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Abstract—In order to be effective teammates, robots need to
be able to understand high-level human behavior to recognize,
anticipate, and adapt to human motion. We have designed a new
approach to enable robots to perceive human group motion in real
time to anticipate future actions and synthesize their own motion
accordingly. We explore this within the context of joint action, in
which humans and robots move together synchronously. In this
paper we present an anticipation method, which takes high-level
group behavior into account. We validate the method within a
human–robot interaction scenario, in which an autonomous mobile
robot observes a team of human dancers and then successfully and
contingently coordinates its movements to “join the dance.” We
compared the results of our anticipation method to move the robot
with another method that did not rely on high-level group behavior
and found that our method performed better both in terms of more
closely synchronizing the robot’s motion to the team and exhibiting
more contingent and fluent motion. These findings suggest that
the robot performs better when it has an understanding of high-
level group behavior than when it does not. This study will help
enable others in the robotics community to build more fluent and
adaptable robots in the future.

Index Terms—Coordination, human–robot collaboration,
human–robot joint action, movement analysis, synchronization.

I. INTRODUCTION

A S technology advances, autonomous robots are becom-
ing more involved in human society in a variety of roles.

Robotic systems have long been involved in assembly lines
automating and increasing efficiency of monotonous or danger-
ous factory procedures [1]. However, as robots leave controlled
spaces and begin to work alongside people in teams, many things
taken for granted in robotics concerning perception and action
do not apply, as people act unpredictably, e.g., they “break the
rules” when it comes to what a robot can expect a priori. In order
for robots to effectively perform their tasks and integrate into
human social environments (HSEs), they must be able to com-
prehend high-level social signals and respond appropriately [2].

While working alongside humans, a robot might encounter
people performing various social actions, such as engaging in
social activities or performing synchronous movements [3]. For
example, Ros, Baroni, and Demiris [4] used a humanoid robot to
play the role of a dance instructor with children, and Fasola and
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Mataric [5] designed a socially assistive robot to engage older
adults in physical exercise. Others have used robots to dance
and play cooperatively with children in therapeutic settings [6],
[7]. Koenemann, Burget, and Bennewitz demonstrated a system
that enabled humanoid robots to imitate complex human whole-
body motion [8].

However, sometimes it can be difficult for a robot to perceive
and understand all of the different types of events involved
during these activities to make effective decisions, due to sensor
occlusion, unanticipated motion, narrow field of view, etc. On
the other hand, if a robot is able to make better sense of its
environment and understand high-level group dynamics, then
it can make effective decisions about its actions. If the robot
has this understanding of its environment, then its interactions
within the team might reach to a higher level of coordination,
resulting in a fluent meshing of actions [9]–[12].

Human activity recognition from body movement is an active
area of research across many fields [13]–[17]. These activities
involve a wide range of behaviors, from gross motor motion
(e.g., walking, lifting) to manipulation (e.g., stacking objects).
All of these experiments showed impressive results in recogniz-
ing activities, either performed by an individual or dyad.

However, the focus of most of these methods is to recognize
the activity of a single human, rather than to understand the
team’s dynamics and how it might affect behavior. This under-
standing is critical in human–robot interaction scenarios, as the
“one human, one robot” paradigm is rarely seen in ecological
settings [18], [19]. To make informed decisions, robots need to
understand this context [10].

Many disciplines have investigated interaction dynamics
within groups, which include sociology, psychology, biology,
music, and dance [20]–[31]. For example, Nagy et al. [20],
[21] investigated collective behavior on animals and developed
automated methods for assessing social dominance and lead-
ership in domestic pigeons. Their investigation explored the
effect of social hierarchical structure on dominance and lead-
ership. Their results indicated that dominance and leadership
hierarchical structures were independent from each other.

Inspired from bird flocks and fish schools, Leonard et al.
[22], [23] investigated how collective group motion emerges
when basic animal flocking rules (i.e., cohesive and repulsive
element) are applied to a group of human dancers. Using tracked
trajectories of head positions of individual dancers, the authors
developed a time-varying graph-based method to infer condi-
tions under which certain dancers emerged as the leaders of the
group.

Synchronous motion, or joint action, is a common type of
high-level behavior encountered in human–human interaction.
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It is a naturally present social interaction that occurs when
two or more participants coordinate their actions in space and
time to make changes to the environment [32]. Understanding
synchronous joint action (SJA) is important, as it helps to
accurately understand the affective behavior of a team and also
provides information regarding the group level cohesiveness
[33], [34]. Thus, if a robot has the ability to understand the
presence of SJA in a team, then it can use that information to
inform its own actions to enable coordinated movement with
the team. It also might learn advanced adaptive coordination
techniques that human teams use, such as tempo adaptation or
cross-training [1], [35].

