
Apparent Ridges for Line Drawing

by

Tilke Judd

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Feb 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Feb 2, 2007

Certified by. .
Frédo Durand

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Apparent Ridges for Line Drawing

by

Tilke Judd

Submitted to the Department of Electrical Engineering and Computer Science
on Feb 2, 2007, in partial fulfillment of the

requirements for the degree of
Masters of Science in Computer Science and Engineering

Abstract

Non-photorealistic line drawing depicts 3D shapes through the rendering of feature
lines. A number of characterizations of relevant lines have been proposed but none
of these definitions alone seem to capture all visually-relevant lines. We introduce a
new definition of feature lines based on two perceptual observations. First, human
perception is sensitive to the variation of shading, and since shape perception is little
affected by lighting and reflectance modification, we should focus on normal variation.
Second, view-dependent lines better convey the shape of smooth surfaces better than
view-independent lines. From this we define view-dependent curvature as the variation
of the surface normal with respect to a viewing screen plane, and apparent ridges as
the locus points of the maximum of the view-dependent curvature. We derive the
equation for apparent ridges and present a new algorithm to render line drawings
of 3D meshes. We show that our apparent ridges encompass or enhance aspects of
several other feature lines.

Thesis Supervisor: Frédo Durand
Title: Associate Professor

3

4

Acknowledgments

I would like to thank my professor Frédo Durand for his support, his ideas and his ad-

vice - much of which I didn’t come to understand and appreciate until some time after.

I’d like to thank the graphics group as a whole for creating a stimulating environment

to do research in. I’d like to thank my family for their positive encouragement and

for ensuring that I get a great education. I’d like to thank Yann Le-Tallec for his

critiques and revisions of this work and for keeping me happy always.

5

6

Contents

1 Introduction 15

2 Related Work 23

2.1 Silhouettes and Contours . 23

2.2 Ridges and Valleys . 28

2.3 Suggestive Contours . 30

2.4 Other feature lines . 31

2.5 Discussion . 32

3 2D Case: Line drawing in flatland 33

3.1 Differential geometry in flatland . 33

3.2 Derivations in flatland . 35

3.3 Analysis . 38

4 Apparent Ridges in 3D 41

4.1 Geometric Properties of Surfaces . 41

4.2 View-dependent curvature . 45

4.3 Apparent Ridges . 49

4.4 Discussion . 52

5 Adaptation to Meshes 53

6 Results and Analysis 57

6.1 Silhouettes and Contours . 57

7

6.2 Ridges and Valleys . 62

6.3 Suggestive Contours . 63

6.4 Comparison to edge detection . 64

6.5 Performance evaluation . 65

7 Conclusions and Future Work 67

8

List of Figures

1-1 A sampling of different Non-Photorealistic Rendering line drawings.

(Courtesy of DeCarlo et al, Gooch, Buchin et al.) 15

1-2 Here it is evident that a line illustration of an engine is more informative

and useful than a photograph. We can clearly see the spicket and

the tubes in the line drawing. Reprinted with permission, courtesy of

Raskar et al. 17

1-3 The Max Planck model with several different feature lines. Contours

alone don’t give enough information to understand the shape, ridges

and valleys are excessively sharp, and suggestive contours give a pass-

able, but not great, drawing. We introduce apparent ridges on the right

by adding a notion of view-dependency to ridges and valleys. Apparent

ridges produce pleasing and informative lines. 18

1-4 Difference between curvature and view-dependent curvature.

Curvature is defined as the change in the normal as one moves a small

distance in direction d along the object. On the other hand, view-

dependent curvature is defined as the change in normal as one moves

a small distance d along the screen. Note that the view-dependent

curvature at point b′ is much larger than point a′. 19

2-1 (Left) Silhouettes are defined where the normal of the surface is per-

pendicular to the view vector (Reprinted with permission, courtesy of

Hertzmann). (Right) Location of a ridge line on a surface. 24

9

2-2 Image space silhouette detection based on edge detection operators on

the z-buffer. (a) Original shaded image, (b) z-buffer depth image, (c)

detected edges, (d) combined image. (Courtesy of Saito and Takahashi

1990.) . 25

2-3 Image space silhouette detection using edge detection operators on the

z-buffer and the normal buffer. (a) z-buffer depth map, (b) extracted

edges from z-buffer, (c) normal buffer, (d) extracted edges from the

normal buffer, and (e) combination of both edge buffers. (Reprinted

with permission, courtesy of Aaron Hertzmann 1999.) 25

2-4 Back-facing polygons are enlarged to achieve wide silhouette lines in a

pipelined hardware implementation. (Courtesy of Raskar 1999) 26

2-5 Left: Phong shaded model. Right: Gooch’s rendering of the model

with black and white silhouette and crease lines in the style of technical

illustrations. (Courtesy of Gooch 1999) 27

2-6 Computation of a subpolygon silhouette for (a) a single triangle and

(b) a mesh. Plus signs at vertices mean the dot product between the

normal vector and view direction is positive, negative signs mean the

dot product is negative. Between the positive and negative vertex,

linear interpolation is used to find the silhouette. (Reprinted with

permission, courtesy of Hertzmann.) 28

2-7 In the WYSIWYG NPR system of Kalnins et al., Artists directly an-

notated the same 3D teacup model to produce four distinct rendering

styles. The system renders the scene from any new viewpoint and

maintains the original look. (Courtesy of Kalnins 2002) 28

2-8 An example showing the expressiveness added by suggestive contours.

The left image has contours alone, the right image has both contours

and suggestive contours. (Courtesy of DeCarlo et al. 2003) 31

10

3-1 Flatland setup Here α is the parameterization of u onto the curve,

and p is the projection of the curve onto a line in screen space. There

is a tangent (or velocity) vector t and a normal vector n are defined

at each point of the curve. 34

3-2 Silhouettes and contours translated to flatland. Silhouettes and

contours are defined as locations where the normal of the curve is

perpendicular to the view vector. When these locations are projected

onto the screen space line, the indicated 4 points become the projection

of the silhouettes and contours. 34

3-3 Difference between curvature and view-dependent curvature. 35

3-4 A flatland drawing of a bezier curve. 39

4-1 Setup for the 3D case . 43

4-2 Ridges On this surface, the dotted line is a principle curvature line;

at each point on the line, the curvature changes most along the line

direction. The red dot represents the max curvature along the principle

curvature line and is a ridge point. The series of all the ridge points

together creates the red ridge line. 45

4-3 The maximum apparent curvature at b′ is much larger that at a′

uniquely because of the perspective projection effect. 48

5-1 How we approximate the apparent curvature derivative, locate zero

crossings on mesh and trim minima. For each edge, we flip the tA

in the direction of the positive derivative so that it points towards

increasing apparent curvature. Then, if the two tA along the edge point

in opposite directions, there is a zero crossing. To test for minima, we

drop a perpendicular from each vertex to the zero crossing line. If the

positive tA at each vertex makes an acute angle with the perpendicular,

then the zero crossing is a maxima (as in c). If not, the zero crossing

is eliminated as a minima (as in d). 54

11

6-1 Tablecloth model. Notice how the apparent ridges convey both the

rim of the table and the drapery of the tablecloth. Note that the

missing occluding contour on the back of the cloth is an artifact of

our software and not of the line definitions. The difference figures on

the right highlight the differences between the suggestive contours and

apparent ridges. 57

6-2 Bust model. Note that the nose of the ridge and valley drawing is un-

naturally sharp. Suggestive contours don’t present a pleasing drawing

on the right side of the image. 58

6-3 Brain model. Note the double lines that are drawn with suggestive con-

tours. Both suggestive contours and apparent ridges produce pleasing

drawings. 58

6-4 Column model. Suggestive contours do well on the center of the pillar,

but apparent ridges do better on the base and on the face of the angel. 59

6-5 Given a slice of an object, suggestive contours are drawn at the gray

locations, while apparent ridges are drawn at the black. This leads

suggestive contours to draw two lines in areas that surround a valley,

but lead apparent ridges to draw two lines in areas that surround an

inflection point. 59

6-6 Flowerpot model. Notice how different lines need to be thresholded at

different levels. The second row has a higher thresholding for all lines. 60

6-7 Head model. Apparent ridges make an elegant line drawing of this

model. 60

6-8 Max Planck model. Apparent ridges render the facial features of the

model with more pertinant detail than do the suggestive contours.

