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Abstract— To be effective team members, it is important
for robots to understand the high-level behaviors of collocated
humans. This is a challenging perceptual task when both the
robots and people are in motion. In this paper, we describe
an event-based model for multiple robots to automatically
measure synchronous joint action of a group while both the
robots and co-present humans are moving. We validated our
model through an experiment where two people marched both
synchronously and asynchronously, while being followed by two
mobile robots. Our results suggest that our model accurately
identifies synchronous motion, which can enable more adept
human-robot collaboration.

I. INTRODUCTION

In order for robots to competently and contingently col-
laborate with humans, they need to be able to solve the
challenge of sensing high-level human activities occurring
in their surroundings. This is particularly important when
both the robots and people are moving [1], [2]. While recent
advances in the field have improved robot perception in
general (c.f., [3]), it is still difficult for a robot to recognize
high-level human actions in the real-world, and use that
information in a timely fashion to make informed decisions
about their own actions [4].

For example, a robot might encounter people in a group
performing various social actions, such as engaging in social
games or synchronized movements. It can be difficult for a
robot to perceive and understand all of these different types
of events to make effective decisions. If a robot could make
better sense of its environment, its interactions with humans
would reach a higher level of coordination, resulting in a
fluent meshing of actions [5]–[9].

Researchers from the activity recognition, robotics, and
neuroscience communities generally consider psychomotor
tasks to be comprised of motor primitives (also referred
as motor schemas, control modules, and prototypes) [10]–
[14]. The idea is that psychomotor tasks are comprised of
“building blocks at different levels of the motor hiearchy”
[12]. Stored primitives are syntactically combined to enable
a wide range of complex actions. While there are theoretical
debates in the aforementioned communities about the optimal
way to model both primitives and higher-order tasks [15],
[16], for practical purposes, researchers have successfully
built working systems over the past few decades [17].

In our work, we focus on kinematically-defined primitives,
which relate to sequences of movements made by the limbs
in 3D space. Many successful approaches have been em-
ployed for detecting these primitives [17], with strong results
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Fig. 1. Our research explores psychomotor entrainment between groups of
people and robots, where we work toward enabling robots to automatically
sense and respond to synchronous group behavior.

realized for detecting a range of human behaviors from gross
motor motion (walking, lifting) to manipulation (stacking
objects, brushing teeth) [4], [18]–[23]. We explore the use
of these primitives within the context of groups of humans
and robots interacting.

While this work is useful for some perceptual situations,
from a human-robot teamwork perspective it may not tell
robots much information about the context of how humans
are interacting within the environment and with one another.
This makes it challenging for robots to respond appropriately,
and even more so when both the robots and co-present
humans are moving [2], [24].

Synchronous motion, or joint action, is a common type of
high-level behavior encountered in group interaction. This is
a form of social interaction where two or more participants
coordinate their actions in space and time while making
changes to their environment [25]. Synchronous joint action
is an important behavioral indicator of group-level cohesive-
ness, and also important for accurately understanding the
affective behavior of a group [26], [27]. It is also a key com-
ponent of human audio-visual attention and direction, and of
social learning and cognitive development [28], [29]. Thus,
there are many reasons why understanding synchronous joint
action will help robots better perceive humans.

Researchers in the fields of cognitive science, kinesiol-
ogy, and music have explored joint action measurement in
human-human interaction (HHI), employing techniques such
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as modeling joint movement and human-behavior matching
[26], [30]–[35]. Joint action has also recently surged in
interest in the field of human-robot interaction (HRI) [36]–
[46]. However, typically this research has been more geared
toward dyadic HRI (one human, one robot), and has focused
more on manipulation tasks.

In contrast, our work focuses on enabling robots to interact
fluidly within groups of people, and focuses more on gross
motion rather than dexterous manipulation [6], [7]. This is an
important gap to address, as a large amount of human activity
takes place in groups, and within groups there is a higher
likelihood of synchronous activity occurring [26]. Thus,
robots that can be aware of such activity and determine how
best to engage are more likely to be accepted by humans [2].