Many approaches have been taken by researchers across dif-
ferent fields to measure the degree of synchronization in con-
tinuous time series data, including recurrence analysis [36],
correlation [37], and phase difference approaches [33]. Other
sets of methods work across categorical time series data, which
may define discrete events [38]. However, these event-based
methods only consider a single type of event while measuring
synchronization. To address this gap, we created an event-based
method that can successfully take multiple types of discrete
task-level events into consideration while measuring the degree
of synchronization of a system [39].

Recent work in robotics has focused on developing predictive
methods for improving the fluency of a joint interaction between
a robot and one or more humans. For example, Hawkins, Bansal,
Vo, and Bobick [40] developed a method that determines an ap-
propriate action for an assistive robot to take when providing
parts during an assembly activity. They employ a probabilis-
tic model that considers the presence of variability in the hu-
man’s actions. Hoffman and Breazeal [41] proposed an adaptive
action-selection mechanism for a robot, which could make an-
ticipatory decisions based on confidence of their validity and
their relative risks. Through a study the authors validated the
model and presented an improvement in task efficiency when
compared with a purely reactive model.

Additionally, Pérez-D’Arpino and Shah [42] proposed a data-
driven approach to synthesize anticipatory knowledge of human
motion, which they used to predict targets during reaching mo-
tions. Unhelkar, Pérez-DArpino, Stirling, and Shah [43] ex-
tended this concept for a human–robot conavigation task. This
model used an “human turn signals” during walking as antici-
patory indicators, in order to predict human motion trajectories.
This knowledge was then used for motion planning in simulated
dynamic environments.

While this study will improve the ability of robots to have
fluent interactions within HSEs, most of these methods are best
suited for dyadic interaction and dexterous manipulation con-
texts. In contrast, we seek to explore methods for robots that
will work robustly in groups, as well as for tasks involving
gross motion with mobile robots.

In our prior work, we explored the problem of automatically
modeling and detecting SJA in human teams, using both fixed
and mobile sensors. We introduced a new nonlinear dynamical
method, which performed more accurately and robustly than
existing methods [10], [39].

In this paper we explore how a robot can use these mod-
els to synthesize SJA in order to coordinate its movements

Fig. 1. (a) Data acquisition setup. (b) Three participants are dancing along
with a Turtlebot robot.

with a human team. The main contribution of this study is the
introduction of a new method for anticipation of robot motion
that takes human group dynamics into account. We validated our
method within a human–robot interaction scenario, where an au-
tonomous mobile robot observes a team of human dancers and
then successfully and contingently coordinates its movements
to “join the dance.” We compared the results of our anticipation
method with another method that does not rely on high-level
group behavior. Our method performed better both in terms of
more closely synchronizing the robot’s motion to the team and
exhibiting more contingent and fluent motion.

The outline of this paper is as follows. Section II describes
the experimental testbed for studying SJA and the system archi-
tecture. Then, Section III provides details of the two anticipa-
tion methods. Section IV describes the experimental procedure.
Sections V and VI discuss how the data were preprocessed
and the experimental results. Finally, Section VII discusses the
implication of these findings for the robotics community.

II. SYSTEM ARCHITECTURE AND EXPERIMENTAL TESTBED

In order to explore how a robot can use human group dy-
namics to synthesize SJA with a mixed team, we needed an
experimental testbed in which a robot could perform tasks syn-
chronously with humans. We also required a group activity in
which each member’s actions would have an impact on others’
actions, as well as have an impact on the dynamics of the group
overall.

Therefore, we designed a movement task in which a team of
humans and a robot could coordinate their motion in real time.
Specifically, we explored SJA within the context of synchronous
dance. In concert with an experienced dancer, we choreographed
a routine to the song Smooth Criminal by Michael Jackson,
which is in 4/4 time. The dance is iterative and performed cycli-
cally in a counterclockwise manner [see Fig. 1(a)] There are four
iterations in a dance session, corresponding to each of the car-
dinal directions (north, west, south, and east). Each iteration in-
cludes the dancers taking the following steps in order: move for-
ward and backward twice, then clap and turn 90◦ (see Fig. 2) [3].

A. Data Acquisition Process

Fig. 1(a) shows the data acquisition setup. Three human par-
ticipants and a Turtlebot v.2 robot were arranged in two rows.
Four Microsoft Kinect v.2 sensors were positioned approxi-
mately three feet above the ground at each of the cardinal
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Fig. 2. Five high-level events were detected during the dance using skeletal data from participants. One iteration of the dance consists of two passes of the start
moving forward, stop moving forward, start moving backward, stop moving backward events, and a clap event in order.

directions. Each sensor was connected to a computer (client)
to capture and process the depth, infrared, and skeletal data
from the Kinect. All four clients and the server ran Windows 8
on an Intel Core i5 processor at 1.70 Hz with 12 GB of RAM.

As we are studying synchronous activity, it was critical that
all clients and the robot maintained a consistent time reference.
Thus, we created a server to manage communication and global
time synchronization. Synchronization architecture details can
be found in [44].

