Understanding and predicting

where people look in images
by
Tilke Judd

B.S., Massachusetts Institute of Technology (2003)
S.M., Massachusetts Institute of Technology (2007)

Submitted to the Department of
Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2011
(© Massachusetts Institute of Technology 2011. All rights reserved.

Department of

Electrical Engineering and Computer Science
May 20, 2011

Certified Dy . ...
Frédo Durand

Associate Professor
Thesis Supervisor

Certified Dy . ...
Antonio Torralba

Associate Professor
Thesis Supervisor

Accepted Dy ...
Professor Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Students






Understanding and predicting
where people look in images
by
Tilke Judd

Submitted to the Department of
Electrical Engineering and Computer Science
on May 20, 2011, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract
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essential to understand where humans look in a scene. This is a challenging task
given that no one fully understands how the human visual system works. This thesis
explores the way people look at different types of images and provides methods of pre-
dicting where they look in new scenes. We describe a new way to model where people
look from ground truth eye tracking data using techniques of machine learning that
outperforms all existing models, and provide a benchmark data set to quantitatively
compare existing and future models. In addition we explore how image resolution
affects where people look. Our experiments, models, and large eye tracking data sets
should help future researchers better understand and predict where people look in
order to create more powerful computational vision systems.
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Chapter 1

Introduction

A red scarf in a sea of black tuxedos catches your attention. You notice faces when
looking for a friend in a crowd. Bikers are more likely to notice bike lanes. In all these
situations, the mechanism in the brain that determines what part of the incoming
sensory data is currently of most interest is called selective attention. A definition
was first outlined by James [1890] and here defined by [Corbetta 1990]: “Attention
defines the mental ability to select stimuli, responses, memories or thoughts that
are behaviorally relevant among the many others that are behaviorally irrelevant.”
Selective attention exists for all senses and has developed through evolution because
of the human need to deal with an overwhelming amount of sensory input at each
moment. The amount of data is too high to be fully processed in details; the brain
must prioritize.

Visual attention is often compared to a spotlight in a dark room. The fovea—the
center of the retina—has the highest resolution. Areas around the fovea fall off in
resolution. Directing the gaze to a certain region corresponds to directing a spotlight
to a certain part of the room [Shulman et al. 1979]. By moving the spotlight around,
a person can get an impression of the room, and similarily, by scanning the scene
with quick eye movements, one gets a detailed impression of it. We move our fovea
to specific areas of interest to fixate on them. We then move, or saccade, to the next
location of interest.

People were only able to measure these fixations and saccades with the invention of
eye trackers. The first non-intrusive eye trackers were built by Guy Thomas Buswell
in Chicago in the 1920s and used beams of light that were reflected on the eye and
then recorded on film [Buswell, 1922]. In the 1950s, Alfred L. Yarbus [1967] performed
important eye tracking research and wrote about the critical relation between fixations
and interest:

“Records of eye movements show that the observer’s attention is usually
held only by certain elements of the picture.... Eye movement reflects the
human thought processes; so the observer’s thought may be followed to
some extent from records of eye movement (the thought accompanying the
examination of the particular object). It is easy to determine from these
records which elements attract the observer’s eye (and, consequently, his
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thought), in what order, and how often.”

Following this vein, Just and Carpenter [1980] formulated the influential Strong
Eye-Mind Hypothesis, the hypothesis that “there is no appreciable lag between what
is fixated and what is processed”. If this hypothesis is correct, then when a subject
looks at a word or object, he or she also thinks about it for as long as the recorded
fixation. Subsequent research questioned this hypothesis in light of covert attention,
or the ability to pay attention to something one is not looking at. According to
Hoffman [1998], current consensus is that visual attention is always slightly (100 to
250 ms) ahead of the eye. Despite this, the eye-mind hypothesis is still a useful and
commonly made assumption in eye tracking and visual attention research.

Yarbus also showed that the task given to a subject has a very large influence
on the subject’s eye movement. He had observers view Repin’s painting “The Un-
expected Visitor” under several different task conditions and saw that scan paths
differed greatly (see Fig. 1-1).

The cyclical pattern in the examination of pictures “is dependent not
only on what is shown on the picture, but also on the problem facing the
observer and the information that he hopes to gain from the picture.”

This behavior is due to the interaction of two major mechanisms of visual atten-
tion: bottom-up factors and top-down factors. Bottom-up factors are derived solely
from the visual scene [Nothdurft 2005]. Regions that attract our attention are called
salient and are sufficiently different with respect to their surrounding. This atten-
tional mechanism is also called automatic, reflexive, or stimulus-driven. The second
mechanism, top-down attention, is driven by cognitive factors such as knowledge,
expectations and current goals [Corbetta and Shulman 2002]. This is also called goal-
driven, voluntary, or centrally cued attention. During normal human perception,
both mechanisms interact. As per Theeuwes [2004], bottom-up influence is not easy
to suppress: a highly salient region captures the focus of your attention regardless of
the task.

At the same time that our understanding of the human visual system has increased
dramatically, many other fields of research have become very interested in this natural
process of selective attention. Computer vision systems have to deal with sometimes
millions of pixel values from each frame and the computational complexity of many
problems related to the interpretation of image data is very high [Tsotsos 1987]. The
task becomes especially difficult when the system has to operate in real-time. In order
to cope with these requirements, researchers in computer vision, graphics and robotics
have investigated how the concepts of human selective attention can be exploited to
prioritize information.

Attentional models find regions of interest which help identify segments for image
segmentation, drive adaptive levels of image compression, help coordinate points of
interest in image matching. Attentional models can help robots with place recog-
nition and localization and are the basis for active vision which help robots decide
where to look next. A plethora of graphics applications benefit from understanding
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Figure 1-1: Yarbus famously showed that different tasks given to a subject viewing Repin’s
painting “The Unexpected Visitor” resulted in very different eye movements.
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regions of interest in an image: automatic cropping, driving level of detail in ab-
stracted or stylized image, and image retargeting. Understanding where people look
helps designers design visual content and market researchers better understand how
people interact with their content. We give a more thorough review of applications
of selective attention in section 2.2.

Both the need for computational models, and a better understanding of the human
visual system led to the development of computational models of visual attention.
Many of the models are built around the Feature Integration Theory (FIT) from
Treisman and Gelade [1980] which suggests that visual information is analyzed in
parallel from different maps. There is a map for each early visual feature including
color, motion, orientation, size and luminance. From this theory was born the neurally
plausible architecture proposed by Koch and Ullman [1985]. This model consists of
extracting bottom-up visual features of color, intensity and orientation and combining
the feature maps together to a two-dimensional representation called a saliency map
that indicates the conspicuity for every pixel in the image. An extensive series of
saliency models followed this basic idea. They vary in the types of features they
extract, the way the features are combined, the weights given to each feature and
whether or not they include higher-level features which model top-down attention.
We provide an extensive overview of models of saliency in section 2.1.

Though research advanced significantly in the last several years and the models
of attention now correlate with human fixations well above chance. Many of the
models require tuning parameters in an ad hoc fashion to work well. Many models
model bottom-up mechanisms of attention and not top-down mechanisms because
they are hard to model. Further, we found that some models actually underperform
a naive baseline center model which predicts fixations to be in the center of the
image. Surprisingly, researchers have not yet used the techniques of machine learning
to help solve these problems. In addition, there are now so many models that it is
difficult to know which one works best for a given situation. With each new model
comes a comparison to a couple other models on a set of images and with a given
task that may be different from all previous comparisons. There is a real need for a
benchmark comparison across a broad range of modern models on the same images
measured under the same task. Finally, most models work to predict where people
look at high resolution images. It is not well understood how image resolution affects
fixations. People can understand images, and recognize faces, at very low resolution.
In these situations are people looking at locations that give them the most information
about the image—and these locations the same across resolutions? For computational
efficiency reasons, it is also beneficial to understand how low image resolution can be
before observers’ fixation patterns are fundamentally altered.

Contributions In this thesis, we help solve these problems. Specifically, we make
the following contributions:

1. We create a new model that predicts where people look in images.
Our model is learned directly from ground-truth data by applying techniques
of machine learning and is described in chapter 3. This approach enables us
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to learn weights of features for a model automatically. The model incorporates
several top-down features and models the human bias to look towards the center.
The model outperforms currently available models of saliency, and the naive
center model, in predicting where people look on natural photographs and gets
90 percent of the way to human performance. This work is also published in
[Judd et al., 2009].

2. We provide a benchmark to compare models of saliency. It is critical
to have a quantitative way to evaluate progress. In chapter 4, we describe the
benchmark data set and measurement critieria we use to compare ten modern
models of saliency. We measure how well each model performs at predicting
where people look under three different metrics. We also set up a platform to
evaluate future models through an online website!.

3. We explore how people look at low resolution images. In chapter 5 we
observe where people look as the resolution of images decreases and analyse spe-
cific trends surrounding the bias of fixations toward the center, the number and
frequency of fixations, the consistency of fixations across and between different
resolutions. We show how fixation consistency is related to image complexity
and hypothesize that this is related to image understanding. This work is also
published in [Judd et al., 2011].

4. We provide three new eye tracking data sets. We make all of the stimuli
and fixation data retrieved from our experiments available to the public online.

thttp://people.csail.mit.edu/tjudd/SaliencyBenchmark
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Chapter 2

Background

In this chapter we start by exploring the space of existing computational models of
visual attention both by understanding the general structure common to most models
and then outlining at groups of models in rough chronological order. We then look at
the applications of attentional models in section 2.2, and review the databases of eye
tracking data available for evaluating and comparing saliency models in section 2.3.
In addition we describe the experimental protocol we used for all the eye tracking
experiments in this thesis in section 2.4.

2.1 Computational models of visual attention

In computer vision, robotics, human-computer interaction, computer graphics and
design, there is an increasing interest in a mechanism that selects the most relevant
parts within a large amount of visual data that is modeled after the human visual
system. The systems are all built on the psychological theories of the human visual
system, but in the end, they have an engineering objective. The objective in making
these models is often both to understand human perception, and to improve vision
systems and end up with a way of computing a numerical value of the likelihood of
attending to, or the saliency of, every location in an image. Usually these models
are able to cope with both synthetic images and natural scenes. The systems vary in
detail but have a similar structure. First we describe the similar structure and then
group important models by type and describe them in rough chronological order.

2.1.1 General structure of computational models

Most computational models of attention have a similar structure, which is depicted
in Figure 2-1. The structure is adapted from Feature Integration Theory [Treisman
and Gelade, 1980] and the Guided Search model [Wolfe et al., 1989] and appears first
in the algorithmic model of attention by Koch and Ullman [1985]. The main idea is
to compute several features in parallel and to fuse their saliencies in a representation
which is usually called a saliency map.

More specifically, the models generally include the following steps: First, the
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Figure 2-1: This is the basic structure of a feature-based computation model of visual
attention. From Itti and Koch [2001].
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model computes one or several image pyramids from the input image to enable the
computation of features at different scales. Then, image features are computed. Com-
monly used features are intensity, color, and orientation. Each feature channel is
subdivided into several feature types (for example, r, g, b maps for color). Center-
surround mechanisms or differences of Gaussians are used to collect within-map con-
trast into feature maps. The operation compares the average value of a center region
to the average value of a surrounding region. The feature maps are summed up to
feature dependent maps called conspicuity maps. Finally, the conspicuity maps are
normalized, weighted and combined together to form the saliency map. The saliency
map is usually visualized as gray-scale image in which the brightness of a pixel is
proportional to its saliency.

This saliency map might be regarded as the output to the model for it gives the
saliency for each region of a scene. However, some applications might require the
trajectory of image regions — mimicking human fixations and saccades. The selected
image regions are local maxima in the saliency map. They might be determined by
a winner-take-all approach and implemented with a notion of inhibition of return
that ensures that all maxima are examined and prevents the focus of attention from
staying at the most saliency region.

An important aspect of attentional systems is the way the different maps are
fused. It is not clear how mapping and fusing happens in the brain, and computational
systems use different approaches. Usually, a weighting function is applied to each map
before summing up the maps. The weighting function determines the importance of
features.

Before weighted maps are summed, they are usually normalized. This is done
to weed out differences between a priori not comparable modalities with different
extraction mechanisms. Additionally, it prevents channels that have more feature
maps to be weighted higher than others.

After weighting and normalizing, the maps are summed to create the saliency
map. Linear summation of feature channels into the final saliency map remains the
norm.

The structure described so far is purely bottom up. Despite the well-known signif-
icance of top-down cues, most models consider only bottom-up computations because
they are easier to model. Including other knowledge in a top-down matter is inspired
by the Guided Search model and the theory of Biased Competition [Desimone and
Duncan, 1995] and has been the subject of more recent models of saliency. This is
typically done by modulating the weights of the conspicuity maps before they are
combined based on some top-down information about the scene or the task. Other
ways of adding top-down information include adding context information, or faces,
text and object detectors.

We explore specific examples of computational models of visual attention in the
next section. We make note in the footnotes if the model has been implemented in
code that is available for download off the web. These are the models that are readily
available for use in applications.
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2.1.2 Important computational systems

The first computational model of visual attention was introduced by Koch and Ull-
man [1985]. When first published, the model was not yet implemented but provided
the algorithmic reasoning for later implementations. An important contribution of
their work is the winner-take-all (WTA) approach.

Clark and Ferrier [1988] were among the first to implement an attention system
based on the Koch-Ullman model. It contains feature maps, which are weighted and
summed up to a saliency map. Another early model was introduced by Milanese
[1993]. This work introduced concepts like conspicuity maps and feature computa-
tions based on center-surround mechanisms that are still used in models today.

Another derivative of the Koch-Ullman model is the C++ Neuromophic Vision
Toolkit (NVT) ! which is implemented and kept up to date by Itti and colleagues [Itti
et al., 1998], [Itti and Koch, 2000], [Itti and Koch, 2001], [Navalpakkam and Itti,
2006]. This toolkit introduces image pyramids for the feature computations, which
enables efficient processing.

Many others have tested this toolkit and suggested improvements: Parkhurst et
al. [2002] modified the basic model to account for falloff in visual sensitivity. They
noticed that the drop in visual sensitivity as a function of eccentricity on stimulus
salience was an important determiner of attention and incorporated it in their model.
Draper and Lionelle [2005] introduced SAFE (selective attention as a front end) which
modified the original approach such that it is more stable with respect to geometric
transformations like translations, rotations, and reflections. Walther and Koch [2006]
extended this NVT model to attend to proto-object regions and created Saliency-
ToolBox (STB)2. Harel et al. [2007] exploit the power, structure and parallel nature
of graph algorithms to achieve efficient saliency computations of their Graph Based
Visual Saliency® model, which is based on the use of a dissimilarity metric. Le Meur
et al. (2006)[Le Meur et al., 2006] [Meur et al., 2007a) adapted the Koch-Ullman
model to include the features of contrast sensitivity functions, perceptual decompo-
sition, visual masking, and center-surround interactions. Others have updated the
Koch-Ullman model by adding features such as symmetry [Privitera and Stark, 2000]
or curvedness [Valenti et al., 2009).

One of the oldest attention models that is widely known and still developed further
is Tsotsos’ selective tuning model of visual attention [Tsotsos 1990; 1993; Tsotsos et
al. 1995]. It consists of a pyramidal architecture with an inhibitory beam. The
model has been implemented for several features including luminance, orientation,
color componency [Tsotsos et al. 1995], motion [Tsotsos 2005] and depth from stereo
vision [Bruce and Tsotsos 2005a]. Originally the selective tuning model processed
one feature dimension only, but later it was extended to perform feature binding
[Rothenstein and Tsotsos 2006b; Tsotsos et al. 2008].

The above approaches are based on biologically motivated feature selection, fol-
lowed by center-surround operations, which highlight local gradients. Recently, some

Thttp://ilab.usc.edu
Zhttp://www.saliencytoolbox.net
3http://www.klab.caltech.edu/ harel/share/gbvs.php
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have hypothesized that fundamental quantities such as “surprise” and “self-information”
and “signal to noise ratio” are at the heart of saliency and attention. Itti and Baldi
[2006] introduced a Bayesian model of surprise that aims to predict eye movements.
Bruce and Tsotsos [2006] [2009] present a novel model for visual saliency computation
built on a first-principles information-theoretic formulation dubbed Attention based
on Information Maximization (AIM)*. They model bottom-up saliency as the max-
imum information sampled from an image. More specifically, saliency is computed
as Shannon’s self-information —logp(f), where f is a local visual feature vector.
Navalpakkam and Itti [2005], [2006], [2007] define visual saliency in terms of signal
to noise ratio (SNR). The model learns the parameters of a linear combination of low
level features that cause the highest expected SNR for discriminating a target from
distractors.

Models that add top-down components The majority of the models described
so far are bottom-up. However, it is well known that task is a strong influencer on
our attention [Yarbus, 1967, especially in the context of search. In fact Henderson
et al. [2007] provide evidence that top-down information dominates real-world image
search processes, such that the influence of low-level salience information on search
guidance is minimal and others show that context is very important [Torralba et al.,
2006] [Oliva et al., 2003]. In order to correctly mimic the attention of humans, we
have to successfully merge both bottom-up and top-down influences.

Context of the scene is useful for speeding up search and recognition (we tend to
look at the street rather than the sky when searching for our car) and can be added
to models. For example, Torralba et al.’s contextual guidance model [2006] combines
low-level salience and scene context when guiding search. Areas of high salience
within a selected global region are given higher weights on an activation map than
those that fall outside of the selected global region. The contextual guidance model
outperformed a purely salience-driven model in predicting human fixation locations
in a search task. This research has since been updated by Ehinger et al. [2009].

Similar to the contextual guidance model, Zhang et al. [2008] and Kanan et
al.’s Saliency Using Natural statistics (SUN)® model [2009] combines top-down and
bottom-up information to guide eye movements during real-world image search tasks.
However, unlike the contextual guidance model, SUN implements target features as
the top-down component. SUN once again outperformed a salience-driven model in
predicting human fixation positions during real-world image search.

Both the contextual guidance model and the SUN model found that combining
two sources of guidance significantly improved their abilities to predict human fixa-
tion locations, suggesting that humans similarly combine information types to guide
search.

Goferman et al. [2010] present context-aware saliency® which aims at detecting
the image regions that represent the scene and not just the most salient object. In

4Code and images available at http://www-sop.inria.fr/members/Neil. Bruce/AIM.zip
Shttp://cseweb.ucsd.edu/ 6zhang/code/imagesaliency.zip
Shttp://webee.technion.ac.il/labs/cgm/Computer-Graphics-Multimedia/Software/Saliency /Saliency.html
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addition to including low-level features such as contrast and color, they also consider
global effects which suppress frequently occurring objects, they add a notion that
visual forms may possess several centers of gravity, and they include detectors of
human faces.