If robots are to obtain this capability, however, they must
first be able to accurately sense synchronous action occurring
around them, ideally while in motion. To enable this, we
present a method to automatically measure synchronous joint
action between people as observed from mobile robots. Our
method uses multiple types of task-level events performed by
humans in the robot’s environment to measure synchronous
joint action. In this paper, we successfully validated our
method against a rhythmic group activity (marching), as
observed by two autonomous mobile robots (see Section III).
In Section IV we present the results from this validation,
and in Section V discuss their implications for the research
community.

II. EVENT SYNCHRONIZATION MODEL

In an HHI scenario, each performer generates many in-
teraction events, which result from the high-level tasks they
perform. The timing as well as the outcome of each event
depends on the events preceding it. The overall synchroniza-
tion of a group depends on all of these task-level events.

Quian Quiroga et al. [47] proposed an event synchro-
nization (ES) method which can be used for any time-
series where events can be defined. This ES method is
based on the relative timing of events. It is also possible
to determine the leader-follower relationship between two
time-series using the ES method, if one exists. Varni et al.
[48] proposed an extension of this work to measure group
synchronization using interaction patterns (i.e., synchronous
motion). However, these methods only are able to incorporate
homogeneous types of events (such as EEG signals or head
motion trajectories).

To address this gap, we proposed a new method to
automatically measure group psychomotor entrainment [49],
[50]. In contrast to other techniques, our method takes
multiple types of task-level events into account, is able to
detect both asynchronous conditions, and is able to work with
non-periodic time series data as it estimates entrainment.

We describe our method in detail in Section II-A and
Section II-B. Here, we will first describe the method to
measure synchronization of a human-robot group for single
events. Later we will describe the extension of this model
for multiple event types.

A. Measuring synchronization of a single type of event
across two time-series

The task-level events associated with each individual in-
volved in an interaction scenario can be expressed by a
time-series. As described by Quian Quiroga et al. [47],
suppose xn and yn are two time-series, where n = 1 . . . N .
Here, each time-series has N samples. Suppose, mx and my

are the number of events occuring in time-series x and y
respectively, and E is the set of all events.

The events of both series are denoted by ex(i) ∈ E and
ey(j) ∈ E, where, i = 1 . . .mx, j = 1 . . .my . The event
times on both time-series are txi and tyj (i = 1 . . .mx, j =
1 . . .my) respectively. In the case of synchronous events in
both time-series, the same event should appear roughly at
the same time.

Two events are synchronous if the same event appears on
both time-series within a time lag ±τ . Now, suppose cτ (x|y)
denotes the number of times a single type of event e ∈ E
appear in time-series x shortly after they appear in time-
series y. Here,

cτ (x|y) =
mx∑
i

my∑
j

Jτij (1)

where,

Jτij =


1 if 0 < txi − t

y
j < τ

1
2 if txi = tyj
0 otherwise

(2)

Similarly, cτ (y|x) denotes the number of times a single
type of event e ∈ E appear in time-series y shortly after
they appear in time-series x. And,

cτ (y|x) =
my∑
j

mx∑
i

Jτji (3)

where,

Jτji =


1 if 0 < tyj − txi < τ
1
2 if tyj = txi
0 otherwise

(4)

Qτ (e) represents the synchronization of events in two
time-series, where we are only considering a single type of
event e in both time-series. From cτ (x|y) and cτ (y|x), we
can calculate Qτ (e) as,

Qτ (e) =
cτ (x|y) + cτ (y|x)
√
mxmy

(5)

The value of Qτ (e) should be in between 0 and 1
(0 ≤ Qτ (e) ≤ 1), as we normalize it by the number
of events that appear in both time-series. Qτ (e) = 1 shows
that all the events of both time-series are fully synchronized,
and appeared within a time lag ±τ on both time-series. On
the other hand, Qτ (e) = 0 shows us that the events are
asynchronous.