Ridge and valley lines are overly sharp. 61

6-9 Vase model. Both ridge and valley and apparent ridge lines convey the

details of the vase, and particularly the base, more cleanly and directly

than do suggestive contours. 61

12

6-10 Sine wave mesh with ridges and valleys (purple and brown) and appar-

ent ridges (red). Note displacement due to the perspective. Lines are

collocated at head on views but shift as the object turns away from

the viewer. 62

6-11 Gaussian bump from left to right: shaded view with occluding contour,

suggestive contours and apparent ridges. 63

6-12 Experiments with Canny edge detection. (a) Average edge image for a

single light source and Lamberttian shading. (b) Average edge image

for 10 random light sources and Lambertian shading. (c) Apparent

ridge drawing. 66

6-13 Comparison between the average Canny edge detection on 120 pho-

tographs with different lighting and our apparent ridges. 66

13

14

Chapter 1

Introduction

Most research in computer graphics has been concerned with producing images of

photographic realism. The computer’s ability to display ever-increasing detail and

complexity has given rise to new problems: communicating this information in a

comprehensible way. Some form of visual abstraction is required. This has been

well studied in graphic design and traditional illustration where it has long been

understood that photographs are not always the best choice for presenting visual

information. A simplified line drawing is often preferred when an image is required to

delineate and explain (see Fig 1-2). The field of non-photorealistic rendering (NPR)

emerged from this motivation and strives to make simple but comprehensible pictures

of complicated objects by employing an economy of line.

Figure 1-1: A sampling of different Non-Photorealistic Rendering line drawings.
(Courtesy of DeCarlo et al, Gooch, Buchin et al.)

15

“Less in a drawing is not the same as less of a drawing” [30] The advantages

of line illustration are numerous. Illustrations can convey information better by omit-

ting extraneous detail, by focusing attention on relevant features, by clarifying and

simplifying shapes, or by exposing parts that are hidden. In addition, illustrations

compress well and are easy to reproduce and transmit. Illustrations also provide a

natural way of conveying information at different levels of detail.

The benefits of illustrations over photographs are well-recognized in many practi-

cal contexts. For example, medical texts very often use illustrations in place of pho-

tographs, since they allow tiny and hidden structures to be much better described.

In addition, most assembly, maintenance, and repair manuals of mechanical hard-

ware use illustrations rather than photographs because of their clarity. What is the

use of a photograph to mechanics when they already have the real thing in front of

them? At Boeing, even when CAD database of airplane parts exist, all high-quality

manuals are still illustrated by hand in order to provide more effective diagrams than

can be achieved with either photorealistic rendering or simple hidden line drawings

[20]. Strothotte et al.[31] note that architects often trace over computer rendering

of their initial designs to create a sketchier look, to avoid giving their clients a false

impression of completeness.

Koenderink et al. Experiment Further evidence that line drawings are effec-

tive for communicating shape comes from Koenderink’s perception experiment [17].

He studied what he calls the pictorial reliefs due to pictures of a single object in a

single view as a function of the rendering. Koenderink found that a cartoon render-

ing of linear features lead to a fully developed pictorial relief and that full shading

added relatively little in a quantitative sense, whereas the silhouette rendering lead

to impoverished relief for naive observers. In essence, this experiment showed that

line drawings are almost as good as fully shaded photographs at conveying impor-

tant shape information. This is strong verification that line drawings are powerful

perceptual informers.

16

Figure 1-2: Here it is evident that a line illustration of an engine is more informative
and useful than a photograph. We can clearly see the spicket and the tubes in the
line drawing. Reprinted with permission, courtesy of Raskar et al.

Feature Lines Making line drawings on the computer requires precise definitions

about where lines should be drawn given a 3D model. Characterizing and mathe-

matically defining where these feature lines should be placed is a primary focus of

NPR line drawing. In general, these lines correspond to points where a differential

property vanishes. They can be distinguished by their order of derivation, but also

by whether they take the viewpoint into account. The most significant feature lines

that have been studied and used are listed here (see Fig 1-3).

Contours (sometimes called silhouettes) are lines where the normal is orthogonal

to the view vector. These pervasive and important lines separate visible and invisible

parts of the object. Ridges and Valleys are view-independent feature lines that are

defined at the extrema of the object’s curvature. These curves capture important

object properties, but do not make natural looking drawings. They are locked to

the surface of the object and do not slide along it when the viewpoint changes. The

objects portrayed by ridges and valleys tend to look overly sharp. Suggestive Contours

are view-dependent feature lines that correspond to contours in nearby views. The

radial curvature in the direction of the view vector is zero. Suggestive contours convey

some, but not all, of the desirable lines that comprise a drawing. For example, they

17

Ridges & ValleysContoursShaded view Apparent RidgesSuggestive contours

Figure 1-3: The Max Planck model with several different feature lines. Contours
alone don’t give enough information to understand the shape, ridges and valleys are
excessively sharp, and suggestive contours give a passable, but not great, drawing.
We introduce apparent ridges on the right by adding a notion of view-dependency to
ridges and valleys. Apparent ridges produce pleasing and informative lines.

fail to draw lines on a rounded cube and other convex objects.

While the previous lines all capture important visual features, none of these def-

initions alone seem to capture all visually-relevant lines. In our work, we show how

simple perceptual observations lead to a definition that captures these lines.

Motivation and Key Idea We base our work on the observation that human visual

perception is sensitive to shading, which is intimately tied to the normals of surfaces.

In addition, the human visual system is sensitive to variations of image intensity

rather than absolute values. This puts a heavy emphasis on normal derivatives, or

the object curvature. Ridges successfully capitalize on this perceptual sensitivity by

defining lines where the variation of the normal, or the curvature, at a point in the

principle direction is maximum. However, ridges are view-independent and fixed on

the surface of an object. They do not take into consideration that humans perceive

objects and the object’s shading from a specific viewpoint.

We introduce view-dependent curvature and apparent ridges to take this viewpoint

into account. Instead of measuring how surface normals vary on the surface, we

measure how surface normals are seen to vary from a given viewpoint. Our lines take

into account that, given a viewpoint, foreshortening on a surface can lead to increased

18

screen

b

a a'

b'

P-1

object

Figure 1-4: Difference between curvature and view-dependent curvature.
Curvature is defined as the change in the normal as one moves a small distance in
direction d along the object. On the other hand, view-dependent curvature is defined
as the change in normal as one moves a small distance d along the screen. Note that
the view-dependent curvature at point b′ is much larger than point a′.

19

perceived variation in the normal especially near the edges of the object and as the

object turns away from the viewer (see Fig 4-3). Using this intuition, we define view-

dependent curvature as the variation of the surface normal with respect to the viewing

plane, and apparent ridges as the locus points where the maximum view-dependent

curvature in the corresponding principle direction reaches a maximum. In essence,

our definition of view-dependent curvature measures the change in normal as seen

from our viewpoint as opposed to the actual change in normal on the surface, and

locates apparent ridge lines at the maximum. Both view-dependent curvature and

apparent ridges are defined on the viewing screen plane.