A second way to add top-down component to a model is to modulate the weights
of the feature maps depending on the task at hand as originally explored by Wolfe
et al., [1989]. For example, if searching for a vertical green bottle, the model would
increase the weights of the green and vertical orientation feature maps to allow those
features to be attributed more saliency. In the salience map thus formed, all scene
locations whose features are similar to the target become more salient and are more
likely to draw attention. Navalpakkam and Itti [2010], Elazary and Itti [2010] and
Gao et al. [2008] use this approach.

Elazary and Itti [2010] propose a model called SalBayes which denotes the mar-
riage between both saliency and Bayesian modeling. At its core, the model learns
the probability of an object’s visual appearance having a range of values within a
particular feature map. In a search task, the model influences the various feature
maps by computing the probability of a given target object for each detector within
a feature map. As a result, locations in the maps with the highest probability are
searched first.

Marchesotti et al. [2009] use context by proposing a model for saliency detection
based on the principle that images sharing global visual appearances are likely to
share similar salience. Assuming that a large annotated image database is available,
they retrieve the most similar images to the target image, build a simple classifier
and use it to generate saliency maps. Their main application is image thumbnailing.

Similarly, Gao et al. [2008], Gao and Vasconcelos [2004] and Gao and Vasconcelos
[2005] propose a unified model for top-down and bottom-up saliency as a classifica-
tion problem. They first applied this model to object detection [Gao and Vasconcelos,
2005] in which a set of features are selected such that a class of interest is best dis-
criminated from other classes, and saliency is defined as the weighted sum of features
that are salient for that class. In [Gao et al., 2008]7, they defined bottom-up saliency
using the idea that pixel locations are salient if they are distinguished from their
surroundings. They used difference of Gaussians (DoG) filters and Gabor filters,
measuring the saliency of a point as the KullbackLeibler (KL) divergence between
the histogram of filter responses at the point and the histogram of filter responses in
the surrounding region.

A third way to add top-down guidance to models is to incorporate the use of
object detectors. The work of Cerf et al. [2007][2008a][2008b][2009] confirmed that
faces and text strongly attract attention and showed that they were difficult to ignore
even when doing so imposes a cost. They refined the Itti and Koch [1998] model by
adding a conspicuity map indicating the location of faces and text and demonstrate
that this significantly improves the ability to predict eye fixations in natural images.
They provide a working model® which combines the saliency map computation of

"http://www.svcl.ucsd.edu/projects/discsaltd/
8http://www.klab.caltech.edu/ moran/fifadb/code.html
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Itti and Koch model with the locations of faces based on the Viola Jones [2001]
face detection algorithm. Additionally, [Einhiuser et al., 2008b] showed that objects
predict fixations better than early saliency. They add a human defined object-map
to Itti and Koch model and show that fixations are predicted better by objects than
by early saliency.

Fourier based models Hou and Zhang [2007] proposed a spectral residual ap-
proach? based on the Fourier transform. The spectral residual approach does not rely
on parameters and detects saliency rapidly. The difference between the log spectrum
of an image and its smoothed version is the spectral residual of the image. Wang
and Li [2008] build on Hou and Zhang’s approach by combining spectral residual
for bottom-up analysis with features capturing similarity and continuity based on
Gestalt principles. Guo and Zhang [2010] later point out that the phase spectrum,
not the amplitude spectrum, of an image’s Fourier transform that is key to calculating
the location of salient areas. They propose a novel multiresolution spatiotemporal
saliency detection model called “phase spectrum of quaternion Fourier transform”
(PQFT)™ to calculate the spatiotemporal saliency map of an image by its quaternion
representation.

Region-based models Another fundamental difference between saliency models is
whether they are feature-based or incorporate some local grouping and are then called
region-based models. Region-based models are well suited for object segmentation
tasks [Achanta et al., 2008] [Achanta et al., 2009] [Liu et al., 2007][Avraham and
Lindenbaum, 2010]. Achanta et al. [2008] [2009] present a method for salient region
detection that exploits features of color and luminance and outputs full resolution
saliency maps with well-defined boundaries of salient objects. Liu et al. [2007] suggest
that saliency can be learned from manually labeled examples. They formulate salient
object detection as an image segmentation problem, where they separate the salient
object from the image background. They use features of multiscale contrast, center-
surround histogram and color spatial-distribution. Avraham and Lindenbaum [2006]
and [2010] propose extended saliency (or ESaliency) that uses a validated stochastic
model to estimate the probability that an image part is of interest. They use a region-
based method by starting with a rough grouping of image regions, and then select
regions that are unique with respect to the whole global scene rather than having
local contrast.

Models that learn parameters Most of the methods based on Gabor or Dif-
ference of Gaussian filter responses require many parameters such as the number of
filters, type of filters, choice of the nonlinearities, and a proper normalization scheme.
These methods tend to emphasize textured areas as being salient regardless of their
context. A good alternative is to use non-parametric approaches or learn the free
parameters using techniques of machine learning.

9http://www.klab.caltech.edu/ xhou/
10Code available from the author
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Kienzle et al. [2006] proposed to learn a visual saliency model directly from human
eyetracking data using a support vector machine (SVM). Though the approach is
promising, they use ground truth data of eye tracking fixations on a small database
of grey-scale image of natural scenes that have no particular salient object.

Seo and Milanfar [2009b] [2009a] use local regression kernels as features which
fundamentally differ from conventional filter responses. They use a nonparametric
kernel density estimation for these features, that results in a saliency map constructed
from a local self-resemblance measure, indicating likelihood of saliency.

Zhao and Koch [2011] use a least square technique to learn the weights associated
with a set of feature maps from subjects freely fixating natural scenes drawn from
four different eye-tracking data sets. They find that the weights can be quite different
for different data sets, but face and orientation channels are usually more important
than color and intensity channels.

Models that include a center bias. Researchers have shown several times that
eye fixations tend to be biased towards the center of an image [Parkhurst and Niebur,
2003], [Tatler, 2007] [Tatler and Vincent, 2009] [Tseng et al., 2009], [Le Meur et al.,
2006], [Bruce and Tsotsos, 2009]. Despite this, only [Parkhurst and Niebur, 2003]
and [Zhao and Koch, 2011] have implemented a model that incorporates this bias.
If the reader is interested in further information, we the reader to a nice summary
in [Tsotsos et al., 2005], a review by Rothenstein and Tsotsos [2008] which presents
a classification of models with details on the functional elements each includes, an
overview by Shipp [2004] that compares different models along the dimension of how
they map onto system level circuits in the brain and a nice survey by Frintrop et
al. [2010]which covers models up to about 2005. However, the state of the art has
changed dramatically in the last five years, warranting a new overview of the field.

2.2 Applications of models of visual attention

In situations where one needs to use large amounts of visual data, it is necessary
to prioritize the information before processing. To do this, the concept of selective
attention arouses much interest in data-intense fields such as computer vision, human-
computer interaction, robotics, computer graphics. Selective attention provides an
intuitive way to select interesting regions of an image in a natural way, and is a
promising avenue to improve computer vision systems and graphics applications.

In addition, we can build smarter applications and more visually pleasing content
by using models of visual attention that give us an idea of where people look. Images
can be compressed more, websites can be designed better, street signs can be made
safer, images can be thumbnailed better if we know what is likely to be important to
a human and attract their attention.

We elaborate further on some specific applications for models of visual attention.

Computer Vision Detecting regions of interest (ROI) is an important method for
some computer vision tasks. In image segmentation, parts of an image are grouped
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Figure 2-2: Saliency maps can help with image segmentation. Reprinted with permission
from Achanta [Achanta et al., 2009).

together depending on a measure of similarity by setting starting points (seeds) for
the segmentation and choosing a similarity criterion. Salient regions are natural
candidates for seeds and the homogeneity criterion can be adapted according to the
features that discriminate a region from its surroundings. The model of saliency by
Achanta et al. [2008] [2009] was designed specifically to help with the task ove object
segmentation (see Fig. 2-2) as was the model of [Valenti et al., 2009]. [Liu et al.,
2007] specifically formulates saliency as a process to detect salient objects.

Image compression algorithms can be enhanced by compressing regions that are
not deemed important more than regions that are attended to. Given that saliency
maps highlight regions considered important by humans, compression algorithms can
adaptively determine the number of bits allocated for coding image regions according
to their saliency. [Ouerhani, 2003] performs focused image compression with a visual
attention system and [Itti, 2004] uses his saliency model to for video compression
by blurring every frame increasingly with distance from salient locations. Guo and
Zhang 2010[Guo and Zhang, 2010] A novel multiresolution spatiotemporal saliency
detection model and its applications in image and video compression

Bottom up image saliency can be used to improve object recognition. [Miau et
al., 2001] present an object recognition approach that combines an attentional front-
end with the biologically motivated object recognition system HMAX [Riesenhuber
and Poggio, 1999]. [Walther and Koch, 2006] use a similar technique to combine an
attentional system with a object recognizer based on SIFT [Lowe, 2004] and and show
that recognition results improve with the attentional front-end. These systems rely
on bottom-up saliency infomation and therefore assume that objects of interest are
sufficiently salient by themselves. This works especially well for some object classes
like traffic signs which are designed intentionally salient.

In the above approaches, the attentional part is separate from the recognition.
However, in human perception these processes are strongly intertwined. A few groups
have started on approaches in which both processes share resources. [Walther and
Koch, 2006] suggest a unifying framework where the HMAX model for recognition is
modulated to suppress or enhance locations and features due to spatial attention. A
similar approach is used by [Navalpakkam and Itti, 2005] [Navalpakkam and Itti, 2007]
[Elazary and Itti, 2010] and [Avraham and Lindenbaum, 2010]. Additionally, the
attentional and object recognition processes are being brought together by saliency
models that include object detectors. Some models [Cerf et al., 2007], [Judd et al.,
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2009], include Viola Jones [2001] face detectors or Felzenshwalb [2008] person, car
and other object detectors.

Robotics In the process of robot localization, a robot has to determine its position
by interpreting its sensor data and matching it to a given map of its surroundings.
When the standard approaches of using laser scanners fail in outdoor environments,
detecting and matching visual landmarks with a known position is a promising ap-
proach. Attentional models can facilitate the search of landmarks by selecting in-
teresting regions in the sensor data. Siagian and Itti [2009] use salient objects in
the environment as navigational landmarks. The system VOCUS of Frintrop allows
for search of target objects [Frintrop, 2006], is largely robust to illumination and
viewpoint changes and is capable of running in realtime [Frintrop et al., 2007).

Models of attention can also be used to guide robot action. Robots, like humans,
have to decide what to do next given their current state in the world. Part of this
problem that is based on visual data is active vision, or deciding where to look next.
One needs to direct the robotic camera to regions of potential interest in the same
way that the human visual system directs gaze. In these applications, an attentional
model which highlights the most salient features in the video stream are imperative.
One of the first approaches to realize an active vision system with visual attention was
done so by [Clark and Ferrier, 1988]. They describe how to direct a binocular robotic
head with visual attention and perform simple experiments to fixate and track the
most salient region in articial scenes. [Mertsching et al., 1999] use the neural active
vision system NAVIS on two different camera heads. Newer systems used for robot
vision include [Zhang et al., 2008] [Butko et al., 2008].

Computer Graphics Within the field of computer graphics, a good saliency model
can be used to provide suggestions of how to compute the best crop for a given size,
as demonstrated by the initial work of [Santella et al., 2006] in Fig. 2-3. They present
an interactive method that uses fixation data provided by eye-tracking to identify
important content and compute the best crop for any given aspect ratio or size. Suh
et al. [2003] and Chen et al. [2003] built automatic image-cropping techniques that
require no user input. Both systems identify important image areas using bottom
up saliency models and face detection. These types of systems enable applications
such as automatic snapshot recomposition, adaptive documents, and thumbnailing
[Le Meur et al., 2006] [Marchesotti et al., 2009].

Saliency data used to determine regions of interest in a scene can help determine
the level of detail appropriate to stylize and abstract photographs to make them
more understandable, as seen in the work of [Grabli et al., 2004] (see Fig. 2-4), or
artistic [DeCarlo and Santella, 2002] (as in Fig. 2-5). A good measure of saliency can
help suggest an appropriate threshold for the level of detail that a non photorealistic
rendering of an image should include.

In content-aware media retargeting, an image or video is changed to fit a new
aspect ratio such that it can be used on variable platforms and screen sizes. Selected
pixels are deleted or morphed so that the resized image best portrays the important
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I(a) original (b) gaze-based (c) distracting crop

Figure 2-3: A good saliency method can help appropriately crop a photo. A good crop as
produced by a gaze-based system for saliency can improve an image (b). A poorly chosen
crop (c) can be distracting. Images from Santella et al. [2006].

Figure 2-4: A saliency model can help determine the appropriate level and location of detail
in the image. (Left) Two models of a house rendered at different levels of detail. (Right) An
engine with a specific part rendered with more details. Images reprinted with permission
from Grabli et al. [2004].

aspects of the original image, as in the work of [Avidan and Shamir, 2007], and [Ru-
binstein et al., 2008]. All image retargeting methods use a cost function such as a
saliency map to determine which pixels are the least important to prioritize them to
be removed before important pixels (see Fig. 2-6) as done in the work of [Goferman
et al., 2010] and [Holtzman-Gazit et al., 2010].

Design and marketing Companies are interested in knowing how observers look
at and interact with their websites, if they are able to find what they need and
navigate effectively. Advertisers would like to measure effectiveness of print designs
to be able to optimize their messages (see Fig. 2-7)11.

Companies such as SMIvision!? and GazeHawk!? offer eye tracking services which
allow companies to to see how visitors view their webpage, advertisement, or image.

HSunsilk images from http://www.rockyfu.com/blog/eyes-drive-attention/
2http: / /www.smivision.com/
Bhttp:/ /www.gazehawk.com
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Figure 2-5: A model of attention can be used for stylization and abstraction of images as
demonstrated in the work of [DeCarlo and Santella, 2002]. An eye tracker determines where
people look in an image. The data is used to drive the level of detail at each location in
the non photorealistic rendering of the image: more details where people looked and less
elsewhere. Images reprinted with permission from DeCarlo and Santella [2002].

Figure 2-6: A saliency map of the original image on the left helps determine which seams of
pixels in the image should be eliminated in order to produce the retargeting image on the
right in the seam carving process of [Avidan and Shamir, 2007]. Images from wikipedia.
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Figure 2-7: Eye tracking is used to aid design and market research.

Google does its own in-house eye tracking research'®. If models of saliency become
effective enough at modeling attention and predicting where people look, the need for
expensive and intrusive eye tracking tests is reduced.

2.3 Data sets of fixations

In order to study the effectiveness of a saliency model to predict where people look in
images, one needs a set of ground truth data of human fixations on images to compare
against. To that end, researchers have run eye tracking experiments to create data sets
of fixations on images. The data sets differ in the number and style of images chosen,
the number of observers run, the exact task the observers were given (freeviewing,
search, rating or memory task), but each help us understand where people actually
look and measure performance of saliency models.

Recently the field has understood the importance of these data sets—many data
sets have come out in the last two years. In this thesis, we introduce three new data
sets. We use one to learn a new model of saliency and one to benchmark existing
models of saliency. The third specialized data set is used to learn about fixations on
low-resolution images.

Figure 2-8 shows eye tracking data sets available to the public as well as the
datasets we introduce. Here is a description of each of the data sets in more detail.

Le Meur data set The data set published by Le Meur et al. [2006]'® has 27 color
images with strongly salient objects. Every image was seen in random order by
up to 40 observers for 15 seconds each in a task-free viewing mode. This set
was originally used to assess the performance of the Le Meur [2006] et al model
of saliency and compare it to Itti et al’s [1998] model.

DOVES data set DOVES (a Database Of Visual Eye movementS)' is a collec-
tion of eye movements from 29 human observers as they viewed 101 natural
calibrated images published by Linde et al.[2008]. The images contain only the

Yhttp://googleblog.blogspot.com/2009/02/eye-tracking-studies-more-than-meets.html
15The data set is available at http://www.irisa.fr/temics/staff/lemeur/visual Attention /.
16The data set is available at http://live.ece.utexas.edu/research/doves/.
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central 1024x768 pixels from the Natural Stimuli Collection created by Hans
van Hateren. They are black and white and show natural outdoor scenes with
no strongly salient objects. This database was published in order to encour-
age comparison of saliency models and the study of natural biases of human
fixations.

FIFA data set For the data set!” from Cerf et al.[2009], fixation data were collected
from 8 subjects performing a 2-s-long free-viewing task on 180 color natural
images (28 x 21). They were asked to rate, on a scale of 1 through 10, how
interesting each image was. Scenes were indoor and outdoor still images in
color. Images include salient objects and faces in various skin colors, age groups,
gender, positions, and sizes. This data set was originally used to establish that
human faces are very attractive to observers and to test models of saliency that
included face detectors.

Itti and Baldi video data set Eye tracking data by [Itti and Baldi, 2006] was col-
lected from eight subjects aged 2332 on a total of 50 video clips including indoor
scenes, outdoor scenes, television clips, and video games. Video clips were dis-
played at a resolution of 640 x 480 and consist of over 25 minutes of playtime
at approximately 60 Hz.

Toronto data set The data set from Bruce and Tsotsos!® [2009] contains data from
11 subjects viewing 120 color images of outdoor and indoor scenes. Participants
were given no particular instructions except to observe the images (32 x 24), 4
s each. One distinction between this data set and others is that a large portion
of images here do not contain particular regions of interest. The data set was
created to measure the performance of the authors’ model of attention based
on information maximization (AIM) against the Itti et al.[1998] model.

NUS data set The NUS data set'® recently was introduced by Ramanathan et al.
[2010] includes 758 images containing semantically affective objects/scenes such
as expressive faces, nudes, unpleasant concepts, and interactive actions. Images
are from Flickr, Photo.net, Google, and emotion-evoking IAPS [P.J. Lang and
Cuthbert, 2008]. In total, 75 subjects free-viewed (26 x 19 or 1024x728 pixels)
part of the image set for 5 s such that each image has an average of 25.3 subjects
per image.

2.4 Experimental Protocol

In this thesis we perform and analyze the results of four separate eye tracking experi-
ments. Though research questions differed, the experimental protocol for running the
experiments stayed largely the same and is described below.

1"The data set is available at http://www.fifadb.com/.
18The data set is available at http://www-sop.inria.fr/members/Neil. Bruce//.
9The data set is available at http://mmas.comp.nus.edu.sg/NUSEF.html.
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Figure 2-8: The chart shows different eye tracking data sets of natural full resolution images
available (in red) compared to the databases we introduce (in blue). Our MIT training data
set (1003, 15) is open and available to the public has a large number of images with eye
tracking data that can be used to train new models of saliency. Our MIT benchmark dataset
(300, 20) images are available for the public, but the observers’ fixations are hidden and
allow us to measure and compare the performance of different models.
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Figure 2-9: The setup for the eye tracking experiments.