If there exists any leader-follower relationship of the
events in time-series x and y, then cτ (x|y) and cτ (y|x)
values give us that pattern [47]. This relationship can be in-
corporated during the calculation of synchrony for situations
where this pattern might be important.
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Fig. 2. A) First validation measured people performing synchronous joint
action in a static setup [49]. B) Current validation method has autonomous
mobile robots following humans moving synchronously. P1 and P2 are the
performers, and B1 and B2 are the robots.

B. Measuring synchronization of multiple types of events
across two time-series

When we are only considering a single type of event,
Qτ (e) gives us the synchronization of events in two time-
series. Now, we extend the notion of synchronization of
events in two time-series for multiple types of events.

Suppose we have n types of events {e1, e2, . . . , en} ∈
E(n), where E(n) is the set of all types of events.. First,
we calculate Qτ (ei) for each event type ei ∈ E(n). While
calculating Qτ (ei), we will not consider any other type of
event, except ei. Now, let mx(ei) be the number of events of
type ei occurring in time-series x and my(ei) is the number
of events of type ei occurring in time-series y.

To measure synchronization of multiple types of events
between two time-series, we take the average of Qτ (ei) for
each event type ei, weighted by the number of events of that
type. We will call this the synchronization index of that pair.
So, the overall synchronization of events in time-series x and
y of that pair is:

∀ei ∈ E(n) : Qxyτ =

∑
[Qτ (ei)× [mx(ei) +my(ei)]]∑

[mx(ei) +my(ei)]
(6)

If all events are synchronous in both time-series, then the
value of Qxyτ will be 1. On the other hand, when the events
are not synchronous at all, the value of Qxyτ will be 0. We
applied this model to a synchronized activity recorded using
two mobile robots tracking two performers.

III. METHOD VALIDATION

A. Method

In our prior work, we validated our method observing
groups of people performing a synchronized psychomotor
activity (“the cup game”) using fixed sensors (see Fig. 2-left)
[49], [50]. Here, we wanted to extend this work to explore
how well our method worked with mobile sensors (robots)
and mobile people. We were also interested in exploring
asynchronous conditions. Thus, we analyzed the synchrony
of people marching as followed by two mobile robots.

Marching is a group activity that is both dynamic as well
as rhythmic in nature [51]. We conducted a set of controlled

Fig. 3. A comparison of synchronous and asynchronous events captured
by the mobile robots. Dots represent the tracked positions of the feet.

experiments where we had two individuals perform four
different sets of marching actions (see Fig. 3). In each
experiment, a mobile robot followed each performer to detect
different events while the person was marching (see Fig. 2).

We used two Turtlebot robots as the mobile platforms
in our experiment, and used their attached Kinect sensors
for capturing data. The Turtlebot is an open-hardware and
software platform comprised of an iRobot Create platform, a
Microsoft Kinect, and an ASUS laptop running the Groovy
version of the Robot Operating System (ROS) on Ubuntu
Linux [52], [53].

Prior to our experiments, we adjusted the Kinect sensors
on our Turtlebots so that they could track the performer’s
feet when they stepped and raised each foot. We used the
TurtleBot’s “Follower” program so that our robots could
follow people autonomously while recording data, and stored
the data in the ROS bag format.

We recruited two naive performers by word-of-mouth
for our validation experiments. We gave both performers
instructions for marching, and conducted one practice session
before each of our four marching scenarios. We recorded two
sessions for each of our four scenarios for analysis to account
for noise.

In each scenario, we instructed each performer to perform
a “high-march”, picking up their knees and feet to an
exaggerated degree. The first performer led the march, and
was situated on the left side of the hallway. We situated the
second performer behind and to the right of the first marcher
as they moved down the hallway so that they could adjust
their actions based on those of the first performer (see Fig. 2).
All scenarios lasted approximately 35 seconds, and timed
using a stopwatch. We gave the first performer an mp3 player
with a set of noise-cancelling headphones playing John Philip
Sousa’s “Stars and Stripes Forever” march to keep tempo
and prevent any noise-related distractions. Since the second
performer is behind the first performer, the marching pace or
pattern of the second performer did not affect the marching
pace or pattern of the first performer.