Further motivation for our definition comes from some observations by researchers

in perception such as Fleming et al [9]. The perceived shape of an object is surprisingly

robust to changes in BRDF, lighting, or even non-linear lookup tables. Fleming et

al note that the orientation structure of rendered objects is quite stable across these

variations in conditions. Rapid luminance changes occur at points where the angle

of the surface normal is changing rapidly. Points in the image with maximal view

dependent curvature (i.e., our apparent ridges) should be marked by lines since they

will usually contain maximal luminance gradients. Similarly, Durand et al. [8] showed

that for photorealistic rendering, such points have highest local frequency content in

an image.

Overview and Contributions In chapter 2, we look in detail at the previous work

on feature lines: how they are defined, why they were introduced and how they have

been used. In the following chapters, this paper makes the following contributions.

Intuitive characterization We characterize new feature lines, which we call appar-

ent ridges, based on simple perceptual observations.

Apparent ridge equation We derive a mathematical characterization of feature

lines based on these observations. In chapter 3, we derive the equation for

the 2D case, because it is easier to interpret and provides important intuition.

We show that this equation captures the phenomena of most previously-known

20

feature lines. In chapter 4 we extend these equations to 3D, where objects are

solid shapes and line drawings are 2D.

Computation on meshes In chapter 5 we adapt the equations for triangular 3D

meshes. We introduce an algorithm to compute, trim, and threshold apparent

ridges on these meshes.

Relationship to other lines In chapter 6 we show results of apparent ridge line

drawings and compare their performance with other line drawing methods.

Experimental validation We show that apparent ridges agree well with the average

edges extracted by a Canny edge detector for images under random illumination.

Finally, in chapter 7 we draw conclusions.

21

22

Chapter 2

Related Work

Line drawing is a major part of artistic expression. Motivated by this, researchers

in computer graphics have focused on characterizing and defining important feature

lines and generating ways to render them as an image. The majority of work on

feature lines focuses on silhouettes or contours, ridges and valleys, and more recently

suggestive contours.

2.1 Silhouettes and Contours

Silhouettes and contours of a free form object are defined as the set of points on

the object’s surface where the normal is perpendicular to the view vector. Mathe-

matically, the dot product of the normal n with the view vector at a position p is

zero: S = {P : 0 = n · (p − c)}, with c being the center of projection. In case of

orthographic projection, (p − c) is replaced with the view direction vector v. These

lines separate visible and invisible parts of the object and provide a very strong shape

cue for smooth objects [19]. Silhouettes form the closed outline around the projec-

tion. Contours comprise the other subset of this group and may be disjoint and can

fall within the projective boundary. In the 2D image projection, contours divide one

portion of the object from another of the same object. Silhouettes and contours are

used so frequently in 2D line drawings and illustration that it is difficult to imagine a

line drawing that doesn’t include these curves. Since silhouettes are view dependent,

23

ridge point
principle
curvature
direction

Figure 2-1: (Left) Silhouettes are defined where the normal of the surface is per-
pendicular to the view vector (Reprinted with permission, courtesy of Hertzmann).
(Right) Location of a ridge line on a surface.

they need to be recomputed for every frame of an animation. Finding an efficient way

to do this is non-trivial. Indeed, there has been much research in this area and there

now exists a variety of different algorithms that compute silhouettes for geometric

objects.

Silhouette detection methods can either be image space algorithms which operate

only on the image buffer, or object based algorithms that perform manipulations in

object space on an implicit, parametric or mesh based representation of a 3D object.

Image-based algorithms Saito and Takahashi first proposed the computation of

lines through edge detection on an image buffer that encodes geometric information

such as depth [28]. Decaudin later adapted this technique and used edges extracted

from a normal map [6]. Similar to our work, these approaches can capture zero

corssing of the normal variation and use view-dependent information, but their goal is

to extract sharp creases between facets, while we focus on smooth features. However,

in his course notes, Hertzmann used a similar approach to render the Beethoven bust

with edges of a normal buffer and exhibited compelling results. See Fig 2-3 for further

results using this approach.

Raskar [25] proposed a one-pass hardware implementation that basically adds lit-

tle borders around triangles in ways that they appear only at the wanted feature

line locations (see Fig 2-4). Because no connection information of the mesh or pre-

processing is needed, the method is possible in pipelined hardware implementation.

24

Figure 2-2: Image space silhouette detection based on edge detection operators on
the z-buffer. (a) Original shaded image, (b) z-buffer depth image, (c) detected edges,
(d) combined image. (Courtesy of Saito and Takahashi 1990.)

Figure 2-3: Image space silhouette detection using edge detection operators on the
z-buffer and the normal buffer. (a) z-buffer depth map, (b) extracted edges from z-
buffer, (c) normal buffer, (d) extracted edges from the normal buffer, and (e) combina-
tion of both edge buffers. (Reprinted with permission, courtesy of Aaron Hertzmann
1999.)

25

Figure 2-4: Back-facing polygons are enlarged to achieve wide silhouette lines in a
pipelined hardware implementation. (Courtesy of Raskar 1999)

The main advantage of image space algorithms is that they can use existing graph-

ics hardware and rendering packages to generate the buffers needed for the algorithms.

Implementation is easy. The disadvantage of image based algorithms is that these

pixel based representations give the user little control over the resulting line’s at-

tributes.

Object-based algorithms The added dimension of the object space algorithms

allows for greater information which results in better approximations of silhouettes.

[Markosian 1997] introduced a fast randomized algorithm to find and trace silhouettes

on polygonal surfaces. Their method exploits frame-to-frame temporal coherence and

uses random probes to locate silhouette seed points and trace silhouettes along the

surface. In addition, by improving and simplifying Appel’s hidden-line algorithm,

they were able to trade accuracy and detail for speed, they were able to make a

real-time renderer.

Inspired by this work, Gooch et al. [11] were able to take the next step to create a

system which incorporates fast deterministic silhouette and crease finding algorithms

with artistic shading and shadowing with the goal of making technical illustrations

(see Fig 2-5). By preprocessing the normals they removed the need to check if every

face was back or front facing at each frame and thus increased the speed of their

silhouette computation.

26

Figure 2-5: Left: Phong shaded model. Right: Gooch’s rendering of the model
with black and white silhouette and crease lines in the style of technical illustrations.
(Courtesy of Gooch 1999)

Sander [29] presented a fast silhouette computation algorithm based on a precom-

puted search tree of the original mesh which was used to clip the rendering of coarse

geometry to the exact silhouette of the original model. This allowed a low-resolution

geometry to be rendered with a high-resolution silhouette. This effectively hides the

loss of information in the mesh because the silhouette is a much stronger visual cues

of the shape of an object.

In order to get more exact results, Hertzmann and Zorin calculated silhouettes of

a free-form surface that approximates the polygonal mesh. To find this silhouette,

they recompute vertex normals from the approximated free-form surface and then

compute its dot product with the respective viewing direction. Then, for every edge

where the sign of the dot product is opposite on either side, they linearly interpolate

along the edge to find the point where it is zero (see Fig 2-6). These points connect

to result in a piecewise subpolygon silhouette line with far fewer artifacts. Because

this result is much closer to the real silhouette, it is well suited for later stylization of

lines.

To apply stylization to lines, an analytic representation of the silhouette is needed.

Kalnins et al. [16] find analytic representations of silhouettes and use them to create

an interactive NPR system which allows annotated brushstrokes of an artist to be

consistently rendered across multiple frames and viewpoints (see Fig 2-7). Later they

27

Figure 2-6: Computation of a subpolygon silhouette for (a) a single triangle and (b)
a mesh. Plus signs at vertices mean the dot product between the normal vector and
view direction is positive, negative signs mean the dot product is negative. Between
the positive and negative vertex, linear interpolation is used to find the silhouette.
(Reprinted with permission, courtesy of Hertzmann.)

furthered this work by describing a way to render stylized silhouettes of animated 3D

models with temporal coherence [15].

