelihood of segment ∆F2

tested against all sub-classifiers; these particles are called
(c1ai(∆F2), c2ai(∆F2), . . . , cBai(∆F2)).

Next, the algorithm performs a merge operation. The
idea behind this merge is that the algorithm computes
the likelihood of a larger segment from already-computed
likelihoods of smaller segments. This operation is computa-
tionally inexpensive, but enables the algorithm to efficiently
compute the likelihood of larger segments while concurrently
maintaining multiple possible hypotheses.

Particles must be temporally adjacent in order for the
algorithm to merge them. Two particles are considered
temporally adjacent when they contain the likelihood values
computed from two adjacent sub-classifiers of the same
activity. For example, the algorithm would merge particles
c1ai(∆F1) and c2ai(∆F2)), as the likelihood value of particle
c1ai(∆F1) is computed from sub-classifier 1 (c1ai) and the
likelihood value of particle c2ai(∆F2) is computed from sub-
classifier 2 (c2ai ). As such, during this process, the algorithm
merges c2ai(∆F2) with c1ai(∆F1), and the c1ai(∆F1) particle
becomes c(1−2)

ai (∆F(1−2)), while c2ai(∆F2)) does not change.
To compute the Pt(j, a) of this merged particle

(c(1−2)
ai (∆F(1−2))), FOSAPT utilizes the computed likelihood

values of the c1ai(∆F1) and c2ai(∆F2) particles. As the
trajectory segments are temporally adjacent but independent,
the activity likelihood values of the merged trajectory segment
(∆F1+∆F2) are computed by taking a product of the activity
likelihood of both segments and then normalizing it over the
number of segments (Line 5). Similar to RAPTOR, FOSAPT
performs a max-pooling operation on the likelihood values
before performing this computation. The algorithm updates
the values of other statistics by following the steps presented
in Lines 6-9 for the merged segment. (We present this merging
step in Fig. 2.) After merging the eligible particles, the
algorithm updates the particle list, P .

H. Resampling

To keep the computation tractable, when the number of
particles (|P |) reaches a predefined threshold (RN ), FOSAPT
applies a resampling algorithm to reduce the number of
particles to a fixed value (RM ) (Line 14). First, the algorithm
removes the particles with a starting sub-classifier number
higher than a threshold value, as these particles represent the
final portion of an activity and are not likely to produce a
larger segment to represent a major part of the activity in
the future. Second, the algorithm removes any segments that
are not updated for a set time period. In our implementation,
FOSAPT measured the longest time each activity takes from
the training data, summed this value with the square root
of the standard deviation value of that activity time, and set
the result as the maximum allowable time for a particle of
that activity to be alive. Finally, after applying both of the
previous filtering methods, if the total number of particles
is higher than RM , FOSAPT prunes m% of the particles
with the lowest likelihood.

I. Compute Activity Segments

After completing the particle generation process, the
algorithm’s goal is to identify the activity sequence from
the observed trajectory up to that time step. To do so,
FOSAPT first finds the particle within the particle list (P )
with the highest Pt(j, a) value at time t. We impose additional
constraints that a particle must be longer than a predefined
number of bin lengths (β) and the likelihood value of that
particle must be greater than a likelihood threshold value
(φ) before it can be selected as a candidate for an activity.
After finding this particle, the algorithm adds this particle to
a max particle path. All the activity segments are computed
by backtracking the max particle path (Line 15).

J. Activity Time Prediction and Dynamic β Adjustment

FOSAPT updates its predictions about activity timing to
improve segmentation performance. If a test activity trajectory
is longer or shorter than the training trajectories, the bin
length (β) of that activity must be adjusted accordingly to
compute accurate likelihood values from the sub-classifiers.
To address this challenge, we designed an algorithm that
generates predictions about the timing of future activities
based on observed timings of previous activities and adjusts
the bin length (β) according to these predictions.



A Gaussian Mixture Model (GMM) is used to model tem-
poral predictions of an activity time. To facilitate prediction
based on learned data, we use the conditional decomposition
of the model. This allows the algorithm to incorporate
accumulated evidence as it is obtained from the activity
segmentation. The conditional of the GMM can be calculated
as follows: p(xs|xd) =

∑
k wk

pk(xd)
p(xd) · pk(xs|xd). Here,

xs represents the variables over which inference is to be
performed, and xd represents the variables for which evidence
exists. This equation illustrates that the conditional of a sum
is the weighted sum of the individual conditionals of the
mode, with the weight defined by a ratio of the marginals.
FOSAPT trains these models during the training phase.

As more information is obtained during the testing phase,
the model can be updated to form a new distribution with
different means and variances. The conventional method for
forming a prediction would be to use the maximum of the con-
ditional distribution. However, to hasten inference, FOSAPT
incorporates the mean of the highest weighted mode in lieu
of the true maximum, which is interpreted as the prediction.

After computing the timing of the current activity and pre-
dicting the timing of future activities, FOSAPT adjusts the bin
length (β) of each activity, while the number of sub-classifiers
(B) remains the same. This dynamic bin length adjustment
process (Line 16) makes the algorithm robust to any deviations
from the trained models with regard to activity timing.