In the first experimental scenario, the performers marched
down a hallway in a synchronized manner. During this
scenario, the second marcher followed the steps of the first
marcher. In the second scenario, the second marcher followed
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Fig. 4. A decomposition of events one through four that are used in event
synchrony measurement. Overall, all events occur in two seconds.

the steps of the first marcher, but did so in the opposite order.
For example, when the first marcher raised their left foot, the
second marcher raised their right.

For our third scenario, both performers started out march-
ing in a synchronous fashion, became asynchronous after 12
seconds, then synchronous again after 24 seconds. The fourth
scenario reversed the actions of the third scenario, where
both marchers began unsynchronized, became synchronized
after 12 seconds, and unsynchronized after 24 seconds. We
verbally told the second performer when to switch their steps
to after these time periods by saying “switch”. Fig. 3 shows
the synchronous and asynchronous marching patterns.

B. Data Collection

Before recording data, both systems were synchronized
with an Ubuntu time-server to ensure that both systems kept
accurate timing. The videos of each performer were time-
synchronized, and analyzed using our model to determine
the group synchrony based on the occurrence of events.

To measure the overall group synchrony, we had to first
determine the different task-level events of this group activity
(i.e., a leg raise, or a leg leaving the ground) from the
recorded videos. For this experimental setup, we defined two
types of events to measure overall group synchrony. The first
type of event was when a person begins to raise his/her a
leg from the ground. The second type of event was when a
leg reaches its maximum height. As a result, a total of four
types of events occur when a person is marching (one of
the aforementioned events for each leg). See Fig. 4 for an
example of these events.

To track each performer’s feet, we used a standard blob
tracking technique. We used the ROS cmvision package to
track color blobs in RGB images. We attached four unique
small squares of colored paper (orange, yellow, green, and
red) to the performers’ left and right feet, while each robot
followed behind each performer at a distance of two feet to
track each performer’s actions.

Fig. 6-A shows the expected synchrony for these four sce-
narios. We expected to see a high value for a synchronization
index for the entire duration of a session for Scenario 1, and
a value of zero for Scenario 2. For Scenario 3, we expected to
see our measured synchronization index decrease beginning
around seven seconds to a value of zero at 12 seconds,

Fig. 5. This figure shows the detection of each event for one foot to show
when a person’s foot is leaving the ground, and when their foot reaches its
maximum height.

and increase again at about 20 seconds. For Scenario 4, we
expected similar results, however in reverse order.

C. Data Analysis

From all detected blob positions, we first discarded very
small blobs as noise. The remaining blob positions were con-
sidered candidates for a foot position. From these candidate
blob positions, we generated an undirected graph by treating
each blob center as a vertex of that graph. Two vertices were
connected in this graph with an edge if they were closer to
each other than a threshold distance.

From the resultant graph, we calculated the connected
components. We then clustered all connected components
together, and measured the total area of all blobs in each
cluster. The cluster of blobs with the largest area was defined
as the location of the foot in the RGB image. The center
of that cluster, calculated by taking the mean position of
each blob of that cluster weighted by each blob’s area, is
considered the foot position.

We then detected the high-level events in this rhythmic
activity from the movements of each performer’s feet. While
marching, the foot position begins to move in an upward
direction when the foot leaves the ground and eventually
reaches its maxima before descending back downward [54],
[55]. From the recorded video from the mobile robots, we
found that this phenomenon also holds.

In our recorded video, the position of each foot changes
significantly along the vertical axis of the RGB image plane
while marching. Since the robot is also moving, we must
extract the movements of the feet without regard to the
robot’s movement. Due to the ego-motion of the mobile robot
and the attached camera, the position of the feet changed
in every frame along both axes, although the feet were
stationary in the real world. However, in the case of marching
(raising the feet from the ground up), the change of the
position of the feet along the vertical direction is significantly
larger than the changes in position in the RGB image caused
by the ego-motion.