For all of the eye tracking experiments, we used the same table-mounted, video-
based ETL 400 ISCAN eye tracker which recorded observers’ gaze paths at 240Hz as
they viewed a series of images. All the viewers sat approximately 24 inches from a
19-inch computer screen of resolution 1280x1024px in a dark or semi-dark room and
used a chin rest to stabilize their head. They typically saw a stream of between 36
to 1003 images broken into sections of reasonable length. When the observer and the
eye tracker were well calibrated, the images auto-advanced and were usually shown
for either 3 or 5 seconds.

We used a five point calibration system, during which the coordinates of the pupil
and corneal reflection were recorded for positions in the center and each corner of the
screen. We checked camera calibration either ever 50 or 100 images and recalibrated
if necessary. The average calibration error was less than one degree of visual angle
( 35pixels). During the experiment, position data was transmitted from the eye
tracking computer to the presentation computer so as to ensure that the observer
fixated on a cross in the center of a gray screen for 500ms prior to the presentation
of the next image.

The raw data from the eye tracker consisted of time and position values for each
data sample. We used the method from [Torralba et al., 2006] to define saccades
by a combination of velocity and distance criteria. Eye movements smaller than the
predetermined criteria were considered drift within a fixation. Individual fixation
durations were computed as elapsed time between saccades and the position of each
fixation was computed from the average position of each data point within the fixation.
We discarded the first fixation from each scanpath to avoid the trivial information
from the initial fixation in the center.
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In some of the experiments, we motivated the observers to pay attention to the
experiment by indicating that there would be a memory test at the end of the exper-
iment. Independent of whether we ran the memory test or not, we did not use the
data in our analysis.
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Chapter 3

Learning to predict where people
look

Abstract

Most saliency approaches are based on bottom-up computation that does not consider
top-down image semantics and often does not match actual eye movements. To
address this problem, we collected eye tracking data of 15 viewers on 1003 images and
use this database as training and testing examples to learn a model of saliency based
on low and high-level image features. The low-level features include the subbands of
the steerable pyramid, colors, orientation, and intensity. High-level features include
a horizon detector, and face, person and car detectors. We also include a center
weighted feature that models the natural bias of human fixations to be near the
center of the image. We show this combined model outperforms any model based on
subsets of the features.

3.1 Introduction

Most models of saliency are biologically inspired and based on a bottom-up computa-
tional model that does not consider top-down image semantics. Though the models
do well qualitatively, the models have limited use because they frequently do not
match actual human saccades from eye-tracking data, as in Fig 3-2, and finding a
closer match depends on tuning many design parameters.

We address these problems through two contributions in this chapter. The first is a
large database of eye tracking experiments with labels and analysis, and the second is
a supervised learning model of saliency which combines both bottom-up image-based
saliency cues and top-down image semantic dependent cues. Our database consists
of eye tracking data from 15 different users across 1003 images. To our knowledge,
it is the first time such an extensive collection of eye tracking data is available for
quantitative analysis. For a given image, the eye tracking data is used to create a
“ground truth” saliency map which represents where viewers actually look (Fig 3-1).
We propose a set of low, mid and high-level image features used to define salient
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Figure 3-1: Eye tracking data. We collected eye-tracking data on 1003 images from 15
viewers to use as ground truth data to train a model of saliency using machine learning.
Gaze tracking paths and fixation locations are recorded for each viewer (b). A continuous
saliency map (c) is found by convolving a gaussian over the fixation locations of all users.
This saliency map can be thresholded to show the most salient 20 percent of the image (d).

locations and use a linear support vector machine to train a model of saliency. We
compare the performance of saliency models created with different features and show
how combining all features produces the highest performing model. As a demon-
stration that our model can be used for graphics applications, we reimplement the
DeCarlo and Santella [2002] abstracted nonphotorealistic rendering technique with
our saliency model instead of eye tracking input.

Our work is most closely related to the work of Kienzle et al. [2006] who also learn
a model of saliency directly from human eye movement data. Their model consists of
a nonlinear mapping from a normalized image patch to a real value, trained to yield
positive outputs on fixated patches, and negative outputs on randomly selected image
patches. In contrast to our work, they only used low-level features. Furthermore, their
training set comprises only 200 grayscale natural scene images.

3.2 Database of eye tracking data

We collected a large database of eye tracking data to allow large-scale quantitative
analysis of fixations points and gaze paths and to provide ground truth data for
saliency model research. The images, eye tracking data, and accompanying code in
Matlab are all available on the web to facilitate research in perception and saliency
across the vision and graphics community.
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Figure 3-2: Current saliency models do not accurately predict human xations.
In row one, the low-level model selects bright spots of light as salient while viewers look at
the human. In row two, the low level model selects the buildings strong edges and windows
as salient while viewers fixate on the text.

35



Figure 3-3: Images. A sample of the 1003 images that we collected from Flickr and
LabelMe. Though they were shown at original resolution and aspect ratio in the experiment,
they have been resized for viewing here.

3.2.1 Data gathering protocol

We collected 1003 random images from Flickr creative commons and LabelMe [Russell
et al., 2005] (Fig 3-3) and recorded eye tracking data from fifteen users who free viewed
these images. The longest side of each image was 1024 pixels, and most images were
768x1024 or 1024x768 pixels in size though a few had a different aspect ratio. The
users were both males and females between the ages of 18 and 35. Two of the viewers
were researchers on the project and the others were naive viewers. All viewers sat
at a distance of approximately two feet from a 19 inch computer screen of resolution
1280x1024 in a dark room and used a chin rest to stabilize their head. An eye tracker
recorded their gaze path on a separate computer as they viewed each image at full
resolution for 3 seconds separated by 1 second of viewing a gray screen. To ensure
high-quality tracking results, we checked camera calibration every 50 images. We
divided the viewing into two sessions of 500 randomly ordered images. Fach session
was done on average at one week apart. We provided a memory test at the end of
both viewings to motivate users to pay attention to the images: we showed them 100
images and they had to indicate which ones they had seen before. We discarded the
first fixation from each scanpath to avoid adding trivial information from the initial
center fixation.

In order to obtain a continuous saliency map of an image from the eye tracking
data of a user, we convolve a gaussian filter across the user’s fixation locations, similar
to the “landscape map” of [Velichkovsky et al., 1996]. We also generate a saliency
map of the average locations fixated by all viewers. We can choose to threshold this
continuous saliency map to get a binary map of the top n percent salient locations of
the image (Fig 3-1).
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Figure 3-4: Analysis of fixation locations. The first two rows show examples of saliency
maps made from human fixations with low and high entropy and their corresponding images.
Images with high consistency/low entropy tend to have one central object while images with
low consistency/high entropy are often images with several different textures. Bottom left is
a histogram of the saliency map entropies. Bottom right is a plot of all the saliency maps

from human eye fizations indicating a strong bias to the center of the image. 40% and 70%
of fixations lie within the indicated rectangles.
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3.2.2 Analysis of dataset

For some images, all viewers fixate on the same locations, while in other images
viewers fixations are dispersed all over the image. We analyze this consistency of
human fixations over an image by measuring the entropy of the average continuous
saliency map across viewers. Though the original images were of varying aspect
rations, we resized them to 200x200 pixel images before calculating entropy. Figure 3-
4 shows a histogram of the entropies of the images in our database. It also shows a
sample of 12 saliency maps with lowest and highest entropy and their corresponding
images.

Our data indicates a strong bias for human fixations to be near the center of the
image, as is consistent with previously analyzed eye tracking datasets [Zhang et al.,
2008]. Figure 3-4 shows the average human saliency map from all 1003 images. 40% of
fixations lie within the center 11% of the image; 70% of fixations lie within the center
25% of the image. This bias has often been attributed to the setup of the experiment
where users are placed centrally in front of the screen, and to the fact that human
photographers tend to place objects of interest in the center of photographs [Zhang
et al., 2008].

We use an ROC metric to evaluate the performance of human saliency maps to
predict eye fixations. Using this method, the saliency map from the fixation locations
of one user is treated as a binary classifier on every pixel in the image. Saliency maps
are thresholded such that a given percent of the image pixels are classified as fixated
and the rest are classified as not fixated. The human fixations from the other 14
humans are used as ground truth. By varying the threshold, the ROC curve is drawn
and the area under the curve indicates how well the saliency map from one user can
predict the ground truth fixations. Figure 3-5 shows the average ROC curve over all
users and all images. Note that human performance is remarkably good: 60% of the
ground truth human fixations are within the top 5% salient areas of a novel viewer’s
saliency map, and 90 percent are within the top 20 percent salient locations.

As stated before, the fixations in the database have a strong bias towards the
center. Because of this, we find that simply using a Gaussian blob centered in the
middle of the image as the saliency map produces excellent results, as noted for other
datasets as well by [Zhang et al., 2008] [Meur et al., 2007b]. We plot the ROC curve
for the center Gaussian on figure 3-5.

In order to analyze fixations on specific objects and image features we hand labeled
our image dataset. For each image, we labeled bounding boxes around any faces and
text, and indicated a line for the horizon if present. Using these labeled bounding
boxes we calculated that 10% of fixations are on faces (Fig 3-6). Though we did
not label all people, we noticed that many fixations landed on people (including
representations of people like drawings or sculptures) even if their faces were not
visible. In addition, 11% of fixations are on text. This may be because signs are
innately designed to be salient (for example a stop sign or a store sign are created
specifically to draw attention). We use these ground truth labels to study fixation
prediction performance on faces and as a ground truth for face and horizon detection.
We also qualitatively found that fixations from our database are often on animals,
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Figure 3-5: In this ROC curve, human performance is very high demonstrating that the
locations where a human looks are very indicative of where other humans have looked. The
gaussian center model performs much better than chance because of the strong bias of the
fixations in the database towards the center.

cars, and human body parts like eyes and hands. These objects reflect both a notion
of what humans are attracted to and what objects are in our dataset.

By analyzing images with faces we noticed that viewers fixate on faces when they
are within a certain size of the image but fixate of parts of the face (eyes, nose, lips)
when presented with a close up of a face (Fig 3-7). This suggests that there is a
certain size for a region of interest (ROI) that a person fixates on. To get a quick
sense of the size of ROIs, we drew a rough bounding box around clustered fixations
on 30 images. Figure 3-7 shows the histogram of the radii of the resulting 102 ROlIs.
Investigating this concept is an interesting area of future work.

3.3 Learning a model of saliency

In contrast to previous computational models that combine a set of biologically plau-
sible filters together to estimate visual saliency, we use a learning approach to train
a classifier directly from human eye tracking data.

3.3.1 Features used for machine learning

The following are the low-, mid- and high-level features that we were motivated to
work with after analyzing our dataset. For each image, we precomputed the features
for every pixel of the image resized to 200x200 and used these to train our model.

Low-level features Because they are physiologically plausible and have been shown
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Figure 3-6: Objects of interest.

In our database, viewers frequently fixated on faces,
people, and text.

Other fizations were on body parts such as eyes and hands, cars and
animals. We found these areas here by selecting bounding bozes around connected areas of
salient pizels on an image overlayed with its 3% salient mask.

200 400 600 800

Radius of ROI

Figure 3-7: Size of regions of interest In many images, viewers fixate on human faces.
However, when viewing the close up of a face, they look at specific parts of a face rather
than the face as a whole, suggesting a constrained area of the region of interest. On the
right is a histogram of the radii of the regions of interest as the percent of the whole image.
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to correlate with visual attention, we use the local energy of the steerable pyra-
mid filters [Simoncelli and Freeman, 1995] as features. We currently find the
pyramid subbands in four orientations and three scales (see Fig 3-8, first 13
images). We also include features used in a simple saliency model described
by Torralba [Torralba et al., 2006] and Rosenholtz [Rosenholtz, 1999] based on
subband pyramids (Fig 3-8, bottom left).

Intensity, orientation and color contrast have long been seen as important fea-
tures for bottom-up saliency. We include the three channels corresponding to
these image features as calculated by Itti and Koch’s saliency method [Itti and
Koch, 2000].

We include the values of the red, green and blue channels, as well as the proba-
bilities of each of these channels as features (Fig 3-8, images 20 to 25) and the
probability of each color as computed from 3D color histograms of the image
filtered with a median filter at 6 different scales (Fig 3-8, images 26 to 31).

Mid-level features Because most objects rest on the surface of the earth, the hori-
zon is a place humans naturally look for salient objects. We train a horizon line
detector from mid-level gist features [Oliva and Torralba, 2001a).

High-level features Because we found that humans fixated so consistently on peo-
ple and faces we run the Viola Jones face detector [Viola and Jones, 2001] and
the Felzenszwalb person detector [Felzenszwalb et al., 2008] and include these
as features to our model.

Center prior When humans take pictures, they naturally frame an object of inter-
est near the center of the image. For this reason, we include a feature which
indicates the distance to the center for each pixel.

3.3.2 Training

In order to train and test our model, we divided our set of images into 903 training
images and 100 testing images. From each image we chose 10 positively labeled pix-
els randomly from the top 20% salient locations of the human ground truth saliency
map and 10 negatively labeled pixels from the bottom 70% salient locations to yield
a training set of 18060 examples and testing set of 2000 examples. We found that
increasing the number of examples chosen per image above 10 did not increase per-
formance. It is probable that after a certain number of examples per image, new
examples only provide redundant information. We chose examples from the top 20%
and bottom 70% in order to have examples that were strongly positive and strongly
negative; we avoided examples on the boundary between the two. We did not choose
any examples within 10 pixels of the boundary of the image.

We did find that the ratio of positive to negative training examples changed the
performance of a given model by changing the threshold of how many positive and
negative examples it returned: as the number of positive examples went up, the
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Figure 3-9: Comparison of saliency maps. Fach row of images compares the predictors
of our SVM saliency model, the Itti saliency map, the center prior, and the human ground
truth, all thresholded to show the top 10 percent salient locations.

probability of returning a positive label went up as well. Because the ratio did not
affect the relative performance between different models, we held the ratio constant
at 1 to 1 to provide faster performance.

We normalized the features of our training set to have zero mean and unit variance
and used the same normalization parameters to normalize our test data.

We used the liblinear support vector machine to train a model on the 9030 positive
and 9030 negative training examples. We used models with linear kernels because we
found from experimentation that they performed as well as models with radial basis
function kernels and models found with multiple kernel learning [Sonnenburg et al.,
2006] for our specific task. Linear models are also faster to compute and the resulting
weights of features are easier to understand. We set the misclassification cost ¢ at 1.
We found that performance was the same for ¢ = 1, 10, 100 and decreased after that.

3.3.3 Performance

We measure performance of saliency models in two ways. First, we measure per-
formance of each model by its ROC curve. Second, we examine the performance of
different models on specific subsets of fixations: fixations inside and outside a central
area of the image and on faces.
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Figure 3-10: The ROC curve of performances for SVMs trained on each set of features
individually and combined together. We also plot human performance and chance for com-
parison.

Performance on testing images In Figure 3-10, we see a ROC curve describing
the performance of different saliency models averaged over all testing images. For
each image we predict the saliency per pixel using a specific trained model. Instead
of using the predicted labels (indicated by the sign of w’x + b where w and b are
learned parameters and z refers to the feature vector), we use the value of wx + b
as a continuous saliency map which indicates how salient each pixel is. Then we
threshold this saliency map at n =1, 3, 5, 10, 15, 20, 25, and 30 percent of the image
for binary saliency maps which are typically relevant for applications. For each binary
map, we find the percentage of human fixations within the salient areas of the map as
the measure of performance. Notice that as the percentage of the image considered
salient goes to 100%, the predictability, or percentage of human fixations within the
salient locations also goes to 100%.

We make the following observations from the ROC curves: (1) The model with all
features combined outperforms models trained on single sets of features and models
trained on competing saliency features from Torralba and Rozenholtz and Itti and
Koch. (2) The model with all features reaches 88% of the way to human performance.
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Figure 3-11: Here we show the average rate of true positives and true negatives for SVMs
trained with different feature sets on different subsets of fizations.

For example, when images are thresholded at 20% salient, our model performs at 75%
while humans are at 85%. (3) The model with all features except the distance to the
center performs as well as the model based on the distance to the center. This is
quite good considering this model does not leverage any of the information about
location and thus does not at all benefit from the huge bias of fixations toward the
center. (4) The model trained on all features except the center performs much better
than any of the models trained on single sets of features. For example, at the 20%
salient location threshold, the Torralba based model performs at 50% while the all-in-
without-center model performs at 60% for a 20% jump in performance. (5) Though
object detectors may be very good at locating salient objects when those objects are
present in an image, it is not good at locating other salient locations when the objects
are not present. Thus, the overall performance for the object detector model is low
and these features should be used only in conjunction with other features. (6) All
models perform significantly better than chance indicating that each of the features
individually do have some power to predict salient locations.

Performance on testing fixations To understand the impact of the bias towards
the center of the dataset for some models, we divided each image into a circular central
and a peripheral region. The central region was defined by the model based only on
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the feature which gave the distance of the example to the center. In this model,
any fixation farther than 0.42 units away from the center (where the distance from
the center to the corner is 1) was labeled negative and anything closer was labeled
positive. This is equivalent to the center 27.7% of the image. Given this threshold,
we divided the fixations to those inside and outside the center. In addition, we chose
to look at fixations that landed on faces since viewers were particularly attracted by
them.

In Figure 3-11 we plot performance of the model for different subsets of fixations.
The performance here is defined as the average of the true positive and true negative
rates.

We make the following observations about the trained models from this measure
of performance: (1) Even though center model performs well over all the fixations
(both fixations inside and outside the center), it performs only as well as chance
for the other subsets of fixations. (2) While over all fixations the performance of
the center model and the all-features-without-center model perform the same, later
model performs more robustly over all subsets of images. (3) Understandably, the
model trained on features from object detectors for faces, people and cars performs
better on the fixations due to faces. (4) The SVMs using the center prior feature and
the one using all features perform very well on 1000 positive and negative random
testing points but are outperformed both in the inside and outside region. This
paradox stems from the fact that 79% of the 1000 salient testing points are in the
inside region, whereas 75% of the non-salient testing points are in the outside. One
can show that this biased distribution provides a lift in performance for methods that
would either have a high true negative rate outside or a high true positive rate inside,
such as the center prior.

3.3.4 Applications

A good saliency model enables many applications that automatically take into account
a notion of human perception: where humans look and what they are interested in.
As an example, we use our model in conjunction with the technique of DeCarlo and
Santella [2002] to automatically create a non photorealistic rendering of a photograph
with different levels of detail (Fig 3-12). They render more details at the locations
users fixated on and less detail in the rest of the image. While they require information
from an eye tracking device in order to tailor the level of detail, we use our saliency
model to predict locations where people look.