K. Refine Activity Segments
As activity segmentation progresses, FOSAPT performs

another concurrent search within previously detected activity
segments to refine its assessment of the likely start and end
time points. This search helps to determine the accurate
transition points to nearby activities.

To search for an accurate bound, the algorithm moves the
beginning and ending of a previously detect segment forward
and backward to identify the part with the highest likelihood
value. As this segmentation search is only employed on
completed activity segments, it does not interfere with the
current activity segmentation approach; this step runs in
parallel with the current activity segmentation steps. To reduce
computation, this step is only executed on an activity segment
when that segment does not change in the activity segment
list, S, for a predefined amount of time. Were the activity
sequence to change in the future, the refinement process
would be executed again on S (Line 17). The overall time
complexity of FOSAPT is O(|FAL| ∗B ∗ |∆F |+ |P |).

IV. EXPERIMENTAL VALIDATION

We evaluated FOSAPT’s performance by comparing it
against two activity segmentation methods from prior litera-
ture: the Change Point Detection (CPD) algorithm developed
by Fearnhead and Liu [16], which uses a similar statistical ap-
proach to FOSAPT for tracking activities; and the Transition
State Clustering (TSC) algorithm by Krishnan et al. [12], a
state-of-the-art activity-clustering algorithm. In our implemen-
tation, the CPD algorithm used RAPTOR to determine the
likelihood value of a segment, which helped us to make a fair
comparison between CPD’s and FOSAPT’s performances.

We also evaluated FOSAPT’s performance using three
activity datasets: a motion-capture dataset of the automotive
dashboard assembly process of real industry associates, a pub-
licly available activity dataset (UTKinect [17]), and reaching
behavior during a manufacturing task (Static-Reach [18]).

In collaboration with an industry partner, we designed a
test scenario for the assembly of a car dashboard (“Auto-DA”
dataset). This dataset included a total of eight activities. We set
up a testbed within our industry partner’s automotive assembly
factory, where a total of 12 factory associates (ten males and
two females) participated in a total of four variations of the
assembly task. Each task sequence was 54.4 seconds long,
on average. The positions and orientations of a total of seven
objects (both hands, head, dashboard, speedometer, navigation
unit, and a scanner gun) were tracked using a VICON motion
capture system at a frame rate of 30Hz.

We combined similar activities from the UTKinect dataset
[17] into the following five activity classes performed in se-
quence: walk, sit, pick up and transport object, shake object,
and hand gestures. We removed undefined activities between
labeled activities from each trial, merged all the activities
sequentially for evaluation purposes, and sampled at 15Hz.
One trial was not included in the data, as it did not contain
all the activities on the list. The dataset contains 20 skeleton
joint positions of a person tracked with a Kinect sensor.

The Static-Reach dataset was recorded via a PhaseSpace
motion capture system during a human-robot collaborative
task [18]. Each trial consists of 16 sequential human activities.
Similar to the UTKinect dataset, we merged the sequential
activities for evaluation purposes and sampled at 120Hz.

V. RESULTS

A. Evaluation metrics

We first measured the intersection-over-union (IoU) scores
of the algorithm, following a process similar to that used
in prior work ([13] and [12]). For example, if the algorithm
segments an activity from a trajectory as s (representing the
time duration from a starting time point to an ending point)
and the ground-truth activity segment is GT, then the IoU is
measured as IoU = (s ∩GT )/(s ∪GT ).

Activity segments were manually annotated for our Auto-
DA dataset. We then computed segment accuracies by
following an approach similar to those taken by Wu et al.
[13] and Krishnan et al. [12]. We considered a segment to
be detected accurately if the IoU value of that segment was
higher than a threshold (δ). As we used real-world datasets,
in keeping with Wu et al. [13], we set δ = 0.4.

To evaluate the accuracy of FOSAPT and the CPD
algorithm, we performed leave-one-out cross-validation across
the trials for each dataset. As TSC is an unsupervised
segmentation algorithm, we provided all trajectories of each
dataset as input, and report the mean accuracy of five runs.

B. Accuracy of FOSAPT

We measured FOSAPT’s activity-segmentation accuracy
for all task types within the Auto-DA dataset, and present the
results in Table I. The results indicate that FOSAPT detected



TABLE I: Activity segmentation accuracy (%) of the FOSAPT algorithm
and the percentage of initial frames of the whole trajectory it observed to
accurately detect an activity applied to the Auto-DA dataset

Segmentation accuracy (%) Initial frames (%) to detect
mv dash 78.0 14.3
mv meter 76.0 23.4
col meter 90.0 31.4
pl meter 66.0 37.4
mv nav 68.0 47.8
col nav 82.0 32.5
pl nav 68.0 50.1

exit 50.0 14.8
Average 72.2 31.6

segments with an average accuracy of 72.2% for the Auto-DA
dataset, with variation from 50.0% to 90.0% depending upon
the task types. For this dataset, we utilized a sequential task
structure and set |FAL| = 3, RN = 120, RM = 100, φ =
−5.0, and B = 15 with 50% overlap between adjacent bins.