Each client performed real-time processing of the raw data
in order to detect dance events (e.g., move forward, stop, etc.),
which it sent to the server with a timestamp. When the server
received data from the clients, it generated predictions for how
the robot should move using one of two anticipation methods,
which are described in Section III. The server was also respon-
sible for determining the active client, which refers to which of
the four sensors the dancers were facing during a given iteration.

In order to allow for offline analysis, the clients also recorded
time-synchronized depth, infrared, audio, and skeletal data us-
ing an automated interface with Kinect Studio. The server and
robot also kept detailed logs of all communication, odometry
information, events received from the active client, and infor-
mation about the dancers.

B. Client-Side Data Processing

We extracted five high-level events from the participants’
movements during the dance: start moving forward, stop mov-
ing forward, start moving backward, stop moving backward,
and clap. The start moving forward event is detected when a
participant begins approaching the Kinect, and stop moving
forward when they stop moving. Similarly, when a participant
moves away from the sensor (backward), that is identified as a
start moving backward event, and when they stop, stop mov-
ing backward is identified. We also detected participants’ clap
events, which occurred at the end of each iteration. See Fig. 2.

To detect these events from participants’ body movements,
clients used the skeletal positions provided by the Kinect. Clients
calculated forward and backward motion onsets along the z-axis
primarily using the spine base body joint position, as it is the
most stable and reliable joint position when participants are in
motion.

However, there were times when participants did not move
their spine base, but did move their mid-spine, shoulders, or
neck, to signal the onset of motion. Therefore, clients also used
these positions, again along the z-axis, to detect four additional
events: early start moving forward, early stop moving forward,

early start moving backward, and early stop moving backward.
For these early events, clients calculated joint change positions
by comparing the current and previous frame. If at least half
of the joint positions changed, then it indicated the participant
had started moving. To detect clap events, clients used the x
and y coordinates from the 3-D skeletal position of the left and
right hand and shoulder joints. Claps occurred when the ratio
of the distance between the hands and the distance between the
shoulder joints was less than a threshold (0.6) and when this
ratio value reaches a local minima.

C. Robot Command Generation and Execution

After the server determines which movement the robot should
make, which it does by using an anticipation methods described
in Section III, it sends a movement command to the robot.
These commands include: move forward, move backward, stop,
and turn. The server translated the clap commands into rotation
commands while sending it to the robot, since the robot cannot
clap.

The robot, which ran the robot operating system (ROS) ver-
sion Hydro on Ubuntu version 12.04, accepted commands from
the server, parsed the commands, and used an ROS publisher
to send movement commands to the controller. The robot is ca-
pable of forward and backward movement and can rotate on its
vertical axis in either direction.

III. EVENT ANTICIPATION METHODS

For this work, we created two anticipation methods to move
the robot. The first method, i.e., synchronization-index based
anticipation (SIA), is inspired by our prior SJA detection work
[39]. It calculates the synchronicity of the group in real time,
determines who the most synchronous dancer is, and uses that
information to move the robot. For the second method, event
cluster-based anticipation (ECA), we created to establish a rea-
sonable comparison anticipation method for SIA that does not
rely on group dynamics. ECA is a straightforward method that
involves averaging the times participants moved during a previ-
ous iteration of the dance. Fig. 3 gives a visual comparison of
how the two methods work in practice and they are described
textually below.

A. Synchronization Index-Based Anticipation

The SIA method takes a group’s internal dynamics into ac-
count when generating robot movements. The main idea is
that, for a given iteration, the participant who moves the most
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Fig. 3. Visualization of the two anticipation methods. (Left) SIA. (Right) ECA. The upper portion of the graph represents one iteration of the dance session and
the lower portion represents the next iteration of the same session.

synchronously with the other dancers is a good model for the
robot to follow in order to be well coordinated with the team.
In addition, the method will adjust its identification of the most
synchronous dancer after each iteration. Fig. 3(b) explains this
method visually.

Thus, to generate future actions for the robot using this
method, at the beginning of each iteration we measured the
most synchronous person of the group using the nonlinear dy-
namical method we described in [39]. We will briefly describe
the method in Sections III-A1 and III-A2 and then discuss in
Section III-A3 how we used the method to assess the most syn-
chronous dancer to inform how the robot should move.

1) Measuring Synchronization of Events Across Two Time
Series: We can express the task-level events associated with
each dancer as a time series. Suppose xn and yn are two time
series, where n = 1 . . . N . Here, each time series has N sam-
ples. Suppose, mx and my are the number of events occurring
in time series x and y respectively, and E is the set of all events
[39].

The events of both series are denoted by ex(i) ∈ E and
ey (j) ∈ E, where i = 1 . . . mx , j = 1 . . . my . The event times
on both time series are txi and tyj (i = 1 . . . mx , j = 1 . . . my ),
respectively [39].

In the case of synchronous events in both time series, the
same event should appear roughly at the same time or within a
time lag ±τ [39].