3.4 Conclusion

In this work we make the following contributions: We develop a collection of eye
tracking data from 15 people across 1003 images which we will make public for re-
search use. This is the largest eye tracking database of natural images that we are
aware of and permits large-scale quantitative analysis of fixations points and gaze
paths. We use machine learning to train a bottom-up, top-down model of saliency
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Figure 3-12: Stylization and abstraction of photographs DeCarlo and Santella [2002]
use eye tracking data to decide how to render a photograph with differing levels of detail.
More details are rendered at locations that humans fizate on. We replicate this application
without the need for eye tracking hardware.

based on low, mid and high-level image features. We demonstrate that our model
outperforms the saliency model of Itti and Koch and the center prior. Finally, we
show an example of how our model can be used in practice for graphics applications.

Discussion This eye tracking database allows us to quantify how consistent human
fixations are across an image. In general, the fixation locations of several humans
is strongly indicative of where a new viewer will look. So far, computer generated
models have not matched humans’ ability to predict fixation locations though we feel
we have moved a step closer in that direction by using a model that combines both
low and high level features.

Qualitatively, we learned that when free viewing images, humans consistently look
at some common objects: They look at text, other people and specifically faces. If
not people, they look at other living animals and specifically their faces. In the
absence of specific objects or text, humans tend towards the center of the image or
locations where low-level features are salient. As text, face, person and other object
detectors get better, models of saliency which include object detectors will also get
better. Though all these trend are not surprising, we are excited that this database
will allow us to measure the trends quantitatively.

For future work we are interested in understanding the impact of framing, cropping
and scaling images on fixations. We believe that the same image cropped at different
sizes will lead viewers to fixate on different objects in the image and should be more
carefully examined.

3.5 Lessons Learned

Overall we found that using more features gets better performance. Although consid-
ering more features usually results in more accurate and biologically plausible detec-
tion results, it also reduces the processing speed since the parallel models are usually

47



implemented sequentially. Therefore a trade-off has to be found between accuracy
and speed.

One large open question related to this work is which features are most important?
A full discussion of this is in the conclusion chapter of this thesis. The center feature
was consistently the highest performing single feature. To get the ordering after
that, we measured which features add most to our model by calculating the delta
improvement between the center model and the center model with a given set of
features. We observe that subband features and Torralbas feature map (which use
subband features) add the greatest improvement. After that is color features, horizon
detection, face and object detectors, and Itti channels.

The center bias of fixations in our data set is very strong. Borji et al. [2011] ask
whether this is due to the photographic bias of our data set. They find that the
data set does have a bias for objects near the center but also find that there is still a
strong bias of fixations toward the center even on new, non-center biased data sets,
suggesting that observers’ view-strategy is still strongly center biased. This agrees
with the work of Tseng et al. [2009] that says that both the photographic bias and
the viewing strategy are equally important in creating fixations patterns towards the
center. This means that good models of fixations should continue to include this bias
as part of their model.

We notice that the face feature is very useful (it gets a high weight) even though
the face detector has many false positives and negatives. This is partly due to the
fact that observers have a strong tendency to look at faces. In fact 10% of fixations
from our data set land on faces. In follow-up to our work, Zhao and Koch [2011]
also learned weights for a four-feature model (color, orientation, intensity and faces)
using our data set. They found that the weight for the face channel was highest,
followed by orientation, color and intensity. The face weight was twice as high as the
orientation weight. In our experiment, we also found that 11% of fixations landed on
text. Adding a text detector would likely be an equally useful feature channel.

Related to the goal of finding which features work best is the goal of finding the
minimum number of features that work. Our model includes 6 features based on
color, 13 subbands of the steerable pyramid, and multiple other sets of features which
possibly have much redundant information. It remains future work to cull down the
number of features and still maintain high performance.

The work described in this chapter were published in [Judd et al., 2009]. Since
then, the technique of using machine learning to learn weights of features (instead of
tuning them in an ad hoc fashion) has continued to gain momentum [Zhao and Koch,
2011], [Vig et al., 2010].
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Chapter 4

Benchmarking models of saliency

Abstract

There are many computational models of visual attention which are created from a
wide variety of different approaches that aim to predict where people look in images.
Each model is introduced by demonstrating performances on new images, and it is
hard to make immediate objective comparisons between the models. To alleviate
this problem, we propose a benchmark data set containing 300 natural images with
eye tracking data from 20 viewers to compare the performance of models. We run
10 different models of saliency and calculate each model’s performance at predicting
ground truth fixations using three different metrics: a receiver operating characteris-
tic, a similarity metric, and the Earth Mover’s Distance. We describe performances
here and online! and provide a way for people to submit new models for evalutation.
Overall we find that the Judd and Graph-based visual saliency models perform best.
In general, blurrier models, and models that include a notion of the center bias of
fixations, perform well.

4.1 Introduction

Over the past few years, a number of high-quality computational models of attention
have been developed and the state of the art is rapidly improving. Often when a new
model is introduced, the authors make a good effort to compare it to at least one or
two or three state-of-the-art models and see how each performs on a set of images
viewed by humans. This means that with each new model comes new comparisons
with different models on new images. There is no clear way to quantitatively compare
all the models against each other. To alleviate this problem, we propose a benchmark
data set, containing 300 natural images with eye tracking data from 20 viewers,
to compare the performance of all available models. Because models were initially
inspired with the aim to mimic the human visual system, we propose that the best
way to measure model performance is to see how well each performs at predicting
where people look in images in a free-viewing condition.

thttp://people.csail.mit.edu/tjudd/SaliencyBenchmark
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Where people look in an image is affected both by bottom-up and top-down mech-
anisms of visual attention. Many models only model bottom-up mechanisms because
it is hard to model the top-down mechanisms involved in all possible states of the
observer (memories, culture, age, gender, experiences) and possible tasks (searching,
browsing, recognizing). However, it is still a reasonable goal to try and model atten-
tion for an average observer with a free viewing task. By free viewing we mean to
imitate situations in which viewers are observing their world without a specific goal.
This means that the best saliency models would pick up intrinsically salient locations
independent of the specific viewer or task.

Not only is this benchmark of images aimed to help us score and compare how well
existing saliency models predict where people look, it is also meant to provide a way to
score new models. It is no longer enough that models predict fixations “significantly
above chance”. To go further we need models that predict where people look very well
and approach the performance of humans. The difference between the performance
of the best models today and the performance of humans shows that there is still
room for improvement.

4.2 Previous comparisons

Several authors have shown that regions of interest found by computational model of
visual attention correlate with eye fixations [Privitera and Stark, 2000] [Parkhurst et
al., 2002] [Elazary and Itti, 2008] [Henderson et al., 2007] [Ouerhani, 2003] [Bruce and
Tsotsos, 2006] [Itti, 2005] [Peters et al., 2005] and the reported area under receiver
operating characteristic (ROC) curve, which measures how well the two correlate,
has increased over time as models get better. However, it is unfair to compare these
numbers directly as they come from different experiments using different images under
different conditions.

To facilitate comparisons, several authors have produced openly available databases
of images with fixations from eye tracking experiments [Le Meur et al., 2006 [Linde et
al., 2008] [Cerf et al., 2009] [Bruce and Tsotsos, 2006] [Judd et al., 2009] [Ramanathan
et al., 2010] and executable code of models that others can use. We provide a descrip-
tion of these datasets in section 2.3 and provide links to these through our website.

Given the accessibility of image databases and code, some authors have recently
made substantial comparisons. Zhang et al. [2008] use the area under the ROC curve
and KL-divergence to measure performance and compare against methods by [Itti
et al., 1998], [Bruce and Tsotsos, 2006] and [Gao et al., 2008]. Seo and Milanfar
[2009a] use the same measurement protocol and compare their model against the
same three above and the SUN model [Zhang et al., 2008]. Zhao and Koch [2011]
learn ideal weights for the Itti and Koch model using four different datasets. They use
three different metrics, ROC curve, Normalized Scanpath Saliency (NSS) and Earth
Mover’s Distance, to evaluate the performance of the models.

Our work builds off of these comparisons. We differ in that we compare many
more models (10 different ones) and that we compare them on a new data set of
images with a large amount of viewers. We measure performance of models using the
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area under the receiver operator characteristic (ROC), earth mover’s distance (EMD)
and a similarity metric. This helps us make objective statements about how well the
models predict fixations but also how they are similar and different from each other.

4.3 Experimental design

4.3.1 Benchmark data set

Images We collected 300 images combined from Flickr Creative Commons and
personal image collections and recorded eye tracking data from twenty users who
free-viewed these images. The longest dimension of each image was 1024 pixels and
the second dimension ranged from 457 to 1024 pixels with the majority at 768 pixels.
There were 223 landscape images and 77 portrait images.

Observers 20 observers (age range 18-50 years) participated in our eye tracking
study. Each reported normal or corrected-to-normal vision. They all signed a consent
form and were paid $15 for their time.

Method We used a method similar to the eye tracking experiment described in
section 2.4. We displayed each image for 3 seconds followed by a gray screen. We
tested calibration every 100 images. The instructions for this test were “You will see
a series of 300 images. Look closely at each image. After viewing the images you
will have a memory test: you will be asked to identify whether or not you have seen
particular images before.” We stated that there was a memory test to motivate users
to pay attention however, we did not run a memory test at the end. Observers are
typically more attentive if they are given a task, and the memory task is considered
the lightest and least intrusive task available that still mimics free-viewing conditions.

We obtain a continuous fization map for an image from the eye tracking data
by convolving a gaussian filter across fixation locations of all observers. Figure 4-1
shows 5 images from our dataset, the fixations of 20 viewers on the images, and the
corresponding fixation maps. The fixation map is normalized to range between zero
and one.

4.3.2 Saliency models

We compare ten computational models of attention in our benchmark. These models
are major models of attention that have been introduced in the last five years (except
for the Itti and Koch model which was originally implemented in 1998) and they offer
executable code. In essence, these are the models that are available and useable to a
user who might like to use one to build further applications.

We list the models we used here in the order they were introduced. The Itti and
Koch model is based on the theoretical bottom-up feature-based model of Koch
and Ullman [1985], and was later implemented and improved by [Itti et al., 1998],
[Itti and Koch, 2000], [Itti and Koch, 2001], [Walther and Koch, 2006]. We used two
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Figure 4-1: Five images from our benchmark data set (top), the fixation locations from our
20 viewers (middle), and the corresponding fixation maps (bottom).

implementations of this model: one implemented in Walther’s Saliency Toolbox? and
another which comes in the GBVS package®. The Graph Based Visual Saliency
(GBVS) model* [Harel et al., 2007] is a graph based implementation of the Itti and
Koch model based on the use of a dissimilarity metric. The Torralba model® [Tor-
ralba et al., 2006] incorporates the context of the scene. Hao and Zhang model®
[Hou and Zhang, 2007] is based on the spectral residual of an image in the Fourier
domain. [Zhang et al., 2008] proposed the SUN saliency model” using natural
statistics based on a Bayesian framework to estimate the probability of a target at
every location. Achanta® [Achanta et al., 2009] provides a simple model which aims
to cleanly extract objects from their background. Because the target application of
this work is different from the current benchmark task, it is at a clear disadvantage.
This model would be better assessed under an image segmentation task though it is
still interesting to explore how it performs on our task. The Bruce and Tsotsos
model® [Bruce and Tsotsos, 2009] is a model for visual saliency computation built
on a first principles information theoretic formulation dubbed Attention based on In-
formation Maximization (AIM). The Judd model' [Judd et al., 2009] is introduced
in this thesis and incorporates bottom-up and top-down image features and learns
the appropriate weights for fusing feature channels together. The Context-Aware

Zhttp://www.saliencytoolbox.net /

3http://www.klab.caltech.edu/ harel/share/gbvs.php
4http://www.klab.caltech.edu/ harel/share/gbvs.php

5Code provided by Antonio Torralba.

Chttp://www.its.caltech.edu/ xhou/projects/spectralResidual /spectralresidual.html
Thttp://cseweb.ucsd.edu/ 16zhang/
8http://ivigwww.epfl.ch/supplementary_material/RK_CVPR09/index.html
9http://www-sop.inria.fr/members/Neil. Bruce/
Ohttp://people.csail.mit.edu/tjudd/WherePeopleLook /index.html
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Saliency'! [Goferman et al., 2010] aims at detecting the image regions that represent
the scene and not just the most salient object. Their goal is to find image regions
that “tell the story of the image”. For further descriptions of these models, refer to
the related work in section 2.1 of this thesis.

Figure 4-2 shows saliency maps produced by each of the models. The models
are shown from top to bottom in the following order: Judd, GBVS, Itti and Koch
2 (GBVS implementation), Itti and Koch (SaliencyToolbox implementation), Bruce
and Tsotsos’” AIM, Context Aware, Torralba, Hao and Zhang, SUN, and Achanta.

The models vary greatly in the amount of salient pixels they return. For example,
notice the difference in white or salient pixels between the Itti and Kock model and
the Bruce and Tsotsos AIM model. In order to make comparisons across them, we
match the histograms of the saliency maps to the histogram of the human fixation
map for each image. In essence, this equalizes the amount of salient pixels allowed
for each image and asks each model to place the mass of salient pixels on the areas it
finds most salient. Saliency maps with matched histograms are shown in Figure 4-3.
We use these histogram-matched saliency maps for all our performance calculations
although this change does not affect the performance for the ROC metric.

4.3.3 Baselines

In addition to comparing saliency models to each other, we compare them to three
important baselines shown in Figure 4-4. They have been histogram-matched to the
fixation maps so that each shows the same amount of salient pixels.

Chance This model randomly selects pixels as salient. This can be considered a
lower bound for the performance of saliency models. No model should have
lower performance than chance.

Center This model predicts that the center of the image is the most salient. As the
distance from the center of the image to the pixel increases, the value of its
saliency decreases. The model is created by stretching a symmetric Gaussian
to fit the aspect ratio of a given image. This means that if the image is much
longer than it is high, the gaussian will have a longer horizontal axis. This
stretched Gaussian performs slightly better than an isotropic Gaussian because
it accounts for the tendency of objects of interest to be spread along the longer
accesss. Ideally, any good model of saliency should outperform the center model.

Human performance Humans should be the best predictors of where other hu-
mans will look. However they do not predict each other perfectly because of
the variability of many human factors and the complexity of a given image. Un-
der the ROC metric, we measure human performance as how well the fixation
map from 19 observers predicts the fixations of the 20th observer. This is av-
eraged across all observers for the final performance. The other metrics require
different approaches for estimating human performance. In all metrics, human

Hhttp:/ /webee.technion.ac.il/labs/cgm/Computer-Graphics-Multimedia/Software /Saliency /Saliency.html
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Figure 4-2: Saliency maps from 10 different models.
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Figure 4-3: Histogram matched saliency maps. Matching the histograms between maps
allows us to better understand which locations each model finds most salient



performance goes up as you increase the number of humans in a fixation map.
Human performance provides the upper bound on the performance of saliency
models: the best model possible would predict fixations of a new observer as
well as other observers do.

Figure 4-4: Baseline models for predicting where people look include human fixation maps
(top), the center model (middle), and the chance model (bottom).

Fixation Maps

Center

Chance

4.3.4 Scoring metrics

Several metrics can be used to quantitatively evaluate the performance of saliency
models. These measures include the Receiver Operating Characteristics (ROC) [Green
and Swets, 1966], the Normalized Scanpath Saliency (NSS) [Peters et al., 2005],
correlation-based measures [Jost et al., 2005] [Rajashekar et al., 2008], the least
square index [Henderson et al., 2007] [Mannan et al., 1997], and the “string-edit
distance [Brandt and Stark, 1997] [Choi et al., 1995] [S. et al., 1992].

Among these metrics, ROC is the most widely used in the community. According
to Zhao and Koch [2011] he inherent limitation of ROC, however, is that it only
depends on the ordering of the fixations. In practice, as long as the hit rates are
high, the area under the ROC curve (AUC) is always high regardless of the false
alarm rate. Therefore, while an ROC analysis is useful, it is insufficient to describe
the spatial deviation of predicted saliency map from the actual fixation map. If
a predicted salient location is misplaced, but misplaced close to or far away from
the actual salient location, the performance should be different. To conduct a more
comprehensive evaluation, we use a measure of similarity and the Earth Mover’s
Distance (EMD) [Rubner et al., 2000] that measure the real spatial difference rather
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than only the ordering of the values. Though the ROC performance is not affected
by our histogram matching, the similarity and EMD performance is.

The similarity score (S) is a measure of how similar two distributions are. After
each distribution is scaled to sum to one, the similarity is the sum of the minimum
values at each point in the distributions. Mathematically, the similarity S between
two maps A and B is

S =Y min(A;;, B;;) where Y A;;=> B;;=1.
i j 0,

1]

A similarity score of one means the distributions are the same. An similarity score of
zero shows that they do not overlap at all and are completely different.

Earth Mover’s Distance (EMD) [Rubner et al., 2000] captures the global
discrepancy of two distributions. Intuitively, given two distributions, EMD measures
the least amount of work needed to move one distribution to map onto the other
one. It is computed through linear programming and accommodates distribution
alignments well. A larger EMD indicates a larger overall discrepancy between the
two distributions. An EMD of zero indicates that two distributions are the same.

4.4 Experimental Results

In this section we show results of how well saliency maps predict human fixations
based on the three metrics of performance ROC, similarity and EMD. We compare
these to the performance of the baseline center and chance models and explain what
human performance would be for each metric under different numbers of observers.
We also examine which models have similar performance.

In addition to assessing models’ performance at predicting where people look, we
measure how similar the models are to each other. We create a similarity matrix to
view relationships between models and plot the models in a higher dimensional space
using multidimensional scaling.

Finally, we describe the complexity of our images based on how similar each
observer’s fixations are to the average of all observers fixations per image, and show
how this image complexity affects saliency model performance results.

4.4.1 Model performances

Figure 4-5 shows the performance of saliency models using the three different metrics
ROC, similarity and EMD. We measured performances using the histogram matched
saliency maps from each model.

ROC The top chart of Figure 4-5 indicates how well saliency maps from each model
predict ground truth fixations and shows the area under the ROC curve (AUR). For
this metric, higher scores are better. We see that human performance is the highest.
This provides an upper bound on possible performance of saliency maps. In addition,
all models perform better than chance. The center baseline outperforms many models
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Figure 4-5: Performance of all models using the ROC, similarity, and EMD metric. For the
first two graphs, higher values are better. Lower values are better for EMD performance.
Error bars show the uncertainty of the mean over 300 images. The Judd and GBVS models
perform the highest independent of the metf8 used.



of saliency. This is because of photographic bias of images and viewing-strategy of
observers.