As the CPD algorithm had to generate particles for all
activity types, the segmentation process became very slow,
and it was unable to finish within 10 minutes (each task
was 54.4 sec long, on average). Therefore, we incorporated
the FAL (in Section III-D) and φ (in Section III-I) to keep
computation tractable. We set |FAL| = 3 and φ = −5.0,
identical to the setting for FOSAPT. In keeping with the
parameters used in Krishnan et al. [12], we set the parameters
of TSC for all datasets, and followed a similar approach for
activity label generation for the segments.

We report segmentation accuracy across all three datasets
for FOSAPT, the changepoint detection (CPD) algorithm, and
the transition state clustering algorithm (TSC) in Table II. The
results suggest that FOSAPT was more accurate than either
CPD or TSC across all three datasets, and that FOSAPT
achieved an improvement in accuracy ranging from 11.3%
to 65.5% vs. CPD and TSC.

We also present the number of missing activity segments
reported by the algorithms in Table II. The number of missing
segments was calculated by counting the number of segments
from the ground-truth data that the algorithms did not reported.
Our findings suggest that FOSAPT failed to detect segments
in fewer cases than either CPD or TSC in both the Auto-
DA and UTKinect datasets (5.8% and 0.0%, respectively).
CPD yielded fewer missing segments (3.8%) than FOSAPT
(4.4%) for the Static-Reach dataset; however, CPD also
demonstrated a lower accuracy within that dataset (20.0%
accuracy compared to 88.8% with FOSAPT).

C. Performance with partial observance of trajectory data

FOSAPT is capable of detecting activities by observing just
a partial trajectory of the full demonstration. We measured
how long FOSAPT took to report a ground-truth activity label
after the start of the activity. We then subtracted the ground-
truth start time of each activity from the time when FOSAPT
first reported that activity, and normalized it using the total
duration of that ground-truth activity segment. Here, we only
considered activity segments that were accurately segmented
by FOSAPT. The results, presented in Table I, indicate that
FOSAPT can segment out activities just by observing 31.6%
of the full trajectory of an activity (on average).

TABLE II: Accuracy (%) and Missing Segments (%) of each algorithm
across three datasets

Auto-DA UTKinect Static-Reach
Acc. Miss. Acc. Miss. Acc. Miss.

FOSAPT 72.2 5.8 70.5 0.0 88.8 4.4
CPD 42.9 35.0 43.4 2.1 20.0 3.8
TSC 6.7 72.0 59.2 17.5 69.6 16.0

D. Robot Demonstration
We applied FOSAPT in an industrial setting via a robot

demonstration. We emulated a similar dashboard assembly
scenario to the Auto-DA dataset, where, a collaborative
robot tracked the human worker’s progress through the
task using FOSAPT and provided the person with the right
materials for assembly at the appropriate time. A video of
the demonstration is available here: http://tiny.cc/FOSAPT.

VI. DISCUSSION AND CONCLUSION

FOSAPT outperformed all other evaluated baselines across
all datasets and metrics tested. It performed best on the
Static-Reach dataset (88.8% accuracy), as most of the demon-
strations of this dataset followed similar paths during activity
executions and exhibited relatively less jerky motion. Thus,
the computed likelihood values were less ambiguous between
consecutive activities, aiding in the accurate identification
of activity segments. On the other hand, in the case of the
UTKinect dataset (70.5% accuracy), various people performed
similar actions in different ways, which could have contributed
to ambiguous likelihood values for the changepoint positions
and resulted in less-accurate performance by FOSAPT.

TSC demonstrated reasonably high accuracy for the
UTKinect and Static-Reach datasets (59.2% and 69.6%,
respectively); however, it only achieved 6.7% accuracy on
Auto-DA. In the UTKinect and Static-Reach datasets, only
the activity segments were temporally combined; thus, there
was a substantial change to the trajectories near the activity
changepoints. As TSC clusters similar data patterns, this
change might contribute to better activity segmentation.
However, this was not the case for the Auto-DA dataset, as it
contains continuous trajectory frames for each demonstration,
and TSC failed to find appropriate changepoints across the
demonstrations, as each person might perform the same
activity differently in space and time.

On the other hand, CPD demonstrated segmentation
accuracy of 42.9% for the Auto-DA dataset and 43.4% for
the UTKinect dataset, but of only 20.0% on the Static-Reach
dataset. As CPD is an online algorithm, the frame rate
contributed to its performance: the Static-Reach dataset had a
higher frame rate (120 Hz) than the other datasets (30 Hz for
Auto-DA and 15 Hz for UTKinect); thus, CPD had to generate
more particles with a small degree of variation on the data,
which could result in many inaccurate segment detections.

In this work, we presented FOSAPT, an online activity
segmentation algorithm capable of accurately identifying and
labeling activity segments, which demonstrated improved
segmentation accuracy compared with two state-of-the-art
segmentation algorithms, and was able to segment activities
only by processing a part of the full activity trajectory (31.6%
of the initial trajectory) while running online.
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