Now suppose that cτ (x|y) denotes the number of times a
single type of event e ∈ E appear in time series x shortly after
they appear in time series y. Here

cτ (x|y) =
mx∑

i

my∑

j

Jτ
ij (1)

where

Jτ
ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if 0 < txi − tyj < τ

1
2
, if txi = tyj

0, otherwise.

(2)

Similarly, we can calculate cτ (y|x) denoting the number of
times a single type of event e ∈ E appear in a time series y
shortly after they appear in time series x.

Now, Qτ (e) represents the synchronization of events in two
time series, in which we are only considering a single type of
event e in both time series. From cτ (x|y) and cτ (y|x), we can
calculate Qτ (e) as

Qτ (e) =
cτ (x|y) + cτ (y|x)

√
mxmy

. (3)

The value of Qτ (e) should be in between 0 and 1 (0 ≤
Qτ (e) ≤ 1), as we normalize it by the number of events that
appear in both time series. Qτ (e) = 1 shows that all the events
of both time series are fully synchronized and appeared within a
time lag ±τ on both time series. On the other hand, Qτ (e) = 0
shows us that the events are asynchronous [39].

Now we extend the notion of synchronization of events in
two time series for multiple types of events. Suppose we have n
types of events {e1 , e2 , . . . , en} ∈ E(n), where E(n) is the set
of all types of events. First, we calculate Qτ (ei) for each event
type ei ∈ E(n). While calculating Qτ (ei), we will not consider
any other type of event, except ei [39].

Now let mx(ei) be the number of events of type ei occurring
in time series x and my (ei) is the number of events of type ei

occurring in time series y. To measure synchronization of multi-
ple types of events between two time series, we take the average
of Qτ (ei) for each event type ei , weighted by the number of
events of that type. We will call this the synchronization index
of that pair [39].

Therefore, the overall synchronization of events in time series
x and y of that pair is

∀ei ∈ E(n) : Qxy
τ =

∑
[Qτ (ei) × [mx(ei) + my (ei)]]∑

[mx(ei) + my (ei)]
. (4)

If all events are synchronous in both time series, then the
value of Qxy

τ will be 1. If no synchronous are synchronous, the
value of Qxy

τ will be 0 [39].
2) Measuring the Individual Synchronization Index: We

calculated the pairwise synchronization index for each pair.
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Suppose we have H number of time series. The time series
data are represented as s1 , s2 , . . . , sH . First, we calculate the
pairwise event synchronization index for each pair. So, we have
the value of Qs1 s2

τ , Qs1 s3
τ , . . . , Q

s(H −1 ) sH
τ [39].

We modified our process slightly from the description in [39].
After calculating the pairwise synchronization index, we built a
directed weighted graph from these indices, in which each time
series is represented by a vertex. However, in [39], after calculat-
ing the pairwise synchronization index, an undirected weighted
graph was built. In a fully connected situation, the directed and
the undirected graph represents the same connectivity.

Therefore, if the time series are s1 , s2 , . . . , sH , then there
is a vertex in the graph that will correspond to a time series.
We connect a pair of vertices with a weighted edge, based on
their synchronization index value. In this case, there will be an
incoming and an outgoing edge for each pair of vertices. We
will refer to this graph as the group topology graph (GTG) [39].

The individual synchronization index (Iτ (si)) depends on
both the group composition and the size of the group. We as-
sumed that, during this dance performance, each human partic-
ipant may have some direct or indirect influences on the other
human participants of the group [39]. Iτ (si) for a participant is
measured as the average of the weight of the outgoing edges to
the corresponding vertex in the topology graph. Therefore, the
Iτ (si) of series si is

Iτ (si) =

∑
j=1,...,H, j �=i Q

si sj
τ × f(si, sj )∑

j=1,...,H, j �=i f(si, sj )
(5)

where

f(si, sj ) =

{
1, iff edge(si, sj ) ∈ GTG

0, otherwise.
(6)

3) Determining the Most Synchronous Dancer and Antici-
pating Their Next Movement: The person with the highest indi-
vidual synchronization index during an iteration is considered to
be the most synchronous person of the group. This is because a
high individual synchronization index indicates close synchro-
nization with the other group members. Thus, let this person be
MSP.

Suppose, during itri , we determine MSP(itri) as the most
synchronous dancer of the group. Now, assuming that a similar
timing pattern of events will occur during the next iteration
(itr(i+1)), if the robot follows the events of the MSP(itri), then
the group will become more synchronous.