The Judd and GBVS are the highest performing models and the only models
outperform the center on two of the three metrics. This is most likely because they
are the only models to incorporate a global center bias to the model.

The Context Aware, AIM, and Itti and Koch2 models have about the same perfor-
mance. Looking at the saliency maps of these models shows that they share similar
visual properties and select similar salient locations. This is interesting since the
models are fundamentally quite different: the Bruce and Tsotsos model aims to max-
imize information sampled from a scene and is derived directly from mathematical
first principles. On the other hand, the Itti and Koch model is a feature-based model
with several parameters and biologically inspired design choices. The context-aware
model is based on the feature-based Itti and Koch model though it also includes global
considerations, Gestalt principles and a face detector. Despite being made very dif-
ferently, the models have similar performance. The models differ also in how blurry
they are with Context Aware being the least blurry and Itti and Koch 2 being the
most blurry. Another group of similar performing models includes Hao and Zhang,
Torralba, and SUN models. Both Torralba and SUN saliency pick up small high
frequency details in the image. Hou and Zhang locations are fundamentally different
despite similar overall performance.

Itti and Koch and Achanta models perform the most poorly. Itti and Koch may
perform poorly because its master map is not blurry. The Achanta model selects
objects with clean boundaries, but they are not always, in fact often not, the salient
objects. In general the Achanta model does very well on simpler images with one
main salient object which the model selects very well from the background. When
the images are complex scenes as in this benchmark, the model does not perform as
well. For this data set, the model performs about as well as chance.

Finally, the two implementations of the Itti and Koch map perform very differently.
This is mostly due to implementation details of the 2 methods used with their out-
of-the-box parameters and demonstrates that selecting good parameters can have a
very large effect on performance. In this particular case, Itti and Koch 2, which was
implemented in the GBVS toolbox, has a larger level of blur applied to the master
map.

Similarity The middle chart of Figure 4-5 represents how similar the saliency maps
from different models are to the human fixation map. Higher scores indicate better
performance and a perfect score of one would indicate that two maps are exactly
the same. Overall the ordering of performances based on similarity is similar to the
ordering from the ROC performances.

We reason about human performance in the following way: Similarity between two
fixation maps that each have infinite viewers will approach a value of one because
they’ll start be be exactly the same. With only a finite number of viewers, fixation
maps will always be slightly different as observers do not look at exactly the same
places. We measure the similarity of human fixations maps when the number of
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viewers per map is 2, 5, 8, and 10 to be 0.37, 0.52, 0.59 and 0.63 respectively. We
extrapolate this on a linear log scale and predict that the similarity of two fixation
maps each with 20 viewers would be around 0.65.

Earth Mover’s Distance The bottom chart of Figure 4-5 measures how much
mass needs to be moved to change the saliency map of a given model into the cor-
responding human fixation map. Lower values indicate better performance as less
“earth” needs to be moved. Under this metric we see similar orderings for the best
and worst models while the five mid-performing models and center all have about
equal performance.

We obtain an estimate for the human performance in a similar way to that of the
similarity metric. We estimate the EMD between two fixation maps created from 2,
5, 8, and 10 observers as 1.80, 1.84, 1.71, 1.67 respectively and extrapolate that to
approximately 1.55 for 20 observers. As more observers are added to ground truth
fixation maps, the EMD between two of them will decrease.

4.4.2 Multidimensional space analysis

To understand which models are similar to each other, we calculate the similarity
between the saliency maps of each model on each image and average the similarities
across all images. This gives us a similarity between each of the models which we plot
as a similarity matrix in Figure 4-6 where the models are ranked according to their
similarity to the human fixation maps. The squares with yellower or greener color
represent models whose maps are more similar to each other; the bluer the square,
the more different the maps are. The diagonals of the similarity matrix are red with
value 1 because a saliency map of a given model is always the same as itself. The next
highest value is the intersection of the Judd model and the Center baseline. This is
because the Judd model includes a strong center bias. SUN saliency and the Torralba
model are similar to each other once again. In addition, Bruce and Tsotsos AIM is
similar to Hao and Zhang, Torralba, Context Aware and Itti and Koch2. Note that
the center model is ranked quite high (fourth in the similarity matrix) yet most of its
line is a very low scoring blue. This means that the other models are very dissimilar
to it; most models do not include a notion of the center bias of fixations.

If we take 1 minus the similarity values, we get the dissimilarity values, or distances
between models, that we can use to plot the models using multidimensional scaling.
Using 2 dimensions accounts for 45% of the variance of the models, as per Figure 4-7,
and is the 2D plot is seen in the top of Figure 4-8. Using 3 dimensions accounts for
60% of the variance and can be seen in the bottom of Figure 4-8. The closer the
points representing the models are in 2D or 3D space, the more similar the models
are. These plots make it apparent that the Itti and Koch model and the Achanta
model are very different models from the rest; they are the outliers in the graph.
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Figure 4-6: Similarity Matrix shows how similar each model is to all other models. They
are plotted here by how similar they are to the fixation map.
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Multidimensional Scaling of saliency models in 2D
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Figure 4-8: Models plotted in 2D space (top) and 3D space (bottom). The distance between
the models’s points gives an approximation of how separate the models are from each other
in higher dimensional space.
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4.4.3 Images ranked by fixation consistency

We note that on some images, all people look in the same few locations. In this case
we say the human fixations are very consistent. We find the fixation consistency for
each image by measuring the similarity between one observer’s fixation map to the
average fixation map of all observers. Images where all observers look at the same
locations have very high similarity scores; images where observers fixations are very
different from each other have low similarity scores. We rank images according to their
consistency and the resulting order is seen in Figure 4-9 and in more detail in Figure
4-10. Images with people’s faces, strong text, or one major object have have consistent
fixations and high similarity scores. Complex outdoor scenes, cluttered data, or the
notoriously detailed Where’s Waldo images do not have consistent fixations and have
low similarity scores. In these cases it may be harder for saliency models to accurately
predict where people look. The ordering of the images according to this measure of
fixation consistency is likely to be very similar to the order of the images according
to their ROC performance.

Saliency model scores depend on image fixation consistency

To assess whether saliency model performance is affected by image fixation consis-
tency, we used the image ranking from Figure 4-9 and divided the ranked images into
three consecutive bins corresponding to high, medium and low fixation consistency.
Figure 4-11 shows the performance of all models under all three metrics for images
in each bin.

Note that as fixations consistency goes down, ROC scores decrease slightly, simi-
larity scores decrease slightly, and earth mover’s distances increase. This means that
when humans are consistent it is easier for saliency models to predict where people
will look; when human fixations are not as consistent with each other, saliency models
have a harder time predicting fixations.

For future work, it would be interesting to see what the performance is for images
with people vs without people, or landscapes vs objects, to understand if models are
better at predicting fixations on certain types of images.

4.5 Online benchmark

In addition to the analysis provided here, we provide performance data of exist-
ing models and instructions for submitting new models for evaluation online at
http://people.csail.mit.edu/tjudd/SaliencyBenchmark/.

The site includes a short description of each model, a link to the code for the
model, and the performance with each metric. To allow others to understand the
type of images and data in the data set, we include fixations and fixation maps for
10 of the images. We also include saliency maps from each model for direct visual
comparison.

The website also includes instructions for submitting new models for evaluation.
The instructions are summarized here: 1) Download all 300 images in this data set.
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Figure 4-9: All images ranked by similarity of human fixations. Images where people look
at the same places are shown first; images where people looked in several different places,
or where fixations are spread across the image, are shown last.
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Most consistent images

Figure 4-10: All images used ranked by similarity of human fixations. On the top are
the images where humans are most consistent. The bottom row shows the fixation maps
corresponding images where human fixations were most spread out.

2) Calculate saliency maps with the new model. The model should create maps that
rank image locations by their likelihood to attract fixations of human viewers as it
will be measured for its ability to predict where people look. 3) Submit the saliency
maps via email to tjudd@csail.mit.edu or online using the submission interface. 4)
Wait for your AUR, Similarity and EMD scores. As the actual fixations on the 300
images are hidden from the world to avoid training and over fitting models, we run
the scoring calculations and send you the results. 5) Your scores and a description of
your model will be included on the website.

If the reader is interested in training new models based on images with fixation
data sets, we provide a link to our MIT dataset of 1003 images with 15 viewers
introduced in chapter 3 and in [Judd et al., 2009]. In addition we link to several other
smaller data sets that are publicly available.

4.6 Conclusion

There are many models of saliency, including several that have been introduced in the
last five years, but no large comparison of many of the current state of the art models
on a standard data set. Our goal is to fill that need. We compare 10 recent models
of saliency whose implementations are available online and measure how well they
perform at predicting where people look in a free-viewing task under three different
metrics. We found that the Judd [Judd et al., 2009] and the Graph Based Visual
Saliency models [Harel et al., 2007] consistently outperform other models of saliency
and the center model baseline. Other models have some predictive power as they
perform better than chance but they often do not outperform the center model. The
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difference in these two groups is related to whether or not the model includes a notion
of the bias of human fixations toward the center.

In addition we measure the similarity of saliency models to each other and find
that many models are similar in nature but that the Achanta and Saliency Toolbox
implementation of the Itti and Koch model are different and appear as outliers when
the models are plotted in multidimensional space.

We rank our images with respect to the consistency of the human fixations on
them and find that this dimension has a small effect on the performance of the
models to predict fixations: the more consistent the human fixations, the higher the
performance of the model to predict fixations.

The best models still do not predict fixations as well as humans predict other
humans’ fixations, so there is still room for improvements in models of saliency. To
aid in benchmarking these new models accurately against existing models, we provide
a data set with many observers and an online site to upload and evaluate new models.

We learn a couple things from the results of this work: One is that combining
several features together in a model typically gets better predictive results, possibly
at the expense of time. We see directly that adding object detectors and a notion of
the center bias create high performances (as in Judd and GBVS models). In addition,
blurrier saliency maps give better overall results as seen by the higher performance of
the blurrier models (GBVS, Itti and Koch2, Bruce and Tsotsos, Context Aware) over
the more detailed, higher frequency models (SUN, Torralba, and Achanta). Instead
of delineating salient regions from non salient regions in a binary fashion, having a
natural decay is preferable. The nearby regions are likely to be salient and should
be ranked higher than regions far from very salient objects. In the future we hope
to optimize the blur function for each model before comparing them to each other.
This would help us understand which model fundamentally chooses the right locations
instead of simply preferring models that are blurrier.

We measure models and make conclusions about their performance by their ability
to predict where people look. There are two possible issues with this approach.

The first is that we only have 20 observers per image and therefore do not have
a perfect measure of where the average viewer will look. As the number of observers
per fixation map increases to infinity, the similarity score between them will be 1.
As it is impossible to get infinity viewers, a finite amount of viewers is necessary.
For accurate reflection of where the average viewer will look, we would ideally have
a similarity score between two fixation maps of 0.9. We estimate that attaining this
score would require over 100 observers as the similarity score increases linearly with
exponential increase in viewers. One future area of research is finding ways to get
many more observers on experiments.

The second issue is that there are very different but still very legitimate ways to
measure model performance. An alternative is to evaluate their use in applications.
If the system performance is increased in either time or quality due to the model, it is
not necessarily important to achieve exact correspondences to human eye movements.
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Chapter 5

Fixations on low-resolution images

Abstract

When an observer looks at an image, his eyes fixate on a few select points. Fixations
from different observers are often consistent—observers tend to look at the same loca-
tions. We investigate how image resolution affects fixation locations and consistency
across humans through an eye-tracking experiment. We showed 168 natural images
and 25 pink noise images at different resolutions to 64 observers. Each image was
shown at eight resolutions (height between 4 and 512 pixels) and upsampled to 860 x
1024 pixels for display. The total amount of visual information available ranged from
1/8 to 16 cycles per degree, respectively. We measure how well one observer’s fixations
predict another observer’s fixations on the same image at different resolutions using
the area under the receiver operating characteristic (ROC) curves as a metric. We
found that: (1) Fixations from lower resolution images can predict fixations on higher
resolution images. (2) Human fixations are biased toward the center for all resolu-
tions and this bias is stronger at lower resolutions. (3) Human fixations become more
consistent as resolution increases until around 1664 pixels (1/2 to 2 cycles per degree)
after which consistency remains relatively constant despite the spread of fixations
away from the center. (4) Fixation consistency depends on image complexity.

5.1 Introduction

It is well understood that fixation locations are heavily influenced by both low-level
image features and top-down semantic and task-driven factors. However, what is not
well known is how the fixations are affected by lowering the resolution of the image.

Some researchers have studied image understanding at low resolution. Bach-
mann [1991], Harmon and Julesz [1973], Schyns and Oliva [1997], and Sinha et
al. [2006] have done face perception studies that show that when an image of a
face is downsampled to a resolution of 16 x 16 pixels, viewers are still able to identify
gender and emotion reliably. Others have shown that we can essentially understand
images, or at least the gist of the images [Friedman, 1979] [Oliva, 2005] [Wolfe, 1998],
at a very low resolution [Castelhano and Henderson, 2008] [Oliva and Schyns, 2000]
[Oliva and Torralba, 2001b] [Potter, 1975] [Potter and Levy, 1969]. Torralba [2009]
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showed that viewers can classify the scene of an image and identify several objects
in an image robustly even when the image has a spatial resolution as low as 32 x 32
pixels.

If we understand the gist of the scene at a low resolution, our fixations on low-
resolution images are likely directed to locations that we expect to see objects of
interest [Biederman et al., 1982] [De Graef et al, 1990] [Henderson et al., 1997]
[Henderson et al., 1999] [Loftus and Mackworth, 1978 [Neider and Zelinsky, 2006].
Are these fixations likely to land at the same locations as the actual objects of interest
in the high-resolution images? We hypothesize that fixation locations should be
similar across resolutions and, more interestingly, that fixations on low-resolution
images would be similar to and predictive of fixations on high-resolution images.

As further motivation for our work, we noticed that many computational models
that aim to predict where people look used features at multiple scales. For the design
of future models, it is interesting to get a notion as to whether all levels of image
features are equally important.

In addition, these computational models are designed to predict where people look
in relatively high-resolution images (above 256 pixels per side) and often are created
from and evaluated with fixations on high-resolution images (such as the fixation
databases of Judd et al. [2009] or Ramanathan et al. [2010]. Where people look on
low-resolution images is rarely studied, and more generally, how fixation locations are
influenced by the resolution of the image is not well understood. In this work, we
explicitly study how the resolution of an image influences the locations where people
fixate.

In this work, we track observers’ eye movements in a free-viewing memory task
on images at 8 different resolutions. This allows us to analyze how well fixations of
observers on images of different resolutions correlate to each other and sheds light on
the way attention is allocated when different amounts of information are available.

5.2 Methods

5.2.1 Images

The images we used for this study were drawn from the image data set of Judd et
al. (2009). We collected 168 natural images cropped to the size of 860 x 1024 pixels.
As a control, we also created 25 fractal (pink) noise images, with a power spectral
density of the form ()®~/rectallim) ‘where our fractal Dim was set to 1. We chose
fractal Dim = 1 because it most closely resembles the frequency of natural images
[Kayser et al., 2006]. For each of the natural and noisy images, we generated eight
low-resolution images with 4, 8, 16, 32, 64, 128, 256, and 512 pixels along the height
(see Figure 5-1). To reduce the resolution of each image, we used the same method
as Torralba (2009): we applied a low-pass binomial filter to each color channel (with
kernel [1 4 6 4 1]), and then downsampled the filtered image by a factor of 2. Each
pixel was quantized to 8 bits for each color channel. By low-pass filtering the images,
we found that the range of colors was reduced and regressed toward the mean. Since
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Resolution (pixel height)

Figure 5-1: Creating the low resolution images. The two rows of images illustrate the
amount of information available at each resolution. The top row shows the downsamples
images at each resolution (from 4xN to 512xN), and the second row shows the images
upsampled to the original size 860x1024. The upsamples images were shown to the partic-
ipants.

color is an important image feature, we wanted to maintain the range of colors across
the blurred versions of a particular image. To do this, we scaled the range of each
downsampled image as large as possible within the 0—1 range while maintaining the
same mean luminance pixel value. For visualization, the low-resolution images were
upsampled using the binomial filter to the original image size of 860 x 1024 pixels.
We used code from Simoncelli’s [2011] Steerable Pyramid Toolbox to downsample and
upsample the images. In total, we had 1544 images (193 images at 8 resolutions). In
this paper, we use the size of the downsampled image as a measure of the amount of
visual information that is available in the blurred images.

In addition, we separated the natural images into easy/medium/hard bins based
on their complexity using the following informal criterion: each image was displayed
at several resolutions and the author estimated the lowest resolution at which the
image could be understood. The images were ranked such that images understood
at low resolution were ranked first, and images understood at higher resolutions were
ranked last. The ranked list was then binned into three groups of easy, medium, and
hard images. Easy images tended to contain one large object or simple landscape
and could be understood at 1632 pixels of resolution. Medium images had multiple
objects or more complexity and were understood around 3264 pixels of resolution.
Hard images had lots of small details or were often abstract and required 64128
pixels of resolution to understand. Figure 5-2 shows a sample of the natural images
in the easy, medium, and hard categories and some noise images, all of which we used
in our experiment.

5.2.2 Participants

Sixty-four observers (35 males, 29 females, age range 1855) participated in our eye-
tracking study. Each reported normal or corrected-to-normal vision. They all signed
a consent form and were paid $15 for their time. Each observer saw a 193-image
subset of the 1544 images and never saw the same image at different resolutions. We
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Figure 5-2: Examples of easy, medium, hard and noisy images used in the eye tracking
experiment. Note how more resolution is needed to understand the hard images as compared
to the easy images. In addition, hard imagegat high resolution offer more things to look
at.



distributed the images such that exactly 8 observers viewed each of the 1544 images.

5.2.3 Procedure

All the viewers sat approximately 24 inches from a 19-inch computer screen of reso-
lution 1280 x 1024 pixels in a dark room and used a chin rest to stabilize their head.
A table-mounted, video-based ETL 400 ISCAN eye tracker recorded their gaze path
at 240 Hz as they viewed each image for 3 s. We used a five-point calibration system,
during which the coordinates of the pupil and corneal reflection were recorded for
positions in the center and each corner of the screen. We checked camera calibration
every 50 images and recalibrated if necessary. The average calibration error was less
than 1 degree of visual angle (~ 35 pixels). During the experiment, position data
were transmitted from the eye-tracking computer to the presentation computer so as
to ensure that the observer fixated on a cross in the center of a gray screen for 500
ms prior to the presentation of the next image. We provided a memory test at the
end of the viewing session to motivate observers to pay attention: we showed them
12 images and asked them if they had seen them before. This was not used in the
data analysis.