To detect high-level events, we calculated the local ex-
trema (maxima and minima) of the positions of the feet along
the vertical axis. While calculating the local extrema, we
use an additional condition that discarded any extrema that
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occurred within a specific period of time. This additional
condition helps remove noise due to poor tracking or drastic
movement caused by the robot’s motion.

Due to the robot’s ego-motion, the changes of the feet
positions along the vertical axis were less than when they
performed marching steps. An example of this effect can be
seen between 3.2 and 4.6 seconds in Fig. 5. Our measure
also accounts for this effect.

Our local minima and maxima are used to give us the time
when a foot starts to leave the ground and when it reaches its
maximum height. From these values, we are able to define
that an event occurred during that time. This measure is
independent to the ego-motion of the robot in our setup, as
well as the height and pacing of each performer’s movement.
Fig. 5 describes this event detection model.

From the recorded video, we detected the events for both
performers. We then measured the overall group synchrony
using the model described in Section II.

IV. RESULTS

To sufficiently measure synchrony, we found a five second
window to be ideal. This is due to the fact that each
performer needed about one second to complete one step,
and around two seconds for all four events to occur (one for
each foot leaving the ground, and one for each foot reaching
its maximum height, as shown in Fig. 4). We used τ = 0.21s
and a sliding window of 5s for the calculation.

Each march session lasted about 35 seconds. Fig. 6 shows
the synchronization index of each session over time. Here,
four sessions are presented in four different graphs. As we
used a sliding window size of five seconds, the synchroniza-
tion index value for the zeroth second actually represents the
synchronization index value on the window from zero to five
seconds.

In Fig. 6, one can see that the synchronization index
of the group is approximately 0.7 for the first experimen-
tal scenario, where the second performer was instructed
to synchronously follow the steps of the first performer.
In the case that the performers are asynchronous in their
movements, then the synchronization index will be zero. On
the other hand, if movement is very synchronous, then their
synchronization index will be close to one.

The synchronization index of the second scenario is also
presented in Fig. 6, which shows that the synchronization
index is zero across the entire session. This indicates that
during the time that our performers were marching, no event
occurred in-sync over the entire session.

For the third experimental scenario, one can see that for
the start of the session, the synchronization index was ap-
proximately 0.7 for the first few seconds, as shown in Fig. 6.
This is due to the fact that we instructed performers to begin
this session by marching in a synchronous manner. After
12 seconds, we verbally instructed the second performer to
switch their steps and become asynchronous with the first
performer, causing the synchronization index to decrease.
After 24 seconds, we again verbally instructed the second
performer to change their synchrony with the first performer

Fig. 6. A) The expected synchronization indices of our experimental
scenarios. B) Actual synchronization indices of our experimental scenarios.

using the term “switch”. This caused an increase in the
synchronization index.

From Fig. 6, we can also see that the synchronization index
became zero around the 12th second, which shows that the
synchronization index for the five second window starting
at the 12th second was zero. As we are using a sliding
window of five seconds, the synchronization index began
to decrease after approximately seven seconds. Similarly,
when the second performer became synchronous with the
first performer at the 24 second mark, we see a increasing
synchronization index value starting at the 19th second mark.

For the fourth experimental scenario, one can see that
the synchronization index was zero at the start of the
session. This is because the performers began marching asyn-
chronously until approximately the 12 second mark, where
they became synchronous. After about the 24th second,
marchers became asynchronous again. From the graph, we
also see that the synchronization index is higher in the case
of synchronous movements, which started to increase around
the seventh second in the graph due to the sliding window
algorithm. The synchronization index starts to decrease after
the 20th second mark when movements are asynchronous
after the 24th second, thereby dropping the synchronization
index to zero.