We can describe this concept mathematically. To reach a syn-
chronous state, all events must occur very closely in time, i.e.,
within a time lag ±τ . Thus, we want to minimize the difference
between event timings for each pair of agents. Now, if Δtij
represents the time difference of one event between agent i and
j, then our goal is

∀i, j ∈ H : min
(∑

Δtij

)
. (7)

Now, for our scenario, as shown in Fig. 4, suppose Dancer 2
was the most synchronous person during one iteration (itri) of
the dance session, i.e., MSP(itri) was Dancer 2. Now, during
itr(i+1) , a similar timing pattern holds and the timing of one

Fig. 4. Example timings from a single type of event during two consecutive
iterations.

particular event of the three dancers and the robot are t1 , t2 , t3 ,
and tR , respectively. To reach a synchronous state, the following
is required:

min
(∑

Δt12 + Δt23 + Δt1R

+ ΔtR3 + Δt13 + ΔtR2) . (8)

As Dancer 2 is the MSP, from Fig. 4 one can see Δt12 +
Δt23 = Δt13 , and Δt1R + ΔtR3 = Δt13 . Thus, 8 becomes

min
(∑

Δt13 + Δt13 + Δt13 + ΔtR2

)
. (9)

As only the term ΔtR2 depends on the robot’s movement in

(9), by minimizing ΔtR2 we can minimize the equation. Thus,
if the robot and the Dancer 2 (in this case, the MSP) perform the
same event at the same time, then ΔtR2 will become 0, which
will minimize (9). This implies that if the robot can perform the
events close to the timings of the most synchronous person, then
the whole group will reach a more synchronous state.

Thus, for a given iteration, itr ∈ ∀ iterations, the server will
determine MSP(itri). Then, during the next iteration, itr(i+1) ,
the server will track all movements of MSP(itri). The server
then processes the information by utilizing the early detected
events (early start moving forward, early stop moving forward,
early start moving backward, and early stop moving backward)
following the method described in the next paragraph.

As we know the timing of the events during the previous
iteration of the dance itr(i−1) , our anticipation method assumed
that the similar event will happen more or less at the same time
during this iteration itri . Therefore, when it was close to the
timing of events of MSP(itr(i−1)) during itri , and the server
received early detected events associated with MSP(itr(i−1)),
then the server anticipated those events as the indicator of the
start of a movement. The server then sent appropriate commands
to the robot to perform that movement.

For example, suppose Dancer 2 was the most synchronous
person during iteration 1, i.e., MSP(itr1) was Dancer 2. Dancer 2
performed a start moving forward event three seconds from the
start of itr1 . Therefore, during itr2 , it was assumed that the start
moving forward would happen three seconds from the iteration’s
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start. Thus, if the server received a sufficient number of early
start moving forward events around t3 , then it notified the robot
command generator to generate commands to execute forward
movement. This process was similar for all other regular events,
excluding the clap event.

B. Event Cluster-Based Anticipation Method

We created the ECA method to establish a reasonable com-
parison anticipation method for SIA that does not rely on group
dynamics. ECA is theoretically simple but powerful in nature.
As the dance is rhythmic and iterative in nature, the movement
events for one iteration are similar to events that happened in the
previous iteration. Thus, we averaged the events timing during
one iteration to predict the timing of those same events for the
next iteration. Fig. 3(a) explains this method visually.

First, for one iteration, we presented all the events associ-
ated with the dancers by a time series. Thus, this time series
represented all the events of that iteration. Then, we clustered
all the similar types of events together, those that happened
within a time threshold, ε. For example, for a single event e,
we calculated the timing of the event performed by three hu-
man participants, i.e., t(dancer1(itri), e), t(dancer2(itri), e), and
t(dancer3(itri), e). Here, t represents the timing of an event and
itri represents the iteration i.

After that, for each cluster of similar events, we calculated
the average time of all the events and used that time as the
timing of the event for the next iteration. These events and the
times were the predicted events and timing for the next iteration
of the dance. Thus, t(robot(itr(i+1)), e) = (t(dancer1(itri), e) +
t(dancer2(itri), e) + t(dancer3(itri), e))/3. After the prediction
of all the events for next iteration, the method sends a com-
mand to the robot command generator module to generate an
appropriate movement for the robot.

IV. EXPERIMENTS

A. Pilot Studies

Before performing the main experiment to compare the per-
formance between the two anticipation methods, we performed
a series of pilot studies to test the setup of the system and set
various parameters for the two anticipation methods. We con-
ducted two sets of pilot studies, with a total of seven participants
(three women and four men). Participants were opportunisti-
cally recruited and were compensated with a $5 gift card for
participating [3].

During the first set of pilots, a sole participant danced with
the robot. Here, we sought to measure two things: how fast the
robot received action messages and how accurately the robot
performed with the human participant.

During the second set of pilot studies, a group of three par-
ticipants danced with the robot. Here, we sought to establish
appropriate parameters for the anticipation methods. To acquire
these measurements, we recorded events generated from server
logs as well as from odometry data from the robot. We com-
pared the two, noting differences in velocity, distance, and event
timings [3].

Results from the pilot study showed that the robot received
messages from the server in a timely manner. We also ana-
lyzed the movement patterns of the robot when it coordinated
its movements with the humans’ and found it to be well coordi-
nated. Based on these data, we felt confident that the robot was
moving synchronously with participants and continued with the
main experiment.