2.2 Ridges and Valleys

As defined by Koenderink [18], ridge and valley lines are the locus of points at which

the maximum (minimum) curvature assumes a local maximum (minimum) in the

corresponding principle direction (see Fig 2-1). (Note that ridges and valleys have

Figure 2-7: In the WYSIWYG NPR system of Kalnins et al., Artists directly an-
notated the same 3D teacup model to produce four distinct rendering styles. The
system renders the scene from any new viewpoint and maintains the original look.
(Courtesy of Kalnins 2002)

28

an alternate height field definition in topology). They consist of a sparse set of

descriptive lines which are view-independent and therefore remain fixed on a surface

under dynamic viewing conditions. Both ridge and valley lines are often associated

with sharp changes in surface intensity due to the locally rapid rate of change of the

surface normal direction. While valleys generally correspond to darker portions of

the surface, ridge are more likely to reflect a specular highlight.

Both ridge and valley lines correspond to geometric features of the surface, and

as such they can be computed automatically from local measures of the surface’s

differential geometry. Monga et al. [22] assume that the surface is defined locally as a

iso-intensity contour and calculate directly the curvatures and characterize the local

extrema from the first, second, and third derivatives of the grey level function. They

use this method for data registration and automatic atlas generation.

Interrante et al [14] used the same definition of ridge lines as Monga et al, but

eliminated the computation of the third derivative in favor of a very stable and simple

approximation that tests for the presence of a local curvature maximum in a subvoxel

region. They were more concerned with the display of perceptually relevant fea-

tures as an aide to transparent isosurface visualization than with locating exact ridge

lines. Lines are extracted from an isosurface and opacity is modulated by principal

curvature.

Lopez et al [21] presented a survey of different formalizations of ridges and valleys.

They examine definitions under height conditions, curvature conditions, as watershed

and watercourses, and as drainage patterns. Subsequently, they evaluate these char-

acterizations with respect to a list of desirable properties and their purpose in the

context of representative image analysis tasks.

Raskar’s paper [25] introduces a very fast way of finding ridges similar to the way

he found silhouettes. A black quad to each edge of every front facing polygon. The

quads are oriented at an angle θ with respect to the polygon such that when the

polygons are rendered using the traditional depth buffer, only the quads at dihedral

angles above the threshold are shown. These extra quads illuminate the ridge lines.

Pauly et al. [24] presents a technique for extracting line-type features on point-

29

sampled geometry. Given a point cloud, they apply principle component analysis

classify points that likely belong to a feature. The feature classification is based on

surface variation estimation using covariance analysis of local neighborhoods. Then

they use hysteresis thresholding to get initial approximation of feature lines, model

each component of the graph as a snake to do features smoothing, and finally render

a line art drawing.

Ohtake et al. [23] also use the definitions laid out in [22] to estimate curvature

and curvature derivatives of 3D objects using implicit function fits and extracting

high-quality ridge and valley lines from these estimates. Curvature based filtering is

used to keep the most significant lines.

All the papers described here, except for Raskar’s paper, use some form of esti-

mation of the principle curvature lines in order to location ridges and valleys. Some

work has also been done to create line drawings using these curvature lines them-

selves. Hertzmann and Zorin [13] use the principle direction lines as a basis for their

cross hatching textures, and Girshick et al. [10] describe artistic drawings made by

principle direction lines that show the flow of curvature over the surface.

Differences between ridge and valley finding methods mostly come from differ-

ences in object surface structure. In his textbook [7], DoCarmo estimates principle

curvature directions on parametric surfaces, Monga et al use the Hessian of iso in-

tensity surfaces in 3D volume data, and Interrante used a similar technique based on

Gaussian weighted finite-differencing. Pauly finds features on point based meshes.

Still others fit approximate quadric patches to the mesh and calculate derivatives

analytically from them. Girshick and Rusinkiewicz [27] estimate principle curvature

lines directly from a polygonal surface mesh. Independent of how they are found,

they have proven to be essential in conveying important shape information.

2.3 Suggestive Contours

Recently, a new type of line has been suggested. DeCarlo et al. [5] go beyond silhou-

ettes, contours, ridges and valleys by developing the new lines they call suggestive

30

Figure 2-8: An example showing the expressiveness added by suggestive contours.
The left image has contours alone, the right image has both contours and suggestive
contours. (Courtesy of DeCarlo et al. 2003)

contours. Suggestive Contours are lines drawn of visible parts of the surface, where

a true contour would appear with a small change in viewpoint. In this way sugges-

tive contours complement contours in depicting shape by anticipating and extending

them. Mathematically, these lines are defined at point with radial curvature, or cur-

vature in the direction of the view vector projected onto a points tangent plane, are

zero. The paper provides both image-space and object-space extraction algorithms.

In 2004, DeCarlo et al. [4] extended this work on static suggestive contours to real-

time and dynamic settings. They analyzed movement of suggestive contours under

changes in viewpoint, and offered techniques for improving stroke quality rendered

for a moving camera.

Burns et al. [1] extended line extraction of suggestive contours to volume data

because of its important applications in medicine and scientific simulation.

2.4 Other feature lines

The majority of work on line drawings focus on silhouettes, ridge and valley, and sug-

gestive contours. However, sometime other line classes are discussed in the literature

and they are defined quickly here. Creases are sharp lines, such as the edges of a

cube, which correspond to discontinuities of the mesh normals. They are a subset of

31

ridges and valleys and can typically be identified by comparing the angle between its

adjacent polygons with a certain threshold. Border lines appear in models where

the mesh is not closed are are those edges with only one adjacent polygon. Self in-

tersection lines are where two parts of a model intersect. These aren’t necessarily

edges of a mesh, but are important for shape recognition. Parabolic lines are lines

where one of the principal curvatures vanishes [17]. They separate hyperbolic and

elliptic regions of the surface.

2.5 Discussion

While all these lines capture important features of an object, none of the definitions

alone captures all visually relevant lines. While contours alone provide very strong

shape information on the edge of the object, they don’t provide enough detail on

the insides. While ridges and valleys convey important features defined by extremal

curvature, because they don’t take viewpoint into consideration they are fixed on an

object and create unpleasing images. While suggestive contours create nice drawings

in many cases, they don’t draw any features on convex objects.

Motivated by the fact that the variation of object normals convey strong shape

information, and that lines are best drawn as view dependent features, we characterize

apparent ridges as lines which build on and enhance the previously defined lines.

Apparent ridges take both curvature and view-dependent foreshortening into account

to create pleasing images not seen before.

32

Chapter 3

2D Case: Line drawing in flatland

Flatland is a simplified 2D world. Objects are 2D curves and a “drawing” of the curve

is a set of discrete points on a line. We look at the view-dependent curvature and

apparent ridges in flatland first because it is easier to understand and provides good

intuition. We first review elements of differential geometry, define objects in flatland,

and then derive the equation for apparent ridges.

3.1 Differential geometry in flatland

Definitions and Review In flatland, a curve is represented by a function α which

takes a one dimensional parametric variable u and maps it onto a curve in two-

dimensional space (Fig. 3-1). Each point on the curve has tangent (or velocity)

vector t parallel to the curve and a normal vector n perpendicular to the tangent.

The tangent is obtained by deriving α with respect to u. We assume without loss of

generality that the magnitude of dα/du is one, that is, the curve is parameterized by

it arclength (other situations can be reduced to this one by reparameterization).