We present the mean value of the synchronization indices
of the sliding windows in Table I. In the first row, we present
the average value of the synchronization indices of the sliding
windows starting from zero to seven seconds. These sliding
windows originally cover all of the events that occur between
zero to 12 seconds. The second row shows the values of the
sliding windows from the seventh to the 19th, and the last
row presents from the 19th to the 30th second. The last two
intervals represent the events occurring from the 12th to 24th
second, and 24th to 35th second in real-time, respectively.
We use these intervals because we instructed our second
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TABLE I
MEAN SYNCHRONIZATION INDICES DURING EACH INTERVAL OF

MARCHING

Time Mean Synchronization Index

Scenario 1 Scenario 2 Scenario 3 Scenario 4

0-12s 0.67 0 0.8 0
12-24s 0.68 0 0.18 0.55
24-35s 0.79 0 0.68 0

marcher to switch the marching pattern at the 12th and the
24th second during the third and fourth scenarios.

From Table I one can see that the mean value of synchro-
nization indices does not change much for Scenario 1 and 2,
since the marching pattern did not change during these cases.
For Scenario 1, the mean synchronization indices are high
for all three time intervals. On the other hand, for all three
intervals, we see the values are zero for Scenario 2. We see
changes of the synchronization index value for Scenario 3
and 4 in different intervals. For Scenario 3, we observe lower
values for the middle interval when the performers were
asynchronous, and higher values for first and last interval
when the performers were synchronous. We observe the
opposite pattern for Scenario 4, with a higher value in the
middle interval when the performers were synchronous, and
lower in the first and the last interval where the performers
were asynchronous.

V. DISCUSSION

As shown in Fig. 6, the synchronization indices for the
four scenarios matched our expectations. The first scenario
(synchronized) showed a high synchronization index (0.67)
for the entire duration of the session. The second scenario
(unsynchronized) similarly matched our expectations, with a
value of zero for the entirety of the session. The third sce-
nario (mixed, with a synchronized start) showed high values
for time-frames that the second performer was instructed to
be synchronized, and a value of zero for the time frame
they were instructed to be unsynchronized. Scenario four
(mixed, with an unsynchronized start) also matched these
expectations.

Our results suggest that our method is effective in captur-
ing and processing synchronized joint action occurring with
both robots and people in motion. This work is encouraging
for future work in understanding high-level group behavior
detection and measurement in real-time for robotics. This
work will also help in the design of robot behavior that
generates synchronous joint action. Considering motion may
distort sensing, our results show that our method was capable
of detecting synchronized events and measuring synchronous
joint action between two individuals in motion, independent
of the height and pacing of steps.

While we expected a higher synchronization index value
for Scenario 1, this could be due to a variety of reasons.
Lighting and illumination variation may have an effect on
blob tracking, especially since the robot and person are con-
stantly in motion. Such changes may affect color calibration

and tracking, causing the algorithm to miss a correct event
or detect an incorrect event.

Our work is especially useful for human-robot collabo-
ration. The results suggest that despite the difficulties in
recognizing high-level group tasks for robots, we are able to
detect synchronized events and measure synchronous joint
action in motion using mobile robots. This work addresses
the problem of detecting synchronized events that involve
movements, despite current limitations that result from sen-
sor noise and distortion due to motion.

In addition, our work may support researchers exploring
human-robot fluency. Our method can enable a robot to have
an automatic understanding of human motion in order to
inform its own actions in response. This can play a role in
handovers and collaborative manipulation [8], [9], [56].

This work is also useful for fields outside of robotics,
such as social signal processing, kinesiology, and computer
vision. Many researchers in these fields are interested in
sensing and modeling human motion and using it to inform
autonomous behavior; this work represents an important step
that direction.

In terms of future work, this research represents the next
step toward creating a real-time robotic system capable of
understanding high-level group behavior to inform appropri-
ate actions. Despite the constant motion of the performer, the
constant movement of the robot, as well as variance in pacing
in our study, our synchronization algorithm performed well
in all scenarios. These findings inform our future work as
we move to other scenarios, such as enabling joint action
for robots interacting in groups, both online and in real-
time. We have begun exploring this idea in human-robot
group dance settings [57]. We also may explore alternative
processing techniques to mitigate issues relating to light and
color variation.
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