B. Main Experiment

We recruited a total of nine groups (27 participants in to-
tal, three persons per group) for our main experiment. Fourteen
participants were women and 13 were men. Their average age
was 22.93 years (s.d. = 3.98 years) and the majority were under-
graduate and graduate students. Only three participants had prior
dancing experience and 24 did not. Participants were recruited
via mailing list and campus advertisement. Upon scheduling a
timeslot, participants were randomly assigned to join a group
with two others. Each participant was compensated with a $8
gift card for their time.

After giving informed consent, participants viewed an instruc-
tional video of the choreographed dance and the experimenters
explained the different movements. The participants then had
time to practice the dance movements as a group as many times
as they wanted. During this practice session, the robot did not
dance with them.

Following the practice session, the group participated in three
dance sessions. During the first session, only humans partici-
pated in the dance. During the last two sessions, the robot joined
the group. In Sessions 2 and 3, the robot moved using either ECA
then SIA, or SIA then ECA. (The order was counter-balanced
to avoid bias.) Participants were blind as to which method was
in use.

During the last two sessions, the four clients recorded depth,
infrared, and skeletal data of the participants, and the server
logged all event and timing data. A single camera mounted on
a tripod recorded standard video of the experiment for manual
analysis purposes only.

Following the experiment, participants completed a short
questionnaire asking them to rate which of the two dance ses-
sions they felt was more synchronous, a measure we have used
in prior work [39]. Participants also reported which session they
felt they were more synchronous with the rest of the group.

V. ROBOT DATA PREPROCESSING

The server provided the human movement data logs and the
clients raw data during the experiment, as detailed in Sections II
and IV-B. However, to conduct a complete comparison between
the two anticipation methods, it is also necessary to determine
how and when the robot actually moved during the two experi-
mental sessions. To do this, we used the timestamped odometric
data from the robot (x and y pose and angular-z orientation), as
well as the server-side robot command logs.

We calculated the same events for the robot as for the humans
(forward, backward, stop, and turn). Based on the changes in
two consecutive x or y pose values and the robot’s heading, we
calculated whether the robot was moving forward or backward.
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For example, when the robot faced the first Kinect sensor and
moved forward, then the changes in two consecutive pose values
would be positive and, if moving backward, negative. We de-
tected turn events using changes greater than 0.4 in the z heading
value of the Turtlebot’s angular twist message. (Note that turn
events are considered equivalent to the humans’ clap events in
our analysis.)

Stop events were determined when a difference less than
0.002 was detected between two consecutive poses. These stop
events were classified as forward or backward depending on the
heading of the robot.

After detecting all events for the robot, we manually checked
the data files for any errors. During this process, we determined
a 7% missing event rate. These missing events were evenly
distributed across both of the anticipation methods. We manually
checked the recorded video and odometric logs from the robot
and determined that the robot actually moved correctly during
the majority of those instances, so manually inserted the missing
events into the files. There were a few instances (about 3.7%
overall) when the robot did not perform the activity that it was
instructed to perform, which was mostly due to network latency.
We discarded those data from the analysis.

VI. DATA ANALYSIS AND RESULTS

To compare the performance and accuracy of the two antici-
pation methods, we first measured how synchronously the entire
group, including the robot, coordinated their movements during
both sessions. We then measured how appropriately timed the
robot’s motion was with its human counterparts.

A. Measuring Synchronization of the Group

Using the method described in [39] and discussed in
Section III-A, we measured the degree of synchronization of
the group for each iteration of the dance. First, we created an in-
dividual time series for each of the dancers and the robot. Events
in the time series were start moving forward, stop moving for-
ward, start moving backward, stop moving backward, and clap).
Then we calculated the pairwise synchronization index for each
pair using the method described in Section III-A2.

From the pairwise synchronization index we built a GTG
and calculated the individual synchronization index for each
human dancer, as described in Section III-A. As the humans
physically stood very close in proximity, we assumed that each
of the group members was influenced by all other members of
the group across the course of an entire dance session. (In every
iteration, participants rotated their position; therefore, a person
in the front at itri will end up in the back by itr(i+2) .) Thus, in
the analysis, every human was connected in the graph with all
other members of the group, including the robot.

When calculating the robot’s individual synchronization in-
dex, we employed slightly different analyses between ECA and
SIA. For ECA, because the robot’s motion was based on the
average of all dancers’ motions in the previous iteration, when
building the GTG all edges from the robot connected to all other
human group members. However, for SIA, at any given itri the
robot was only ever following MSP(itr(i−1)) in real time. Thus,

during itri the robot was only influenced by that person, not by
the other group members. Thus, it is logical to take only the
pairwise synchronization index between the robot and that per-
son into account while calculating the individual synchroniza-
tion index of the robot and building the GTG for that iteration.
Therefore, we only considered an outgoing edge from the robot
to MSP(itr(i−1)) in the GTG.

After measuring the individual synchronization index, we
calculated the group synchronization index (GSI) for each group
using the method described in [39]. Here we describe the method
very briefly.