The raw data from the eye tracker consisted of time and position values for each
data sample. We use the method from Torralba et al. (2006) to define saccades by
a combination of velocity and distance criteria. Eye movements smaller than the
predetermined criteria were considered drift within a fixation. Individual fixation
durations were computed as elapsed time between saccades and the position of each
fixation was computed from the average position of each data point within the fixation.
The code for identifying saccades and fixations is on our website!.

We discarded the first fixation from each scan path to avoid the trivial information
from the initial fixation in the center. Figure 5-3 shows the fixation locations for eight
different observers on some of the images used.

5.3 Results

We have created an interactive web page? that allows readers to view the fixation data
collected from our experiment and get an intuitive understanding for where people
look on images of different resolutions.

Figure 5-4 shows that, as the resolution of the image decreases, observers make
significantly fewer fixations. Within 3 s of viewing time, natural images at a resolution
of 512 pixels have an average of 7.9 fixations, while images with 4 pixels of resolution
have an average just above 5 fixations [paired t-test: t(167) = 21.2, p < 0.001].
We found that 97% of our natural images have an average of at least 4 fixations.
Similar trends hold true for noise images. Having more fixations at high resolutions
is understandable since high-resolution images have a lot more details that attract
the attention of viewers; there is more to look at. On lower resolution images, people

Thttp://people.csail.mit.edu/tjudd /LowRes/Code/checkFixations.m
http://people.csail.mit.edu/tjudd /LowRes/seeFixations.html
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Figure 5-3: Examples of easy, medium, hard and noisy images used in the eye tracking
experiment with all fixations from each of the 8 viewers who saw each image. Note that for
the easy images, fixations often remain consjsfently on the primary object of interest even
as the resolution increases. On the other hand, fixations spread out to the many details
available on the hard images as resolution increases.
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Figure 5-4: The average number of fixations per viewer in 3 seconds of viewing decreases
with lower image resolution. The error bars show the standard error over images.

seem to dwell in a location either to try and focus or because they have nothing else to
donothing in the image is salient enough to pull their attention away from its current
location. We did not observe any obvious effect of the memory test on dwell time.

Figure 5-5 shows a histogram of saccade lengths per resolution on natural images.
There is a trend across all resolutions to have many short saccades and fewer long
saccades. On average, there are slightly more long saccades on higher resolution
images. The plot on the right of Figure 5-5 shows the average saccade length per
resolution, with error bars as standard error over subjects. The mean saccade length
increases significantly from 4.6 degrees on 16-pixel resolution to 6 degrees on 128-,
256-, and 512-pixel resolutions (paired t-test t(63) = 10.65, p < 0.001). Interestingly,
there is also a small decrease in saccade length as the resolution increases from 5.2
degrees at 4 pixels to 4.6 degrees at 16 pixels (paired t-test t(63) = 3.63, p < 0.001).

For each image, we create a fixation map similar to the continuous landscape map
of [Velichkovsky et al., 1996] by convolving a Gaussian over the fixation locations of
each observer who viewed that image (see the fixation map of Image 1 in Figure 5-7).
We choose the size of the Gaussian to have a cutoff frequency of 8 cycles per image or
about 1 degree of visual angle [Einhiuser et al., 2008b] to match with the area that
an observer sees at high focus around the point of fixation. We also made fixation
maps with Gaussians of other sizes but found that they did not significantly change
the measures of consistency of fixations that we use.

Figure 5-6 shows the average fixation map of all 168 natural and 25 noise images
for each resolution. To measure the quantitative difference between the spread of the
fixations across the different fixation maps, we measure the entropy of each fixation
map intensity image and add that to each fixation map in Figure 5-6. Entropy is
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Figure 5-5: Histogram (left) and plot (right) of saccade lengths across resolutions. For
every resolution there are more short saccades than long saccades. The average length of
saccades increases with resolution. Error bars show standard error over subjects.

a statistical measure of randomness used to characterize the texture of the input
image. It is defined as — > (p *log,(p)), where p contains the histogram fractions for
the image intensity divided into 256 bins. The higher the entropy, the more spread
out the fixations are. In general, researchers have shown that fixations on high-
resolution natural images tend to be biased toward the center of the image [Tatler,
2007] [Tatler and Vincent, 2009] [Tseng et al., 2009]. Here in Figure 5-6 we see that as
resolution decreases, fixations on natural images get continuously more concentrated
at the center of the image. The trend exists for easy, medium, and hard natural image
subsets. With noise images, fixations remain consistently biased toward the center of
the image for all resolutions.

5.3.1 Measuring consistency of fixations

How much variability is there between observers who look at an image at a given
resolution or between observers who look at different resolutions of the same image?
To figure this out, we first computed the consistency or agreement among fixations
by the 8 separate observers on the same image of a given resolution [Mannan, 1995
[Tatler et al., 2005]. Following the method from Torralba et al. [2006], we measured
the inter-observer agreement for each image by using the fixations generated by all-
except-one observers to create an observer-defined fixation map that was then used
to predict fixations of the excluded observer. We use the Receiver Operating Charac-
teristic (ROC) metric to evaluate how well a fixation map predicts fixations from the
excluded observer (see Figure 5-7). With this method, the fixation map is treated as
a binary classifier on every pixel in the image. The map is thresholded such that a
given percent of the image pixels are classified as fixated and the rest are classified as
not fixated. By varying the threshold, the ROC curve is drawn: the horizontal axis
is the proportion of the image area not actually fixated selected by the fixation map
(false alarm rate), and the vertical axis is the proportion of fixations that fall within
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Figure 5-6: Average Fixation Maps. The first row shows the average fixation maps for all
168 natural images for each resolution. In general, as the resolution decreases the fixations
become more concentrated at the center. The next three rows show the trend for the easy,
medium, and hard subsets of the natural images. The overall trends are the same for each
subset. Lastly, the fixation maps for the noise images indicate that fixations are equally
biased towards the center independent of the resolution. The entropy of the intensity image
for each fixation map is shown in the lower left corner.
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Figure 5-7: Calculating prediction performance. We use an ROC curve to measure how well
a fixation map for an image created from the fixations of several users predict the fixations
of a different user on the same image at either the same or a different resolution.

the fixation-defined map (detection rate). In this paper, we report the area under the
curve (AUC). This one number corresponds to the probability that the fixation map
will rank an actual fixation location more highly than a non-fixated location, with a
value ranging from 0.5 (chance performance) to 1 (perfect performance) [Harel et al.,
2007] [Renninger et al., 2007] [Tatler et al., 2005]. The code we use for calculating the
AUC is available on our website3. For each image at a given resolution, this process
was iterated for all observers. The final measure of consistency among the observers
for a particular image at a given resolution was an average of 8 AUC values.

Similarly, we also measure the consistency of observers on different resolutions of
the same image. We use the fixations from all-except-one observers on the image
at a first resolution to predict the fixations of one of the observers on the image at
the second resolution. This is iterated for all 8 sets of 7 observers of the first image
predicting each of the 8 observers of the second image, yielding a final measure that
is an average of 64 AUC values.

Not all of the agreement between observers is driven by the image—human fixations
exhibit regularities that distinguish them from randomly selected image locations.
The fixations from all the images in our database are biased toward the center (see
Figure 5-6). We can measure how centered the fixations are by using a fixation map
of a Gaussian of one cycle per image centered on the image to predict observers’
fixations. In this center map or center model, the value of a pixel in the map is
relative to the distance of the pixel to the center of the map; pixels at the center are
highest and pixels on the edges lowest. We can compare the measure of consistency
of different observers’ fixations with the performance of the center map to predict
fixations.

Using the above methods, we now have a way of computing the consistency of
fixations among observers on an image at a given resolution, the consistency of fix-
ations across different resolutions of the image, and the performance of the center
map to predict fixations. Since we want to know in general how consistent observers
are on each resolution, and how consistent fixations are across resolutions, we create
what we call a prediction matrix per image. The rows and columns of the prediction
matrix correspond to the varying image resolution from 4 pixels to 512 pixels. Each

3http://people.csail.mit.edu/tjudd/LowRes/Code/predictFixations.m
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entry in the matrix is the average AUC value indicating how well fixations of the
image at a given resolution along the row predict fixations of the image at a given
resolution along the column, i.e., how consistent the fixations of the observers are.
The diagonal entries show how consistent observers’ fixations are on an image at a
given resolution (an average of 8 AUC values). The off-diagonal terms measure how
consistent observers’ fixations are an image across different resolutions (an average
of 64 AUC values). As a baseline, we also include the performance of how well the
center model and the chance model predict fixations on each resolution. The chance
model gives a random value between 0 and 1 for each pixel to create a randomly
speckled fixation map.

By averaging together the prediction matrix of all 168 natural images in our
database, we get the average prediction matrix in Figure 5-8. The average prediction
matrix is computed considering the first 4 fixations of each observer. As an example in
reading the prediction matrix, note that, on average, fixations on high-resolution 512-
pixel images predict fixations on 512-pixel images with an AUC = 0.92, while fixations
on low-resolution 4-pixel images predict fixations on the 512px images noticeably less
well with an AUC=0.79.

From this average prediction matrix in Figure 5-8, it is evident that fixations for an
image at a specific resolution are best predicted by fixations on the image at the same
specific resolution (as seen by the highest average AUC entries along the diagonal).
However, it is also evident that fixations on an image can be very well predicted by
fixations on images of different resolutions, including lower resolutions. In addition,
human fixations are far more consistent than chance, and human fixations are better
at predicting fixations than the center model for all resolutions except the very lowest
resolutions (4 and 8 pixels).

Because we would like to see how consistency of earlier fixations are different from
consistency among all fixations, we show the average prediction maps for a specific
number of fixations (1, 2, 3, 4, 6, 8, all fixations) as in Figure 5-9.

5.4 Discussion

When evaluating our data, we start by asking the following two specific questions:

1. How well do fixations on different resolutions predict fixations on high-resolution
images? This corresponds to the first column of the prediction matrices of
Figures 5-8 and 5-9. We find that fixations on low resolution images can predict
fixations on high-resolution images quite well down to a resolution of about
64px. After that performance drops more more substantially but does not drop
below the baseline performance of the center map until 16px.

2. How consistent are the fixations across observers on a given resolution? This
corresponds to the diagonal of the prediction matrices. We find that consis-
tency varies across resolution. As resolution increases from 4-32px, consistency
of fixations between humans increases. After 32px, fixation consistency stays
relatively constant despite the spread of fixations away from the center.
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Average Prediction Matrix for all 168 Natural Images (4 fixations)
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Figure 5-8: Average Prediction Matrices all natural images. This shows how well fixations
of images down the rows predict the fixations of the images along the columns. Diagonal
entries show how consistent the fixations of the eight observers are and the off-diagonals
show how consistent fixations are between observers on different resolutions of the image.
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Figure 5-9: Average Prediction Matrices for different numbers of fixations. The first pre-
diction matrix represents how well the first fixations from a given image resolution predict
the first fixations on other resolutions. Note that earlier fixations are more consistent than
later fixations. Notice also that fixations on the 32 resolution image are most consistent
when many fixations are considered.

In addition, we observe the following trends:

1. Fixations across observers and images are biased towards the center of the image
and the bias is stronger as the resolution decreases.

2. Human consistency, or the performance of human fixations to predict new hu-
man fixations, is almost always higher than several baseline models and artificial
models of saliency showing that humans are the best predictors of others fixa-
tions.

3. Image complexity affects fixation consistency: the more complex the image, the
less consistent the fixations. Image consistency on noise images is very poor.

We explore these results more thoroughly in the following discussion.

5.4.1 Fixations on low-resolution images can predict fixa-
tions on high-resolution images

Figure 5-10(a) shows how well fixations from images of each resolution predict fix-

ations on the highest 512-pixel resolution images. The multiple lines represent the

AUC values when considering different numbers of fixations per viewer (either 1, 2,
4, or all fixations). Four 1-way repeated measures ANOVAs reveal a main effect of
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the resolution [F(7, 441) = 13.8, 35.3, 29.8, 15.4 for 1, 2, 4, all fixations with every
p < 0.001]. This indicates that prediction performance increases with resolution in-
dependent of the number of fixations considered. The graph also shows that the first
fixations are easier to predict than all the fixations in absolute terms.

We look more closely at how prediction performance increases with resolution.
Note for example, that when considering 4 fixations per observer, fixations on high-
resolution 512px images predict fixations on 512px images (AUC=0.92) significantly
better than fixations on low resolution 4px images predict fixations on the 512px
images (AUC=0.79) [paired t test: t(63)=19.4, p<0.001], or fixations on 32px im-
ages predict fixations on 512px images (AUC=0.87) [t(63)=13.4, p<0.001]. However,
fixations on lower-resolution images can still do very well at predicting fixations on
the 512px image: fixations on images as low as 64px resolution predict the fixations
on 512px high-resolution images with an AUC=0.90 (which is 85% of the range of
performances AUC=[0.79 (4px)-0.92 (512px)]|). The rate of increase in performance
is highest between 4px and 64px after which the rate of increase slows down. The
average prediction performance of fixations on images of 256px is equal to that of
fixations on the 512px image itself.

Figure 5-10(a) also shows that first fixations are more consistent than all fixations.
This may be because people tend to look at the most salient locations or objects in an
image first [Koch and Ullman, 1985] [Itti and Koch, 2000] [Einhauser et al., 2008al,
and because they tend to look at the center first [Itti and Koch, 2000] [Tatler, 2007]
[Tseng et al., 2009] [Tatler and Vincent, 2009]). Earlier fixations are easier to predict
in absolute terms, but they are not easier to predict relative to a relevant baseline
- the center. There is a larger improvement between the baseline and the human
performance for the later fixations.

Our data also shows that fixations on images above 16px predict fixations on
512px images (considering 4, AUC=0.85) significantly better than the center map
(AUC=0.84) [t(63)=4.13, p<0.001]. Fixations on lower-resolution images (consid-
ering 4 fixations, 8px AUC=0.83) perform significantly worse than the center map
(AUC=0.84) [t(63)=7.3, p<0.001]. The fact that humans underperform the center
map is due to the number of subjects we consider and the size of the Gaussian map
used to create fixation maps. We explore this further in the section on the center
map.

Fixations on all resolutions predicted fixations on 512px resolutions better than
chance. In the worst case, fixations on 4px image predicted fixations on 512px reso-
lution at AUC=0.79 was significantly better than chance at AUC=0.5.

5.4.2 Consistency of fixations varies with resolution

Figure 5-10(b) shows how well fixations on a given image resolution predict fixations
of other observers on the same resolution, i.e. how consistent the fixations are on
each resolution. Four one-way repeated measure ANOVAs reveal a main effect of
the resolution [F(7, 441)=13.8, 35.3, 29.8, 15.4 for 1, 2, 4, all fixations with every
p<0.001]. This result indicates that changes in resolution do affect fixation consis-
tency independent of the number of fixations considered.
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Figure 5-10: (a) The graph on the left shows how well the fixations of each resolution
predict the fixations on the high resolution images. This is compared to how well the center
map (thin line) predicts high resolution images. In general, fixations on images of 16px
and above outperform the center map. Performance increases with resolution, and the
rate of improvement slows after 64px; after 64px resolution, you obtain 85% of the range
of accuracy available. For visualization purposes, we have shown the fixations from all 8
viewers per image on the right. The ROC performance is calculated as the average of 64
instances of 7 viewers fixations predicting 1 viewers fixations. (b) The graph on the left
shows how consistent fixations on images of each resolution are; it shows how well fixations
from a given image predict fixations of other viewers on the same image. This is compared
to how well the center map (thin line) predicts fixations at each resolution. After 16px of
resolution, human fixations outperform the center map. Human performance increases from
4-32px and after that it either plateaus (when considering the first fixations) or declines
(when considering all fixations). We believe the plateau happens around the time the image
is understood, and the decline happens because viewers’ later fixations are spread across the
extra details that appear with higher resolution. For visualization purposes, we have shown
the fixations of 7 viewers fixations predicting the remaining viewers fixation on the right.
The overall ROC performance per resolution for this image is calculated as the average of
the 8 of these possible instances.
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We investigate more fully how fixation consistency changes with increased resolu-
tion. From the graph we see that the average consistency of fixations between viewers
increases with resolution from 4-32px (from AUC=0.87 to 0.92 for the 4 fixation line
[t(63)=7.5, p < 0.001], from AUC=0.86 to 0.90 for the all-fixation line [t(63)=6.5,
p<0.001)]. Then, for the first 4 fixations, consistency between viewers plateaus after
32px, meaning observers do not get any more consistent with each other with in-
creased resolution. This means that even through the resolution has decreased by a
factor of 16 (from 512px to 32px), viewers are as consistent among each other when
looking at the low-resolution images as when they look at the high-resolution images.
Viewers do not need full resolution images to have consistent fixations. However,
when considering all fixations, consistency seems to decrease slightly after 32px from
AUC=0.90 to AUC=0.89 at 512px [t(63)=3.2, p<0.05].

While the center map outperforms humans consistency for very low image resolu-
tions, humans outperform the center map after 16px. At 32px, observers fixations are
significantly more consistent with each other (for the 4-fixation line AUC=0.92) than
they are with the center map (AUC=0.90) [t(63)=7.6, p<0.01)] and the tendency
only grows with resolution. It is interesting to note that while the consistency of the
humans plateaus above 32px resolution, it does so as fixations become more spread
apart. See from Figure 5-6 that fixations become less centered, and see from Figure
5-10(b) that the center map declines in performance. Despite the fact that fixations
spread out, overall consistency remains about constant meaning that the performance
of the humans to predict each other increases with respect to the center map baseline.
Observers look at salient image features and objects when there is enough resolution
to see them, rather than relying just on oculomotor biases.

5.4.3 Performance of the center map is high because fixations
are biased to the center

Figure 5-10 shows that performance of the center map is surprisingly high overall.
For high resolution images, the center map is way above chance performance of 0.5,
and as resolution decreases, the performance of the center map gets even stronger.
Why is this? We examine each issue separately.