Curvature k is defined as the derivative of the normal (see Fig 4-3). It is a vector

in the direction of t with magnitude inversely proportional to the radius of the circle

tangent to the curve. k is orthogonal to n because n is unit-length. (Note that

curvature in 2D is usually expressed as the derivative of the tangent, but we stick to

curvature as a derivative of the normal because it is more consistent with the notion

33

j

i

u

(u)
p((u))

nt

p

Figure 3-1: Flatland setup Here α is the parameterization of u onto the curve, and
p is the projection of the curve onto a line in screen space. There is a tangent (or
velocity) vector t and a normal vector n are defined at each point of the curve.

n
i

j

Figure 3-2: Silhouettes and contours translated to flatland. Silhouettes and
contours are defined as locations where the normal of the curve is perpendicular to
the view vector. When these locations are projected onto the screen space line, the
indicated 4 points become the projection of the silhouettes and contours.

of shape operator in 3D).

We define “drawings” representing our 2D curve as orthographic projections of

feature points onto a line. The mapping p projects points from the curve to the line.

Without loss of generality, we assume that this line is along the coordinate axis i.

The projection direction or view direction is j (see Fig 3-1).

Traditional feature lines translated to flatland Silhouettes and contours corre-

spond to points where the normal is orthogonal to the view direction, that is, n · j = 0

(Fig. 3-2). Ridges are extrema of the curvature. The closest representation of sugges-

34

object screen

P
d

a a'

b b'

Figure 3-3: Difference between curvature and view-dependent curvature.

tive contours are points where curvature is zero. In 2D, this corresponds to inflection

points.

3.2 Derivations in flatland

To locate apparent ridges, we need to find the maxima of the view-dependent cur-

vature. For this, we first derive the normal n(u) with respect to the screen space

variable i to get the view-dependent curvature.

dn(u)

di
(3.1)

where

u = (p ◦ α)−1(i) = g−1(i) (3.2)

Because our view-dependent curvature turns out to be a vector, we define the maxima

to be the extrema of the magnitude of the vector as it changes. In general, we know

35

that the maximum values of a vector v are the zeros of

d(v · v)

dt
= 2

dv

dt
· v, (3.3)

so we need the vector and its derivative as well. For this we compute the derivative of

the view-dependent curvature with respect to the screen (second derivative = d2n(u)
d2i

).

When we have the first and second derivative, we simply multiply them together.

The zeros of the resulting expression locate our apparent ridges.

We analyze the derivations sequentially.

First derivative: view-dependent curvature We find the first derivative of the

normal of the curve with respect to the screen projection. Because we are taking the

derivative of the normal n(u) with respect to the screen space variable i, we use the

chain rule to move between the two variables, following the variable mapping defined

in equation 3.2.
dn(u)

di
=

dn(u)

du
· d(g−1(i))

di
(3.4)

For the first part of the chain we get

dn(u)

du
= k(u) (3.5)

where k(u) is a vector representing the scalar curvature multiplied with the tangent

vector. The second term in the chain rule is calculated as

d(g−1(i))

di
=

−1

n(u) · j
. (3.6)

Putting these two together, we find that the first derivative is

dn(u)

di
=
−k(u)

n(u) · j
. (3.7)

Now it becomes clear that the difference between the the vector curvature k(u)

and the view-dependent curvature is the n(u)·j in the denominator. This denominator

36

accounts for the foreshortening of a curve as seen from a specific viewpoint. As we

move towards the contour where n(u) · j = 0, the view-dependent curvature goes to

infinity (although it is undefined at the exact contour point where the denominator

is zero).

Second derivative: Apparent Ridges In order to calculate the second derivative,

d

di

−k(u)

n(u) · j
(3.8)

we need the derivative of the numerator and the derivative of the denominator of the

fraction in order to piece together the whole derivative.

The derivative of the numerator is

−dk(u)

di
=

dk(u)

du

1

n(u) · j
, (3.9)

and the derivative of the denominator is

d(n(u) · j)
di

=
k(u)

n(u) · j
· j. (3.10)

Therefore the complete second derivative is

d2n(u)

d2i
=

1

(n(u) · j)2

[
dk(u)

du
+

k(u)2

n(u) · j
· j

]
. (3.11)

In order to locate our desired maxima, we follow equation 3.3 and multiply the

first derivative by the second derivative and set it to zero. This gives us

− 1

(n(u) · j)3

[
dk(u)

du
· k(u) +

k(u)2

n(u) · j
k(u) · j

]
= 0 (3.12)

Once again we notice that the equation has singularities at n(u) · j = 0. Except for

at these points, we can multiply every term by (n(u) · j)4 and rearrange the equation

to be more readable:

37

−(n(u) · j) · dk(u)

du
· k(u)︸ ︷︷ ︸−k(u)3 · j︸ ︷︷ ︸ = 0

(3.13)

We call the first term of the equation the feature term and the second term the

offset term. Note that k(u)3 · j is a shortcut for the multiplication of the two dot

products k(u)2 and k(u) · j.

3.3 Analysis

The resulting expression encapsulates aspects of several different feature lines.

Ridge and valley lines are defined as the locations at which the curvature of the

object is at an extrema. This is expressed in the feature term of equation when the

derivative of the curvature dk(u)/du is zero.

Suggestive contours are the locations where the radial curvature of the curve is

zero. In 2D, these correspond to the inflection points, or the locations where the

curvature is zero, and are seen in the feature term when k(u) is zero.

Silhouette or contour lines are defined as the locations where the normal is or-

thogonal to the view vector. This is expressed in the feature term of the equation

when (n(u) · j) is zero. Because we divided our equation by (n(u) · j)4 to get this

formulation, these are singularities of our equation. However, if we consider the value

of the view-dependent curvature in the limit as it approaches the silhouette, we see

that the view-dependent curvature tends toward infinity. This is clearly a maximum

of the view-dependent curvature.

We have shown that the feature term of the equation goes to zero at the ridge and

valley, silhouette and suggestive contours of a curve. The second term of the equation

essentially offsets the zeros of the equation by moving them slightly away from the

zeros of the feature term. So, in theory the zeros of our entire equation are shifted

from the true values of the mentioned feature lines by a term related to the viewpoint.

In our experiments however, the offset term is much smaller than the feature term

38

Figure 3-4: A flatland drawing of a bezier curve.

(on the order of 1/100,000 the size) and plays a small role in the location of the zero

crossings.

We created a piece of software which creates 1D point drawings of 2D bezier

curves. Figure 3-4 shows a screenshot of the program. We calculate the major

feature points on a 5-control point bezier curve and project them onto the green

viewing screen on the right. The ridges and valleys (red ‘r’), silhouettes (white ‘s’),

and inflection/suggestive contour points (blue ‘i’) are indicated. The apparent ridge

points found from our equation are indicated by the yellow lines and align almost

exactly with the ridge and valley and inflection points. Our equation for apparent

ridges have a singularity point at the silhouettes and so are not drawn by our program.

However, since view-dependent curvature is a maximum at the silhouette points,

apparent ridges are located there as well. This program allowed us to visually verify

that our equation captures many of the major feature points.

We proceed by deriving the equations for view-dependent curvature and apparent

ridges in 3D.

39

40

Chapter 4

Apparent Ridges in 3D

In this section we extend our equations for view-dependent curvature and apparent

ridges to 3D. First we describe our geometric setup and look closely at the first and

second derivatives of the surface normal with respect to the surface. These correspond

to the curvature and ridges of the surface. Then, to define view-dependent curvature

and ridges, we calculate the same first and second derivative of the surface normal

with one key change: we take the derivative with respect to a screen plane instead of

the surface. These equations for view-dependent curvature and apparent ridges in 3D

define the properties needed to create apparent ridge line drawings of 3D geometry.