While calculating the GSI, both the individual synchroniza-
tion index as well as the members’ connectivity to the group
was taken into consideration. For a given vertex in the GTG,
the ratio of the number of outgoing edges connecting to it and
the number of maximum possible edges in a very synchronized
condition for that vertex is called the connectivity value (CV).
Thus, we can define CV of series si as

CV(si) =

∑
j=1,...,H, j �=i f(si, sj )

H − 1
. (10)

The CV represents how well an individual is synchronized
with the rest of the group. First, we calculate each individual’s
synchronization index multiplied by their CV. Then, the overall
GSI is computed by taking the average of this product [39].
Therefore, the overall GSI, Gτ , is computed by

Gτ =

∑
i=1,...,H Iτ (si) × CV(si)

H
. (11)

While calculating the GSI we used τ = 0.25 s. This value
means we considered two events to be synchronous when the
same types of events in two time series occurred within 0.25 s
of one another.

Table I presents the GSIs for each group (three humans and
one robot), across both anticipation methods (ECA and SIA) and
across the four iterations per session). The table also presents the
average GSI for each group in the rightmost column. Boldface
is used to indicate which of the two methods yielded a higher
GSI, and this is indicated for both the per-iteration GSI and the
average GSI per group.

For 22 out of 36 total individual dance iterations, the SIA
method yielded a higher GSI than the ECA method. And, in
seven out of nine trials, the SIA method yielded a higher GSI
than the ECA method.1

Using a discrete analogue scale, we asked participants to rate
on a scale from 1 to 5 how synchronous they thought the robot
was with the other humans during the sessions. Based on their
responses, we measured the more synchronous session of that
trial, for which two out of three dancers agreed on their rating.
For 7 of 9 trials, this collective rating matched with the more
synchronous session of the trials determined by our method (see
the last two columns in Table I).

1Note that, due to a small sample size (n = 36), it would be dubious to run
statistical means comparisons and one should not accept a p-value with certainty
[45]. Instead, we agree with Gelman [45] that reliable patterns can be found by
averaging, as reported here.
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TABLE I
GSIS FOR ALL GROUPS

GSI Mean GSI

Group No. Iteration No. ECA SIA ECA SIA

1 1 0.39 0.40 0.29 0.45
2 0.30 0.26
3 0.15 0.63
4 0.33 0.52

2 1 0.28 0.66 0.46 0.56
2 0.39 0.37
3 0.63 0.51
4 0.54 0.71

3 1 0.37 0.40 0.45 0.52
2 0.48 0.52
3 0.59 0.62
4 0.37 0.55

4 1 0.30 0.20 0.33 0.29
2 0.37 0.38
3 0.37 0.30
4 0.28 0.28

5 1 0.31 0.24 0.38 0.43
2 0.39 0.44
3 0.52 0.59
4 0.30 0.46

6 1 0.50 0.43 0.41 0.41
2 0.41 0.45
3 0.40 0.32
4 0.33 0.46

7 1 0.41 0.25 0.42 0.47
2 0.42 0.29
3 0.35 0.66
4 0.52 0.68

8 1 0.78 0.32 0.50 0.52
2 0.40 0.48
3 0.41 0.72
4 0.41 0.56

9 1 0.56 0.35 0.45 0.44
2 0.35 0.34
3 0.42 0.46
4 0.46 0.59

Each group includes three people and one robot.

B. Measuring Robot Timing Appropriateness

For both anticipation methods, we aimed to have the robot
perform its actions (events) as closely as possible in time to its
human counterparts. Thus, we measured how close the robot’s
actual movement was to what the humans were doing at that
time.

Thus, as a measure of timing appropriateness (TA) of the
robot, we calculated the absolute time difference between the
time when the robot performed an event and the ideal timing of
that event. As a measure of the ideal timing of an event, we took
the average timing of an event performed by the humans. This
measure is similar to the absolute offset measure used in [46];
however, the TA measure used here is within the context of a
group.

First, we represented all events associated with the humans
during an iteration by a time series. Then, we clustered all the
similar types of events together with those that were performed
by the dancers within a time threshold, ε. For example, for

Fig. 5. TA calculation for the robot’s movement.

Fig. 6. TA measure for the robot with 95% confidence interval for both meth-
ods, SIA and ECA.

a single event e, we calculated the timing of the event per-
formed by three human participants within ε, i.e., t(dancer1 , e),
t(dancer2 , e), and t(dancer2 , e). We also calculated the timing of
that event performed by the robot, t(robot, e). Then, to calculate
the ideal timing for the robot, we take the average of these times
of this event performed by the humans. Thus, t(robotideal, e) =
(t(dancer1 , e) + t(dancer2 , e) + t(dancer3 , e))/3. Then we cal-
culated the TA of that event performed by the robot as,
TA(e) = |(t(robot, e) − t(robotideal, e))|. Fig. 5 presents an ex-
ample calculation of TA for event e.

After calculating TA for each event during all the trials, we
created two histograms, one for each anticipation method. We
used a bin size of 0.1 s, starting at 0 s and going to 2.5 s. Then
we calculated the frequency of the events for which the TA falls
within that time span.