On high resolution natural images, other researchers have found that the center
map produces excellent results in predicting fixations [Zhang et al., 2008] [Meur et al.,
2007b] and several previous eye tracking datasets have shown that human fixations
have a center bias. To compare the performance of the center map on our dataset
with other datasets, we measure the performance of the center map to predict all
fixations of all observers on a given image and average over all images in 3 different
datasets (see Figure 5-11). Using this method we get an AUC of 0.78 for our 512px
natural images, an AUC of 0.803 for the Bruce and Tsotsos [2009] dataset, and an
AUC of 0.802 for the Judd et al. [2009] dataset. (Note that the AUC=0.78 for our
dataset reported here is slightly lower than the AUC=0.8 for all fixations on 512px
images reported in Figure 5-10(b) because there we average the performance of the
center map per observer.) Ultimately, the center map performs well at predicting
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Figure 5-11: The average fixation maps accumulated from all fixations of all users from 3
different image databases show a clear bias towards the center of the image. Because of
this strong bias, the performance of the center map to predict human fixations is quite high
with an area under the ROC curve around 0.8. *The AUC for our 512px image dataset is
0.78 which differs from 0.8 (center performance of all fixations at 512px) reported in figure
10b because here we calculate center performance to predict all viewers fixations to match
calculation for other datasets and there we calculate center performance as the average of
the performance for each viewer.

fixations on our database and other databases in the literature.

In Figure 5-12 we compare the performance of humans and the center map with
two other related baselines: 1) a fixation map of a randomly selected image of the
same resolution, 2) the average fixation map from all images at a given resolution.
The graph shows that the average fixation map and the center map have approxi-
mately the same performance — understandable given that the average fixation maps
approximate center maps as seen in Figure 5-6. The average fixation map actually
slightly outperforms the center map because it is slightly rectangular rather than
circular and better represents fixations within a rectangular image frame. All three
baselines have the same trend: they better predict fixations on low-resolution images
than on higher resolution images though their absolute values are different. This
indicates that fixations across images are more similar and more centered at lower
resolutions than at higher resolutions.

Researchers have studied why fixations are biased towards the center of the image
and show that it is due in part to photographic bias (people place objects of interest
near the center of their photo composition), viewing strategy (tendency to expect
objects of interest in the center), orbital reserve (tendency to look straight ahead),
and screen center (tendency to look at the center of a display) [Tatler, 2007] [Tatler
and Vincent, 2009] [Tseng et al., 2009]. The photographic bias plays a large role in the
center bias of fixations for high-resolution images, but must have a much weaker role
on low-resolution images where the principal objects of interest are not recognizable.
On low-resolution images, the effects of viewing strategy, orbital reserve and screen
center account for the central fixation bias.

The performance of the center map helps us interpret human consistency perfor-
mance: 1) One of the reasons human consistency is high at 16 and 32px is definitely
influenced by the fact that fixation patterns overall are quite similar on these images.
2) Though absolute performance of human consistency remains somewhat constant
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Figure 5-12: Human consistency compared to three baselines. The performance of all
three baselines—the center map, average fixation maps and random image maps—have the
same trend though their absolute values are different. Performance declines with increased
resolution. This indicates that fixations across images are more similar and more centered
at lower resolutions than at higher resolutions.
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from 32-512px, baselines go down and the relative performance of human consistency
over any baseline improves dramatically with resolution (Figure 5-10b). We hypoth-
esize that people are consistent at 32px because fixations across different images look
similar (near the center), whereas people are consistent at higher resolution because
they look at the same (not necessarily centered) salient locations specific to the image.

One curiosity remains: why is the center map performance higher than human
performance on low resolution natural images? Human performance is due to both
1) the number of subjects considered and 2) the size of the Gaussian filter we use
to create the fixation map, and these components become more important at low
resolution images where fixations are less due to actual salient objects and more due
to human biases. The more subjects we consider, the more the human fixation map
will match the average fixation or center map and the closer the performance will be
to the center map performance. Secondly, the larger the Gaussian filter we consider
for creating the fixation map, the more the fixation map matches the center map.
When the Gaussian filter is enlarged to 1 to 2 cycles per image, the performance
increases for the resolutions 4 and 8 and approaches the performance of the center
map for those resolutions. This is reasonable given that the center map is a 1 cycle per
image Gaussian located at the center of the image. At 16px and above, the highest
performing Gaussian filter was 4 cycles per image, though it was only slightly higher
than our original Gaussian of 8 cycles per image. For simplicity, we use 8 cycles per
image for all resolutions.

5.4.4 Human consistency and center performance outper-
form most saliency models

We compare the human performance and center performance with some state of the
art saliency models. Figure 5-13 shows that for high resolution images the center
model outperforms the Itti and Koch model [2000], Torralba’s model [2006] and the
Judd model [2009] without the center feature. What is interesting from this analysis
is how the performance of the different models change as the resolution of the images
increases. In general, saliency models tend to increase in performance while the center
decreases in performance as resolution increases. This is not entirely the case for the
Judd model without the center feature which rises and then dips with increased
resolution. The models that outperform the center model for most resolutions are
models that include the center map as a feature in the model. This is the case of
the Judd et al. [2009] model and the model which combines the Itti and Koch model
with the center map. We include the performance of these models for reference, but
studying their behavior in depth is beyond the scope of this paper.

5.4.5 Image complexity affects fixation consistency

What causes the plateau or decrease in fixation consistency to appear after 32px of
resolution? We discuss two major affects. Firstly, 32px may be the average threshold
at which an image is understood [Torralba, 2009]. With less resolution, an image has
no semantic meaning and people look randomly at bottom-up salient locations. After
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Figure 5-13: Comparison to the performance of saliency models. Human consistency out-
performs saliency models in predicting fixations for all models. The center outperforms all
models that do not include the distance to the center of the image as a feature of the model.

32px, there is enough low spatial frequency in the image that viewers can understand
the gist of the scene [Bar, 2004] [Bar, 2007]. This global information informs about
scene category [McCotter et al., 2005] and informs viewers of which objects are likely
to be in the scene and where [Loftus and Mackworth, 1978] [Biederman et al., 1982]
[De Graef et al., 1990] [Henderson et al., 1999]. It also may be that this is where
the primary objects of the scene become visible and thus attract fixations directly
[Einhauser et al., 2008b] [Elazary and Itti, 2008]. One can see this effect in Figure 5-
14 where the prediction matrices for specific images have a square-pattern indicating
a large jump and then plateau in performance after a given resolution. The resolution
at which this jump occurs depends on the content and complexity of the image. Some
images are understood early as in 14(a) and others later as in 14(c) and (d).

Secondly, when considering all fixations, 32px has a peak in fixation consistency
because it is a threshold at which the image is understandable but not yet full of
tiny image details. As image resolution increases, more small details become visible
and attract fixations. This is particularly true for images that are more complex in
nature. As complexity increases, more resolution is needed to understand what the
image contains, and at high resolution there are more things to look at.

Figure 5-15 shows the fixation consistency of all fixations of the three subsets
of natural images. A 3x8 (image complexity type x resolution) repeated measures
ANOVA on Figure 5-15(b) revealed main effects of the image complexity type [F(2,
126) = 202.9, p <0.001], and resolution [F(7, 441)= 15.4, p<0.001], and a signif-
icant interaction [F(14, 1512)= 5.6, p<0.001]. This result indicates that increased
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Figure 5-14: These images and their corresponding prediction matrices (for the first 4
fixations) show that fixation consistency is related to image understanding. As soon as
there is enough resolution for the image to be understood, people look at the same locations
and fixation consistency is higher (the pixel is redder). Different images require more or less
resolution to be understood; the more complex the image, the more resolution is needed.
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Figure 5-15: Performance on easy, medium and hard images. Here we see the all-fixation
trend line separated for different types of images: easy, medium and difficult images to
understand. When images are easy, consistency between different resolutions and consis-
tency on a given resolution are much higher than for hard images. In addition, consistency
peaks and then declines more strongly for the hard images as resolution increases. In this
case, fixations are consistent at low resolution and then become less consistent as the small,
complex details of the hard images become visible.

resolution affects fixation consistency, and that the type of image also affects the
consistency with easier images having higher consistency. Interestingly, there is also
an interaction between the two components showing that predictability goes down
as resolution goes up, but this happens faster as the image type gets harder. The
decline in fixation consistency appears most strongly for the hard images. These are
the images where extra resolution brings extra details which spread fixations out and
lead to less consistency. This effect is less evident on the medium and easy complexity
images. On easy images, fixations go directly to the main object of interest at both
low and high resolution because there is often no other details to look at (consider
the image of the head of the giraffe or the girls face in Figures 5-2 and 5-3).

5.4.6 Consistency of fixations on noise images is poor

For comparison, Figure 5-16 (a) (b) show fixation consistency for the pink noise
images. We see that for noise images the center map is the best performer: it out-
predicts observers on all numbers of fixations. This would change as we add more
viewers to the experiment; more viewers would mean that human fixation maps would
be closer to the average fixation map, and thus more closely match the predictions of
the center map.

Additionally, we see that the curves are mostly flat. This means that predicting
fixations on high-resolution images does not increase with fixations from images of in-
creasing resolution; fixations from a low-resolution image are just as good as fixations
from a high-resolution image at predicting fixations on high-resolution images.
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Figure 5-16: Performance on noise images. As a control, we plot the performance of fixations
on noise images. Compare these graphs to the performance of natural images. In graph (a)
we find that as resolution increases, human fixations do not get more accurate at predicting
fixations on high resolution images. In addition, humans never out perform the gaussian
center. From graph (b) we see that no particular resolution has more consistent fixations
than the others, and once again the gaussian center better predicts fixations than humans
for all resolutions.

These noise images, despite matching natural images statistics, have lost natural
image semantics and salient features. When these are removed, fixations seem only
to be consistent with the center map.

5.4.7 Falloff in visual acuity may affect fixations

It is well understood that the spatial resolution of the human visual system decreases
dramatically away from the point of gaze [Anstis, 1998]. The resolution cutoff is
reduced at a factor of 2 at 2.5 degrees from the point of fixation, and by a factor of 10
at 20 degrees as seen in Figure 5-17 [Geisler and Perry, 1998]. Since our images extend
an angle of 30 degrees, we can approximate the relative visual acuity, and therefore
the number of cycles per degree that a viewer can resolve, at different locations in
the image.

Given a viewer is fixating at the center of the image, he can resolve 30 cycles
per degree (assuming he has normal 20/20 vision) at the center. At 5 degrees of
eccentricity, the viewer has 33% of their original visual acuity and can resolve 9
cycles per degree, corresponding to a 256px image. At 15 degrees of visual angle, or
at the horizontal edges of the image, the viewer has 14% of visual acuity and can
resolve about 4 cycles per degree, corresponding to 128 px.

When a viewer looks at a 512px image, he cannot resolve all the available details
in the periphery. When he looks at an image of 64px or below, he is able to resolve all
image information even in the periphery because the entire image is below 2 cycles per
degree. At this resolution, there is no difference between the center and the periphery
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Figure 5-17: Modeling visual acuity falloff. The images on the right simulate the acuity
falloff of the human visual system given a fixation at the center of the image. They have
high resolution (512px or 16 cycles per deg) at the center and low resolution (64px or 2
cycles per deg) on the edge. They should be seen so that they extend 30 degrees of visual
angle. If they are printed on a paper at 3in wide, they should be viewed about 6in away.
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in what a viewer can resolve.

We hypothesize that this could have the following implications: 1) For high res-
olution images, viewers must move their eyes (actively saccade and fixate) in order
to resolve different parts of the image. This might not be the case for resolutions
64px and below. 2) The center performs very well for images of 32px and below. In
these cases, the resolution is so low (everything is less than 1 cycle per degree) that
the entire image can be resolved using peripheral vision; viewers dont need to move
their eyes to distinguish details. This could account for the very high performance of
the center model on low resolution images. As the cycles per degree get higher, eyes
move away from the center in order to resolve the image details.

5.5 Conclusions

We draw the following conclusions from this work:

Firstly, fixations from a specific resolution image are best predicted by fixations on
the same resolution image. However, fixations from lower-resolution images can also
quite reliably predict fixations on higher-resolution images. Prediction performance
drops slowly with decreasing resolution until 64px after which it drops more quickly.

Secondly, fixations between viewers become increasingly consistent on a given
resolution as resolution increases from 4-32px. After 32px the consistency plateaus
despite the average continued spread of fixations away from the center with increased
resolution. We hypothesize that consistency stays strong despite the decreasing center
bias of fixations because the image becomes understandable and viewers start to look
consistently at the saliency objects or locations.

Thirdly, there is a significant bias for the fixations on all images to be towards the
center. For high resolution images, the area under the ROC curve for the center map
predicting all fixations is 0.8 and agrees with the performance of other datasets in
the literature. As resolution decreases, fixations get more concentrated at the center
and the performance of the center map increases. This trend agrees with two other
baselines: the performance of randomly shuffled image maps and average fixation
maps and indicates that fixations across images are more similar at lower resolutions
than at higher resolutions.

Fourth, humans predicting other human fixations outperform any model of saliency
that aim to predict where people look. In addition, the center map also outperforms
any model that does not include the center as a feature of the model.

Finally, fixation consistency is directly related to the complexity of images. Images
which are easier to understand have higher consistency overall and remain high with
increasing resolution. Images that are more complex and require more resolution to
be understood often have lower overall fixation consistency and decrease in fixation
consistency with resolution. We hypothesize that this is because later fixations get
diverted to small details.

These trends provide insight into how the human brain allocates attention when
regarding images. This experiment shows that viewers are consistent about where
they look on low-resolution images and are also looking at locations consistent with
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where they look on high-resolution images. These findings suggest that working with
fixations on mid-resolution images instead of on high-resolution images could be both
perceptually adequate at the same time as being computationally attractive.

This result would be useful for real-time image analysis applications, such as
robotic vision, which uses a saliency map to prioritize image locations for further
processing. Instead of computing saliency on full-resolution images, the preprocess
could be sped up significantly by working instead with low-resolution images.

For future work, it would be interesting to better understand how different com-
putational saliency models predict fixations on varying-resolution images differently
and how this depends on whether the saliency model is a bottom-up model or in-
cludes top-down image cues. In addition it would be interesting to run an experiment
where subjects are both explicitly asked about their understanding of an image and
tracked for eye-movements. This could lead to results which more directly support
the hypothesis that eye movements are under heavy influence of image understanding.

The work from this chapter was published in [Judd et al., 2011].
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Chapter 6

Fixations on variations of images

In addition to our experiments and analysis on fixations on low-resolution images, we
also ran experiments aimed at understanding where people look on variations of stan-
dard high resolution images. We present the motivating questions, the experiment,
a summary of the fixation data, and preliminary results. The raw data is available
online and further analysis is left for future work.

6.1 Motivating questions

Does cropping images reduce the bias of fixations to be near the center
of the image? Many data sets, including ours, report a bias of human fixations
towards the center of the image. This is caused in large part to two factors: the
photographic bias of photographers to put objects of interest near the center of the
image, and viewing strategy of viewers to look towards the center as objects of interest
are expected to be there and that the optimal place to learn the most about the overall
image. To better tease these influences apart, we cropped images such that the center
of the crops no longer corresponds to the photographers original frame and therefore
reduced the photographic bias of these images. We were curious if fixations would
still be biased to certain locations. If there is still a bias towards the center, that
would indicate that viewing strategy plays a strong role. We crop original reference
images in two ways: by taking 9 equally spaced crops of 2/3rds of the image along a
grid formation, and 6 equally spaced crops across the horizontal middle of the image
(see Figure 6-2).

When do humans look at the face vs parts of the face? On early eye tracking
experiments, we noticed that when a face is shown far away, observers look at the
face as a whole with one fixation; when a face is shown close up, observers fixate on
the eyes, nose and mouth of the face individually (see Figure 6-1). We were curious
about when this transition happens — when do observers change from observing a
face with one fixation to needing several fixations? What degree of visual angle does
the face need to subtend to force this transition? The broader question this uncovers
is how large of an area does a person really “see” with one fixation? It is commonly
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Figure 6-1: When faces are shown far away, observers fixate on the face as a whole. When
faces are show close up, observers look at eye, nose and mouth with separate fixations. We
are interested in knowing what size the face needs to be to change from one situation to
the other.

assumed that observers see 1 degree of visual angle in high resolution. How does the
size of the face relate to this common threshold? To test this we show images of faces
at 5 different sizes and placed faces with equal probability on the left or right side of
the image. To see what effect the background had in pulling fixations away from the
face, we show the faces both with and without their natural background (see example
images in Figure 6-3).

How does the scan path change as a function of the visual angle the picture
subtends? When an image is shown large or close up, it subtends many degrees
of visual angle. Given that the fovea can only see around one degree of visual angle
in high resolution, the observer is required to make many fixations in order to see a
large portion of the image in high resolution and get an understanding of the image.
When an image is shown small or far away, the image subtends a smaller degree of
visual angle. In this case, one degree of high resolution from the fovea extends a
larger portion of the image, so more is seen with one fixation. How does this affect
how many fixations are made? or where the fixations are made? Are fixations on
small images at locations that correspond to fixations on large images or not? To test
this, we show images at 6 different sizes (see Figure 6-3). We could not test images at
distances farther than the computer screen, but smaller images are a proxy for images
farther away as the change in visual angle the image subtends is directly correlated.

Where do people look on images with no content? Where people look is
influenced by bottom-up and top-down mechanisms that relate to the image content.
In addition, humans have natural biases for where they look. We wanted to extract
these natural biases by removing influences of bottom-up and top-down content. We
show blank images to observers.

How does resolution affect fixations? Our initial experiments on low-resolution
images were part of this experiment. Based on the interesting initial results we ran
the much larger experiment and did analysis on fixations on low-resolution images
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described in chapter 5. We do not discuss the results on those images here.

6.2 Experimental Setup

We ran the eye tracking experiment under the same conditions as our previously
described experiments. We had 30 observers. Each was shown a subset of the cropped,
face, low-resolution and small images but never saw a reference image under two
different conditions. After the 30 tests, at least 3 observers had viewed each condition
of each image. Figure 6-3 shows an overview of the images used in the experiment.
This was a free viewing experiment with the promise of a memory test at the end to
encourage observers to be alert.

6.3 Preliminary results

6.3.1 Initial results on cropped images

We were curious whether fixations from cropped images would be less centered than
that of original reference images. This is possible because the objects of interest from
the reference image is less likely to be in the center of the cropped images. We find
there is a bias towards the center of the image and towards the center of the reference
image, wherever that might be with respect to the crop. In Figures 6-4 and 6-5 we
show the average fixation map from each of the different crops. For example, the top
left fixation map in figure 6-4 shows the average fixation maps for all images that were
created from top left crops of reference images. This fixation map has a bias towards
the center and the bottom right of the image. A similar trend happens with the crops
along the horizontal axis of the image. The crop on the far left of the reference image
has a fixation map with a center bias and a bias that leans to the right.