4.1 Geometric Properties of Surfaces

Object space Fix a smooth, closed surface S in R3. We denote n(M) to be the

outward facing normal to the surface at point M . The tangent plane at M is a local

linear approximation to the surface at M and the normal n(M) is perpendicular to

the tangent plane. We let M be the origin of the tangent plane such that we can

identify a point N in the plane as a vector r =
−−→
MN . Given orthonormal basis {t1, t2}

of the tangent plane, we can write any vector r as r = r1t1 + r2t2.

Curvature Intuitively, curvature of a surface represents how a surface bends, or

equivalently it describes how the normal changes from point to point on a surface.

41

Table 4.1: Table of Notation

M point on smooth, closed surface
n normal to surface at point M

r = r1t1 + r2t2 vector on tangent plane given basis {t1, t2}
Drn directional derivative which describes how the normal at point M changes

as one moves along the tangent vector r.
K(r) linear curvature operator at point M in the tangent direction r where

K(r) = Drn (K is also called the shape operator)
λmax, λmin eigenvalues of K, and max and min principal curvatures at point M
tmax, tmin eigenvectors of K, and max and min principal curvature directions at

point M
M ′ point on the screen plane

s = sxux + syuy vector on screen plane given basis {ux,uy}
P projection operator at point M which takes points from the tangent plane

to the screen plane. P (M) = M ′ and P (r) = s
ñ(M ′) given point M ′ on the screen, ñ describes the normal on the correspond-

ing point on the object. ñ(M ′) = n[P−1(M ′)]
Dsñ directional derivative which describes how the normal of the object

changes as one moves along the screen vector s. Dsñ = Drn where
r = P−1s.

Q(s) linear view-dependent curvature operator at point M ′ in the screen di-
rection s where Q(s) = K(P−1(s))

λA max = λA, λA min eigenvalues of QT Q, max and min view-dependent curvatures
tA max = tA, tA min eigenvectors of QT Q, max and min principal view-dependent curvature

directions

42

P

object space screen space

t2t1

M

+r = t1 t2r r

uy

ux

S = + uyux sys x

M'

1 2

Figure 4-1: Setup for the 3D case

We define the curvature operator K at point M as

K(r) = Drn

where Drn is the directional derivative of the normal in the direction r in the tangent

plane. K is also known as the Weigarten map or the shape operator (often denoted

as S). K(r) describes the curvature at point M in direction r.

If surface S is a plane, the normal n(A) is constant, so the curvature operator

of a plane is identically zero at all points of the plane. For a nonplanar surface the

surface normal n will twist and turn from point to point, and K will be nonzero.

The curvature operator K at each point M is a linear map from the tangent of

surface at M into the tangent on the Gaussian sphere. The Gaussian sphere is the

unit sphere consisting of all unit vectors in 3-space. Since n and its derivative are

orthogonal, if we regard n as a point of the Gaussian sphere, we can think of the

derivative of n as a tangent vector to the Gaussian sphere. It turns out that the

tangent plane of the surface at M and the tangent of the Gaussian sphere are the

same plane and can both be represented with respect to the basis {t1, t2}.

The curvature matrix at point M given a basis {t1, t2} of the tangent plane is

43

defined by

K =

 L M

M N


where

L = t1 ·Dt1n, M = t1 ·Dt2n = t2 ·Dt1n, N = t2 ·Dt2n (4.1)

See [3] for further details. For all r in the tangent plane,

K

 r1

r2

 =

 L M

M N

  r1

r2

 .

For a given point on the surface, we define the maximum and minimum principal

curvatures λmax and λmin as the eigenvalues of K. The associated eigenvectors tmax

and tmin are the maximum and minimum principle curvature directions.

We can write K with respect to its principal curvature directions, t1 = tmax and

t2 = tmin, which leads to a diagonal matrix with principal curvatures as entries:

K =

 λmax 0

0 λmin

 .

Derivative of curvature Just as one can describe curvature as the change in

normal with motion along the surface, one can describe the derivative of curvature

at a point as the change in the curvature operator with motion along the surface.

Given the principle coordinate basis {t1, t2} = {tmax, tmin} of the tangent plane, we

define the curvature derivative tensor as a 2 × 2 × 2 rank-3 tensor written here

as a vector of matrices

C = (Dt1K Dt2K) =

 P ′ Q′

Q′ S ′

  Q′ S ′

S ′ T ′

 (4.2)

where P ′ = Dt1λmax, Q′ = Dt2λmax, S ′ = Dt1λmin, and T ′ = Dt2λmin

44

ridge point
principle
curvature
direction

Figure 4-2: Ridges On this surface, the dotted line is a principle curvature line; at
each point on the line, the curvature changes most along the line direction. The red
dot represents the max curvature along the principle curvature line and is a ridge
point. The series of all the ridge points together creates the red ridge line.

See [12] [27] for further details. For all r in the tangent plane, C(r) gives a matrix

equal to the directional derivative of K in direction r.

Ridges As defined by Koenderink [18], ridges are the locus of points at which the

maximum curvature λmax assumes a local maximum in the principal direction tmax.

See (Fig. 4-2). They are found where

Dtmaxλmax = 0.

Note that this is the first element P ′ of the curvature derivative tensor defined above.

The procedure here would not work properly near the umbilical points where (λmax =

λmin) since the principal directions are not defined at the umbilicals. Fortunately it

can be easily shown that the loci of maxima of λmax and the minima of λmin along their

corresponding curvature lines do not pass through the typical umbilics. Therefore the

ridge-valley lines do not approach the generic umbilical points [23].

4.2 View-dependent curvature

To define view-dependent curvature, we still consider a smooth closed surface with a

normal n and tangent plane with basis {t1, t2} defined at point M . We introduce the

45

new concepts of a screen space and a projection function and use these to develop

the notion of view-dependent curvature.

Screen space Consider a viewing screen plane which looks onto the surface defined

by a reference point in space and a screen space basis {ux,uy}. This is the surface

on which we will “draw” a line drawing of the surface. A vector s on this surface is

described as s = sxux + syuy.

Projection to screen space We define the orthographic projection P from 3D

space to the screen. For a point M on the object, we will consider the restriction of P

from the tangent plane at M to the screen. Given the choice of basis {t1, t2} for the

object tangent plane and {ux,uy} for the screen plane, we can express this mapping

as a 2× 2 matrix, defined by

P =

 t1 · ux t2 · ux

t1 · uy t2 · uy

 .

Any vector in the object tangent plane r = r1t1 + r2t2 is projected to s in the screen

plane where s = sxux + syuy, as

 t1 · ux t2 · ux

t1 · uy t2 · uy

  r1

r2

 =

 sx

sy

 .

Note that P has an implicit dependency on M ; the projection matrix is different at

every point M on the object. Note also that in general a projection is not invertible.

However, since we are restricting P to be defined on the tangent plane of the object

at point M , it is invertible. This is true for all points except where the tangent plane

is perpendicular to the screen plane, namely the silhouette points. P−1 is not defined

at these points.

Normals as seen from the screen A normal n(M) is defined at all points M on

the surface of the object. We define the notion of the normal on the corresponding

46

screen point M ′, denoted by ñ(M ′), to be the normal of the surface at point M where

M = P−1(M ′). Formally, we write ñ(M ′) = n[P−1(M ′)].

View-dependent curvature Intuitively, view-dependent curvature is how much

the surface is seen to bend from a viewpoint. It takes both the curvature of the

object and the foreshortening of the object due to one’s viewpoint into consideration.

Formally, we define the view-dependent curvature operator Q at point M ′ as

Q(s) = Dsñ

where Dsñ is the directional derivative of the normal in the direction s in the screen

plane. The view-dependent curvature operator Q at each point M ′ is a linear map

from the screen plane into the tangent on the Gauss sphere. Note that Q is not a

symmetric linear map.