In Figs. 7(a) and (b), we present histograms representing the
TA measure and the cumulative percentage of event frequencies,
for the ECA and SIA methods, respectively. Fig. 7(a) (ECA)
shows that the robot was able to perform 81.88% of its events
within 1.2 s and 90% of its events within 1.6 s of the appropriate
timing. Fig. 7(b) (SIA) shows that the robot performed 81.65%
of the events within 0.8 s and 90.82% of the events within 1.2 s
of the appropriate timing.

Fig. 7(c) presents the cumulative percentage of events for
both methods together. One can find that the robot performed
the events more appropriately during the SIA method than com-
pared with the ECA method.
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Fig. 7. Event frequency distribution and the cumulative percentage distribution of the TA measure for the two anticipation methods: SIA (left) and ECA (right).
The rightmost graph shows the distribution of the TA measure for both methods.

For the SIA method, the mean for the TA measure was 0.54 s
(s.d. = 0.59 s) (see Fig. 6). For the ECA method, the mean TA
measure was 0.70 s (s.d. = 0.50 s) (see Fig. 6). While these data
did not have a normal distribution, as is visible from the graph
and a normality test, they did have a sufficient number of means
to compare statistically. We conducted a Wicoxon Signed Rank
Test and found that the TA values for the ECA method were
significantly larger than for the SIA method, z = −4.399, p <
0.05, r = −0.18. This means that when using the SIA method
the robot moved more appropriately in time than when using
the ECA method.

VII. DISCUSSION AND FUTURE WORK

The results suggest that the human–robot team was more
synchronous using SIA than using the ECA method. More-
over, when SIA was used, the robot was able to perform its
actions significantly closer to the appropriate timing of the
event. This supports the idea that SIA is well suited to provide
movement coordination information to a robot during an SJA
scenario.

Additionally, these results might support the robustness of the
SIA method over the ECA method, as the SIA method is more
dynamic and adaptable to change within the group. In our study,
the SIA method chose the most synchronous dancer in the group
and used that to inform the robot’s actions in real time. However,
relying on a method like ECA would mean that if a dancer was
moving asynchronously within the group, the robot’s motion
could be adversely affected (as it is following everyone). SIA is
robust to handle this phenomenon, as a person who performed
asynchronous movements within the group is unlikely to ever
be chosen as the most synchronous person.

This study shows that taking team dynamics into account can
be useful for robots when conducting coordinated activities with
teammates. This study can lead others in the robotics commu-
nity toward further investigating the role of a group on behavior,
rather than just focusing on individuals. This has implications
not only for human–robot interaction, but also for multirobot
systems research. We are currently exploring the effect of dif-
ferent anticipation methods in multihuman multirobot scenarios
[47], [48].

One limitation of this study is how event detection is calcu-
lated. In the current setup, a predefined set of human activities
were detected by the system to understand the group dynamics.
Building on this foundation, our future work will include in-

corporating human gross motion directly to the synchronization
measurement step, instead of using prelabeled events. More-
over, we are also planning to incorporate a decision module
for robots, which will use the perceived knowledge to select
the best decision from a set of options, based on the context
[19], [49].

Another limitation of the current method is how it uses team
metrics and task-related information. For example, the method
does not yet incorporate dancer expertise, nor does it factor in
the tempo or dynamics of the music. In the future, we plan to
incorporate an understanding of these factors. For example, in
a team of novice dancers, a robot could perhaps keep a team on
tempo.

In the future, we also seek to explore the use of robot-centric
vision and local coordination methods to calculate synchrony.
This will enable robots to operate in more dynamic settings and
lessen the need for external sensors. However, incorporating
local sensor data will be more challenging as it might be more
noisy due to occlusion and local movements. However, we will
build on our prior multimodal fusion and others’ robot-centric
perception work to overcome this challenge [19], [50].

We also will explore incorporating other synchronization
methods humans employ, such as adapting to continuous tempo
changes, within the SIA algorithm. Models like the adaptation
and anticipation model have been proposed in the literature to
computationally model this behavior in humans by combining
adaptation and anticipation during an activity [35], [51]. It may
be beneficial for a robot to have this ability both in human–
robot and multirobot teams. This integration might make the
SIA algorithm more robust in anticipating and synthesizing fu-
ture activities more accurately.

We also hope to extend our methods to work beyond SJA
activities, such as timed but varied collaborative tasks within
industrial settings. A human–robot team working in an industrial
setting has specific sequences of activities to perform overtime,
some of which might be independent and might not have to
happen synchronously. However, the events do have to happen
contingently; therefore, some of our anticipatory methods may
be applicable.

Movement coordination is an important, emerging research
area in robotics, neuroscience, biology, and many other fields
[13]–[17], [52]. Our work helps to enable robots to have a better
understanding of how to coordinate with the environment. This
can be useful both for solving problems in robotics and, perhaps,
also in fields beyond.
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