The dual bias towards the center of the crop and the center of the reference image
indicate one of two things: 1) It could be that for a given image, both the photographic
bias and the viewing strategy come into play: first the person looks near the center
expecting to see objects of interest there and then he moves towards the location of
the object of interest which is near the center of the reference crop and therefore on
the edge of the crop. 2) It could be that for SOME images where there is a strong
object of interest near the center of the reference image, that fixations are near the
edges of the crops (indicating fixations are biased to the photographed object) and
for other images with no strong object of interest, that fixations are near the center
of the crops (indicating fixations are biased due to viewing strategy). It is hard to
tell which situation is true given that the shown fixation maps are averaged across
all images. It would be good to divide crops into two groups: those that come from
reference images with strong objects of interest and those from reference images with
no strong object of interest.

For the cropped images, we also asked the question: are some objects so salient
that they are fixated on independent of their location in a given crop? Looking at
this helps uncover what is intrinsically salient in the image independent of whether it
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Figure 6-2: These questions motivated our study of variations of reference images.
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Figure 6-3: We made different variations of reference images to create stimuli used in our
experiment. No observer saw two variations of a given reference image. Three observers
look at each variation of each image.
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Figure 6-4: Fixation maps from stimuli cropped from reference images. We find a bimodal
distribution of the fixations: fixations are biased both towards the center of the crop and
the center of the reference image. This indicates that fixations are biased both by viewing
strategy to look towards the center, and by the tendency to look at salient objects which
in this case are near the center of the reference images.

Figure 6-5: Fixation maps from stimuli cropped along the horizontal axis of reference
images. Fixations are both biased towards the center of the crop and the center of the
reference image.
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is located near the center of the image. In figure 6-6, fixations from every crop land
on the parking sign and one way sign (the color of the fixation indicates which crop
it comes from). Observers looked at the sign even when it was on the far right edge
of the image such as in the green crop. A similar effect i seen in figure 6-7 on the
right where fixations land on the heads and faces of the camels despite being on the
top and sometimes far right or left edges of the crops. These objects are intrinsically
salient regardless of their location in an image. On the other hand, when a reference
image does not have a particularly salient object the fixations from the crops form a
band across the reference image as in the left image of figure 6-7.

Analysis like this helps us discern what objects or locations are fundamentally
salient in the image from locations that are fixated on but not particularly salient.

Figure 6-6: Different color fixations indicate which crop they came from. When a given
object is fixated on when seen from many different crops, we consider it intrinsically salient.
The parking and one way sign are intrinsically salient since observers fixate on them inde-
pendent of their location in the crop.
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image with band of fixations image with strong pull to salient locations

Figure 6-7: Different color fixations indicate which crop they came from. Some objects,
such are the camel heads are intrinsically salient and attract fixations regardless of their
position in crops. Other reference images have no intrinsically salient locations. In that case,
observers look near the center of each crop. Fixations make a band across the horizontal
axis on the reference image.

6.3.2 Fixations on images of faces

We were interested knowing at what face size would observers change from fixating on
individual features to fixating on the face as a whole. From our qualitative assessments
observing fixations on face images as in Figure 6-8, we find that people fixate on
individual features at the largest face size and when the face subtends half the height
of the image. Beyond that, when the face is 1/4 the image height or smaller, observers
place only one to two fixations on a face and seem to observe the entire face at once.

As seen in figure 6-9, when the face height is 1/4 the image height, the face
subtends about 5 degrees of visual angle. The facial features alone (eyes, nose, mouth)
subtend around 2 degrees. Since the fovea sees around 1 degree of visual angle in
high resolution, when the facial features subtend 2 degrees of visual angle, the fovea
sees most of it in high resolution and may not need to fixate on individual features.
Note that our eye tracker is also accurate to about one degree of visual angle, so
our measurements at this level are noisy. To get a better assessment of the exact
threshold at which observers see all features with one fixation would require further
experiments with faces in a subrange between 11 and 2 degrees of visual angle, ideally
with a more accurate eye tracker.

We know that observers almost always fixate on a face if there is one in an image.
Are faces the only objects people fixate on when they are presented in an environment
of other objects? We qualitatively evaluate whether the background attracts fixations
away from the face by creating fixation maps of all images with faces at different sizes
with and without their natural background, shown in figure 6-10 and 6-11.

We find that when the background is shown (figure 6-10) there are fewer fixations
on faces and more on the background, as seen by the spread of the average fixation
map to non face areas. When the background is not shown (figure 6-11) there are
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Figure 6-8: Example images with faces at all sizes shown in the experiment, with fixations
from three observers each. For images with the two largest face sizes, observers tend to
fixate on parts of the face. For images with smaller faces, observers tend to fixate only once
or twice on the face indicating that they may see the whole face in a single fixation.

Size of face (as proportion of image height)
112 |/4
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Figure 6-9: The image subtends 22 degrees of visual angle in the vertical direction. The face
takes up consecutively smaller portions of the image. When the face is 1/4th the height of
the image, the face subtends 5 degrees of visual angle and the facial features alone subtend
about 2 degrees.
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more fixations on the body. This makes sense as there is nothing else to look at.
When the background is shown, we find that people look both at faces and at the
background objects. Observers look more at the background as faces get smaller
and background gets more complex. This is seen in figure 6-11 as the spread in the
fixation map for images with the smallest face size.

Size of face (as proportion of image height)

Figure 6-10: The top two rows show fixation maps for images with faces at different sizes
shown on a white noise background, separated for faces on the left or right of the image.
The bottom row shows one example set of images with fixations from observers. For images
with the largest face size, fixations are spread across the face. For all other face sizes,
fixations are strongly on faces and somewhat on the body.

6.3.3 Fixations on small images

We measure fixations on images as we reduce them in size to understand how the angle
the image subtends affects fixations. We make the following qualitative observations
as seen in figure 6-12. First, as the image gets smaller, observers make fewer fixations.
This makes sense because when the image is smaller and subtends a smaller visual
angle, each fixation is able to see a larger portion of the image. It is no longer necessary
to make multiple fixations to view and understand the entire image. Secondly, even
though there are fewer fixations, observers look at very similar places as at the larger
scale, and specifically they look at the most salient locations in the image. When
the image is large, people look both at the salient objects (which are typically larger)
and at small details in the background. When the image is smaller, the background
details are no longer visible, and only the larger salient objects are visible to attract
fixations.
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Size of face (as proportion of image heighr)

Figure 6-11: The top two rows show fixation maps for images with faces shown with their
natural background, separated for faces on the left or right of the image. The bottom
row shows example images in this category with fixations. For images with the largest face,
fixations are spread on the faces. For images with the 3 mid-sized faces, fixations are mostly
on the face with some on the background. Notice they are mostly not on the human body.
For images with the smallest face, fixations are much more spread out onto the background.

When the image is very small, our ability to pinpoint the exact location that
the observer is fixating on is harder both due to the noise both in the eye tracking
measurement and the ability for the observer to see larger portions of the image within
the area of one fixation.

Note that the trends on reduced size images match well with the trends on low-
resolution images described in chapter 5. When images are small or low-resolution,
observers tend to make fewer fixations, and only make fixations on the most salient
object. These fixations can match well with fixation locations from larger or higher
resolution images. The reason for the similarity in trends is probably because the
cycles per degree available at smaller or lower resolution images correlates directly.

It would be interesting to see if these trends can be measured quantitatively. For
example, it is possible to create a prediction matrix as in chapter 5 that measures
how well the fixations from each image scale predict the fixations at all other scales.
In addition, it is possible to see the difference in fixation consistency depending on
the complexity of the image. It is probable that simple images with one large salient
object would have fixations at more consistent locations across scales than complex
images with lots of details.

In figure 6-13 we plot the average fixation map for all images at each scale. There
is a center bias of the fixations at all sizes, though this does not get stronger at any
particular scale.
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When image is smaller, observers make fewer fixations

‘When image is smaller, observers look only at the most salient locations

s

I 3/4 112 114 1/8 1116

Image dimension (proportion of largest dimension)

Figure 6-12: Examples of images that were shown at smaller scales in the experiment (here
shown all at the same size) with recorded fixations from observers. As images get smaller,
observers make fewer fixations, make fixations at similar places as on the larger images,
and look at the most salient locations. Note that our fixation location measurements get
noisier due to the accuracy constraints of our eye tracker and the ability of the observer to
see larger areas with one fixation.
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Figure 6-13: The average fixation maps for all images at each scale. The center bias does
not seem stronger at any particular scale.
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6.3.4 Fixations on blank images

When observers look at blank images, they tend to look at the center of the image,
and along the diagonals to the corners of the image. It may be that observers are
looking beyond the image and rather at the border between the image and the gray
screen the image was shown on. They also tend to look more in the upper half of
the image. Beyond the reemergence of the center as a natural bias it is hard to draw
deeper conclusions about where people look when there is no semantic content to the
image.

Saccades & FiXations o couseg i coner tuasons
raw fixation data (yellow)

Fixations

Figure 6-14: Fixations on a blank image. Fixations are biased towards the center, which
correlates well with the viewing strategy hypothesis, and to the corners of the image. This
may be an artifact of the fact that the white images were shown against a gray background.
The difference in color along this edge might have attracted fixations.

6.4 Conclusion

In this preliminary work we look at fixations on different variations of images. Specif-
ically we look at how fixations are affected by cropping, when looking at faces of
different scales, and by reducing image size. We found the following exciting initial
trends:

1. Cropping does affect fixation location. Instead of fixations only being biased
towards the center of the image, fixations tend to be biased towards the center
of the reference image. This demonstrates that humans are not incapable of
observing the edges of images. Previous data sets have a strong center bias of
fixations, but this is due in large part to the photographic bias of salient objects
to be near the center rather than the inability for observers to look beyond the
center.
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2. Viewing strategy does still play a role on cropped images to bias fixations to-
wards the center. Typical fixation maps of cropped images show a bimodal
distribution towards one edge and the center. Future work should investigate
which affect has a larger role on which types of images.

3. Fixation maps from cropped stimuli can help determine which objects in a
reference image are intrinsically salient from those that are randomly fixated
on. When an object is fixated on when viewed from multiple crops, it is salient
independent of its location in the image. This could be a powerful way of
removing affects of the center bias and extracting the most salient locations.

4. When faces subtend about 5 degrees of visual angle, and facial features about
2 degrees of visual angle, observers tend to view all the facial features with one
fixation instead of multiple fixations. This aligns well with the assumption that
observers see around 1 degree of visual angle in high resolution during a given
fixation. Further experiments should be done to refine this estimate.

5. When seeing a face in a natural environment, observers always look at the
face, but they do not only look at the face. They also look at the background
area. This trend gets stronger the smaller the face is and the more complex the
background environment.

6. When images are shown at a reduced scale, and subtend a smaller visual angle,
observers tend to make fewer fixations, and place those fixations on the most
salient locations. These salient locations align well with where observers look
on larger versions of the same images. These trends are similar to trends on
low-resolutioin images.

Though it is beyond the scope of this thesis, it would be useful to explore this rich
data set further and strengthen the above trends through quantitative evaluation.
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Chapter 7

Conclusion

7.1 Summary

Many computational models of attention exist which aim to predict where people
look, but they often require tuning many parameters and sometimes do not match
actual human fixations. The thesis introduces a new model of saliency that is learned
directly from ground truth fixation data. We use a linear support vector machine
to learn weights for both bottom-up and top-down features and for a feature that
accounts for human biases to look towards the center of an image. We show that
by combining these features together we get a model that outperforms all existing
models. We note that some features are more important than others: the center
feature is most helpful, after which subbands of the steerable pyramid, colors and
face detectors make the most improvement to the model.

Research on computational models of visual attention has grown so rapidly in the
last 10 years that it is difficult to tell which one works best, as each new model is only
compared to a small subset of previous models. Our second contribution is a bench-
mark which quantitatively measures, using three different metrics, the performance
of a broad range of modern models of saliency at predicting where people look. We
show that blurrier models, and models that include a notion of the center bias are
the highest performing models. The best models still do not predict fixations as well
as humans predict other humans’ fixations, so there is still room for improvements.
To aid in benchmarking new models accurately against existing ones, we provide an
online site to upload and evaluate new models.

Most models of attention aim to understand where people look on high resolution
images. Our third contribution is an in depth look at how image resolution affects
where people look. We find that resolution can be substantially reduced before fixa-
tion patterns change dramatically. The work suggests that viewers’ fixations become
consistent at around the same time as viewers start to understand the image content
— and that this can happen at very low resolution. In addition, we show that this
threshold depends on the image complexity — images that are easier to understand
have high fixation consistency at lower resolutions. This analysis suggests that com-
putational models could work with lower resolution images and still provide similar
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performance while gaining speed.

The work of modeling visual attention also requires the use of image data sets
with human fixations which can be used to train models and verify performance.
This thesis introduces three new data sets of images with eye tracking data. These
include the MIT Judd 2009 data set of 1003 natural images with 15 observers, the MIT
benchmark data set with 300 images and 20 observers, and the MIT varied-resolution
data set with 193 images and 64 viewers spread across different sets of images. All of
these are publicly available online! and should be helpful to the research community
as we move forward in understanding and modeling where people look.

7.2 Open questions

One very important open question is deciding which features are really the most im-
portant. Although studied intensively, this is still not fully answered. Most models
include some measure of color, orientation, contrast, intensity, which is most impor-
tant, and what other features should be included? Kootstra et al. [2008] found that
symmetry is a better predictor for human eye movements than contrast. Baddeley
and Tatler [2006] found that characteristics of fixated locations was dominated by
high frequency edges. Our work on fixations on low-resolution images in [Judd et al.,
2011] and in chapter 5 seems to point out that certain areas are still quite salient
despite the lack of high frequency edges (which are blurred at low resolution). In
this case context was extremely important: if an observer could make out a person
in the image, they would look at the face region even though it was blurred beyond
recognition and high frequency detail. Cerf et al. [2009] found many fixations land on
faces and put a strong weight on the face channel. Zhao and Koch [2011] also found
that ideal weights their four feature model depends on the data set being used. For
some data sets, the face channels was three times the weight of others, and for other
data sets the weight was zero. In our work we found that center map makes the most
difference and received the highest weight of all features. Subbands, color and face
detection were ranked quite highly as well. Given that a large percentage of fixations
in our database landed on text, we hypothesize that text detector would improve
performance. Overall there is still much debate and further research is necessary to
determine which features are most relevant in which settings.

Another open question relates to how these features are normalized and combined
into a final saliency map. Despite the many options available, linear summation of
feature channels into the final saliency map remains the norm. Linear summation
has some psychophysical support and is simple to apply. However, it may not be the
most effective approach. Better models might use higher order functions to combine
features. Other construction factors also greatly affect prediction accuracy. Harel et
al. [2007] note that they include the level of final blur (for instance, the width of a
Gaussian blur kernel applied to the master map), and the extent of center bias (for
instance, a global center bias multiplicatively applied to the master map) can change

http://people.csail.mit.edu/tjudd /research.html
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model performances with up to 30% improvement in some cases. Clearly the way
these features are combined into saliency models greatly affects their performance.

Another set of open questions revolves around how top-down cues influence the
computation. Top-down influences are not limited to target search, though they
are often addressed in this way. Other influences on attention such as the affect of
different tasks, or the memories, experiences and internal states of the observers are
worth investigating.

Some computational models of attention incorporate face, person and object de-
tectors into the models while other models are used to aid in object detection algo-
rithms. Clearly these two goals are intertwined and it remains an open question to
figure out how visual attention and object recognition interact.

Researchers have made much progress by consistently comparing models to human
fixations through available data sets. In this thesis we add to this set of data sets.
However, it remains an open question whether the available data sets are large enough,
good enough and varied enough, and whether or not they have unintentional biases.
As in other fields such as object recognition, data sets are useful but often biased
[Torralba and Efros, 2011].

The bias of humans to look towards the center of the image is still being explored
as well. Do humans really look at the center of images regardless of content or are our
databases center biased? Tatler and Vincent [2009], Tseng et al. [2009] and Borji et
al. [2011] suggest the answer is yes on both accounts: our datasets are biased to have
objects of interest near the center, but when that is eliminated, observers’ natural
viewing strategy still leads them to look towards the center. However, this bias could
also be a result of the artificial nature of the experiments we run in laboratories and
needs to be further explored.

Overall there is still a gap between models and human perfomance. How do we
fill that gap? The answer lies in a combination of getting better features, better
combining the features, and better understanding the effect of context and of human
biases. The way in which we will figure these out and close the gap is either to use
a brute force approach of trying all combinations in the spirit of Pinto et al. [2009]
and by working in concert with neuroscientists to better understand how the human
visual system works.

7.3 Future work

There is exciting work to be done extending 2D saliency to 3D scenes, to dynamic
scenes, and even more challenging, to interactions of humans in the real world. In
addition, to use computational models in the real world, it is also necessary to make
them more robust to noise, image transformations, illumination changes, and fast
enough to work in real-time. Some work in this area has already happened but there
is continued progress to be made.

Another area of future work is optimizing models to be more explicit about overt
verses covert attention. Our models currently use the strong eye-mind hypothesis
which assumes that what a person is paying attention to is the same as what they
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are looking at. While this is a useful first approximation, it is not completely correct:
it is possible to pay attention to something you are not looking directly at.

While models of saliency continue to improve, humans remain the best predictor
of where people look, so another great area of future research is making eye track-
ing easier and more accessible. This trend is already in place: In 1967 Buswell’s
original eye tracker was cumbersome, invasive and not very accurate. Current eye
trackers are remote, nonencumbering, non invasive and accurate to within 0.5 to 1.0
degrees. However, because they cost between $5,000-$40,000, they are only used by
professionals and researchers. Fortunately there is currently a large effort in mak-
ing accurate eye tracking devices that use commercial-over-the-shelf cameras and low
cost webcams. In fact, in 2006, IPRIZE - A Grand Challenge for Human Computer
Interaction, offered one million dollars for a ten-fold improvement in eye-tracking
technology while at the same time making it affordable for the average person. Some
companies already offer crowd-sourced eye tracking research using webcams at prices
that small companies can afford?.

Having access to easier, cheaper eye tracking will allow for experiments with many
more observers. This will allow us to understand what is salient to a large portion
of observers to give us a very strong average human fixation map (which would be
more reliable than the fixation maps of 20 observers we have now). In addition it
helps us fine tune our models to offer saliency maps for more specific subgroups of
people: males, females, different cultures, and helps model a larger variety of top
down mechanisms.

Some final questions that have come up during the course of exploration for this
thesis include: Is there a difference in where people look based on culture or gender
or age? Do people who speak different languages look at text of their native language
before fixating on text of a different language or different alphabet? How do experts
and non-experts look at images differently? Do we follow the gaze direction of people
in the images to look where they are looking? Studying fixations on low-resolution
images was enlightening because it opened up a new dimension to study fixations
on. There are many other dimensions that can still be explored: how do people look
at images as they get smaller? as the images get less color? as they see the image
repeatedly over time, as they get cropped or retargeted? Clearly there are still plenty
of interesting questions to investigate.

2For example, see http://www.gazehawk.com/
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