To relate Q to functions that we are more familiar with, we observe that

Dsñ = Drn

where r = P−1(s). Therefore Q(s) = Dsñ = Drn = K(r) = K[P−1(s)] or

Q = KP−1 (4.3)

KP−1 is the 3D expression for view-dependent curvature analogous to the 2D expres-

sion −k(u)
n(u)·j , and is the first derivative of the normal with respect to screen space. K

is the first derivative of the normal with respect to the object space, and P−1 is a

result of the chain rule used to change bases. This change of basis causes Q to be

a non-symmetric matrix. Note, that like the 2D equivalent, this matrix is undefined

when the view direction is perpendicular to the tangent plane normal n because P−1

is undefined at that point.

Q(s) is a vector that describes how the surface normal changes when one moves

in direction s in the screen. Since we are interested in extrema of the magnitude of

47

screen

b

a a'

b'

P-1

object

Figure 4-3: The maximum apparent curvature at b′ is much larger that at a′ uniquely
because of the perspective projection effect.

the change, we define the maximum view-dependent curvature as

λA max = max
‖s‖=1

‖Q(s)‖2.

The maximum view-dependent curvature λA max is equal to the largest eigenvalue of

the matrix QT Q and is achieved when s is the maximum eigenvector of QT Q. This

eigenvector, denoted by tA max, is the maximum view-dependent principal direction.

Equivalently, we can define the maximum view-dependent curvature as

λA max = max
‖P (r)‖=1

‖K(r)‖2

which is the maximum of the squared normal of the object curvature over an ellipsoid

elongated in the view direction (see Fig 4-3).

48

4.3 Apparent Ridges

Following the definition of ridges on the surface, we define apparent ridges as the

locus of points at which the maximum view-dependent curvature λA max assumes

a local maximum in the principal view-dependent curvature direction tA max. For

simplicity, we will now write tA for tA max and λA for λA max. Apparent ridges occur

where

DtA
λA = 0.

In order to compute DtA
λA, we express λA in terms of the eigenexpression

λA = tT
AQT QtA.

Differentiating this equation with respect to tA in screen space, we get

DtA
λA = (DtA

tA)T QT QtA + tT
A(DtA

QT)QtA + tT
AQT (DtA

Q)tA + tT
AQT Q(DtA

tA)

(4.4)

The first and fourth terms of the right hand side go to zero for the following rea-

son: First note that (DtA
tA)T QT QtA can be rewritten as (DtA

tA)T λAtA. Also note

that 2(DtA
tA)T · tA = DtA

‖tA‖2 = 0 since ‖tA‖2 = 1. Therefore, (DtA
tA)T λtA =

(DtA
tA)T QT QtA = tT

AQT Q(DtA
tA) = 0. So, the above equation (4.4) becomes

DtA
λA = 2tAQT (DtA

Q)tA (4.5)

The most difficult part is to find the directional derivative of Q = KP−1. To calculate

this we use the product rule as follows:

DtA
Q = DtA

(KP−1) = (DtA
K)P−1 + K(DtA

P−1).

Intuitively, DtA
K and DtA

P−1 represent how the object curvature and the projection

function change as one moves in direction tA. We now look more closely at exactly

how to calculate both of these derivatives.

49

Finding DtA
K. If we break down tA into its two basis vector components, we get

DtA
K = tAx

∂K

∂sx

+ tAy
∂K

∂sy

.

Since ∂K
∂sx

can be written as ∂K
∂r

= C times change of basis elements, we can write

DtA
K = tAxC

 ∂r1

∂sx

∂r2

∂sx

 + tAyC

 ∂r1

∂sy

∂r2

∂sy

 = C

tAx

 ∂r1

∂sx

∂r2

∂sx

 + tAy

 ∂r1

∂sy

∂r2

∂sy

 .

Since P−1 can be written as

P−1 =

 ∂r1

∂sx

∂r1

∂sy

∂r2

∂sx

∂r2

∂sy


the equation can be reduced to

DtA
K = CP−1tA. (4.6)

Finding DtA
P−1. We can relate the derivative of P−1 to the derivative of P as

DtA
P−1 = P−1(DtA

P)P−1

see 1. In order to define DtA
P , we note that

DtA
P = DtA

 t1 · ux t2 · ux

t1 · uy t2 · uy


by the definition of P . Now, because ux and uy are constant, we write

DtA
P =

 ux

uy

 (DtA
t1, DtA

t2) .

1Differentiating both sides of P · P−1 = I gives us (DtA
P−1)P + P−1(DtA

P) = 0. Rearranging
terms we get DtA

P−1 = P−1(DtA
P)P−1.

50

By change of basis we get

DtA
P =

 ux

uy

 (Drt1, Drt2) P−1tA =

 ux

uy

  ∂t1
∂r1

∂t2
∂r1

∂t1
∂r2

∂t2
∂r2

 P−1tA

where the elements ∂t1
∂r1

, ∂t1
∂r2

, ∂t2
∂r1

, ∂t2
∂r2

describe how the object basis vectors change as

we move along the object in direction r. These elements can be shown to equal

∂t1
∂r1

= Q
4λ

t2,
∂t1
∂r2

= S
4λ

t1,
∂t2
∂r1

= −Q
4λ

t1,
∂t2
∂r2

= −S
4λ

t1 where 4λ = λA max − λA min and Q

and S are elements of the curvature derivative tensor C. Because vectors t1 and t2

are orthogonal and lie in the same plane, it makes sense that the derivative of one is

in the direction of the other. Now we can simplify DtA
P to

DtA
P =

 ux

uy

  1

4λ

 t2Q t2S

−t1Q −t1S

P−1tA

or

DtA
P =

 ux

uy

  1

4λ

 t2

−t1

 C(t1, t2)

P−1tA (4.7)

Geometrically, this equation takes a vector tA, maps it from the screen space to the

object space through P−1, then evaluates how the object basis vectors change as we

move in this object direction, and then maps the change back to screen space by

writing it in terms of ux and uy.

Final Equation for Apparent Ridges Putting the entire equation for apparent

ridges together, we get

DtA
λA = 2tA(KP−1)T

(
(CP−1tA)P−1 + KP−1(DtA

P)P−1
)
tA (4.8)

where DtA
P is described in equation 4.7. The zeros of this function represent the

locations where the value of the view-dependent curvature is at an extremum. These

locate our apparent ridge lines.

51

4.4 Discussion

We have derived equations for view-dependent curvature and apparent ridges. To do

this, we changed the domain with respect to which we took the derivatives of the

surface normal: instead of deriving with respect to an object, we derived with respect

to a screen plane.

In essence, we added view dependency to the traditional definition of ridges. On

the front facing parts of an object where the object normal points towards to the

screen plane, traditional curvature and the view-dependent curvature are the same.

Where the object turns away from the screen plane, the view-dependent curvature

becomes much larger than the curvature and the view-dependent principle direction

is shifted towards the view vector.

In the next chapters we see how the equations of apparent ridges create pleasing

line drawings.

52

Chapter 5

Adaptation to Meshes

We adapt view-dependent curvature computations to discrete triangular meshes and

present algorithms for the extraction and trimming of apparent ridges.

Estimating view-dependent curvature View-dependent curvature is a product

of object curvature and an inverse projection. We leverage standard techniques of

discrete differential geometry to estimate the curvature K at each point on the mesh.

In practice, we use Rusinkiewicz’s technique [27] but other methods could be used.

We then multiply by the inverse projection to obtain Q = KP−1. We use a weak

perspective model to approximate P at each mesh vertex.

From this matrix Q we define our maximum apparent curvature λA and a maxi-

mum apparent curvature direction tA at each point.

Estimating the view-dependent curvature derivative The definition of ap-

parent ridges is based on DtA
λA. We estimate this derivative using a finite difference

approach as illustrated in Fig. 5-1(a). To compute the derivative at a mesh vertex p,

we compute the apparent curvature at two points w and w′ on the edges of triangles

adjacent to p and in the direction of tmax (more formally, in the plane defined by tmax

and the normal at p). Apparent curvature at a point w on an edge is obtained by

linear interpolation between the two vertices v and u. We then take the difference

between the apparent curvature at p with that at w and w′.

53

D tq

D tq − t

t

(b)

v1

v2
u

v
t

w

w’ u'

v' p

(c) (d)(a)

-

Figure 5-1: How we approximate the apparent curvature derivative, locate zero cross-
ings on mesh and trim minima. For each edge, we flip the tA in the direction of the
positive derivative so that it points towards increasing apparent curvature. Then, if
the two tA along the edge point in opposite directions, there is a zero crossing. To
test for minima, we drop a perpendicular from each vertex to the zero crossing line.
If the positive tA at each vertex makes an acute angle with the perpendicular, then
the zero crossing is a maxima (as in c). If not, the zero crossing is eliminated as a
minima (as in d).

Finding a consistent tmax field Note that tmax is a vector which runs along a

line from the vertex in one of two opposite directions (see Fig. 5-1(b)). To make this

field consistent across the mesh, we flip tmax to point in the direction of the positive

derivative, where view-dependent curvature is increasing.

Locating zero crossings We use a method inspired by Ohtake et al. [23] to locate

the zero crossings of the view-dependent curvature derivative on a mesh given the

consistent tmax field.

If the tA of both vertices along an edge point in approximately the same direction,

then there is no zero crossing. If they point in different directions (defined as > 90

degrees) then there is a zero crossing (see Fig 5-1(c) and (d)). We interpolate the

location of the zero crossing using the values of the derivatives at each vertex in a

manner similar to Hertzmann and Zorin [13].

Trimming The zero crossings locate both the minima and the maxima of the ap-

parent curvature derivatives, but we only want to draw lines at the maxima. To detect

54

if the zero crossing along an edge in a triangle is a minimum, we drop a perpendicular

from each vertex to the zero crossing line. See Fig. 5-1 (c) and (d). If the positive tA

at each vertex makes an acute angle with the perpendicular, then the zero crossing

is a maxima. If not, the zero crossing is eliminated as a minima.

This test is more robust than that suggested by [23] who approximate the per-

pendicular by the edge direction.

Thresholding Even after minima are trimmed, a lot of lines remain. This is be-

cause our method finds both local maxima and global maxima. Informally, not only

do we want points where the magnitude of the view-dependent curvature is a maxi-

mum, but we also want this maximum to be high. We therefore threshold the value

of the view-dependent curvature. This threshold is scaled by the feature size of the

mesh (average edge length) to make it dimensionless. All line definitions require a

similar thresholding.

Implementation In practice, we build on the Princeton’s Real Time Suggestive

Contour (RTSC) software with the trimesh2 libraries in order to implement apparent

ridges and compare them to other lines. The RTSC software computes normals,

curvature and the derivative of curvature, and displays many types of lines on 3D

triangular meshes. We added all the necessary computations and tests in order to

draw apparent ridge line drawings.

55

56

Chapter 6

Results and Analysis

We now present a closer look at how apparent ridges compare to the other major

feature lines used for line drawing. Specifically, we compare drawings of apparent

ridges with drawings of suggestive contours and contours, and drawings of ridges and

valleys and contours. In order to ensure a fair comparison, we thresholded each image

to match the number of gray pixels per image.

6.1 Silhouettes and Contours

Silhouettes and the more general contours are located where the normal is perpen-

dicular to the view direction. As we move towards the contour, the view-dependent

Ridges & ValleysShaded view Apparent RidgesSuggestive contours differences
Ap.R

Sug.C

Figure 6-1: Tablecloth model. Notice how the apparent ridges convey both the rim of
the table and the drapery of the tablecloth. Note that the missing occluding contour
on the back of the cloth is an artifact of our software and not of the line definitions.
The difference figures on the right highlight the differences between the suggestive
contours and apparent ridges.

57

Ridges & Valleys Apparent RidgesSuggestive contours

Figure 6-2: Bust model. Note that the nose of the ridge and valley drawing is
unnaturally sharp. Suggestive contours don’t present a pleasing drawing on the right
side of the image.

Apparent RidgesSuggestive contours

Figure 6-3: Brain model. Note the double lines that are drawn with suggestive
contours. Both suggestive contours and apparent ridges produce pleasing drawings.

58

Apparent RidgesSuggestive contours

Figure 6-4: Column model. Suggestive contours do well on the center of the pillar,
but apparent ridges do better on the base and on the face of the angel.

Figure 6-5: Given a slice of an object, suggestive contours are drawn at the gray
locations, while apparent ridges are drawn at the black. This leads suggestive contours
to draw two lines in areas that surround a valley, but lead apparent ridges to draw
two lines in areas that surround an inflection point.

59

Figure 6-6: Flowerpot model. Notice how different lines need to be thresholded at
different levels. The second row has a higher thresholding for all lines.

Figure 6-7: Head model. Apparent ridges make an elegant line drawing of this model.

60

Figure 6-8: Max Planck model. Apparent ridges render the facial features of the
model with more pertinant detail than do the suggestive contours. Ridge and valley
lines are overly sharp.

Figure 6-9: Vase model. Both ridge and valley and apparent ridge lines convey the
details of the vase, and particularly the base, more cleanly and directly than do
suggestive contours.

61

Figure 6-10: Sine wave mesh with ridges and valleys (purple and brown) and apparent
ridges (red). Note displacement due to the perspective. Lines are collocated at head
on views but shift as the object turns away from the viewer.

curvature approaches infinity because of the perspective effect. Hence apparent ridges

include contours (even though the apparent curvature has a singularity at the exact

contour.) This is interesting because it allows apparent ridges to stand alone, whereas

other lines must combine with contours.

6.2 Ridges and Valleys

Mathematically, apparent ridges are very related to traditional ridges: they share the

same definition modified by a projection from the object to the screen. By taking this

perspective into account however, apparent ridges are perceptually more pertinant

than ridges and valleys.

When the effect of the projection is small, at front facing parts of the model

where the normal points towards the viewer, ridges and apparent ridges are similar.

On parts of the object that turn away from the viewer, the apparent ridges and ridges

differ. This can be seen in the example of the sinewave mesh in (Fig. 6-10).

Ridges capture important features of a model, but they need to be adjusted to be

more perceptually pleasing. As seen in the tablecloth (Fig. 6-1), ridges successfully

capture the important rim of the table, but they also capture all the arbitrary maximal

folds of the cloth which have little perceptual importance. Apparent ridges merge

these ridges into the much more important nearby contour. Because ridges and valleys

are fixed on a object, they can appear as artificial surface markings and produce boxy

62

Figure 6-11: Gaussian bump from left to right: shaded view with occluding contour,
suggestive contours and apparent ridges.

looking nose and mouth renderings of the Bust (Fig. 6-2) and Max Planck (Fig. 1-3)

models. Apparent ridges create more appealing drawings in these examples.

Apparent ridges are also defined in some cases where ridges are ill-defined. On a

symmetric gaussian bump (Fig. 6-11), the apparent ridge lines extend the contour,

but because there is no maximum of curvature on the symmetric bump, ridge lines

don’t exist.

6.3 Suggestive Contours

Apparent ridges and suggestive contours are fundamentally different lines. Mathe-

matically, suggestive contours are located where the radial curvature is zero, whereas

apparent ridges are located at the maxima of the view-dependent curvature in its

principal direction.

Intuitively, suggestive contours look at an extremum of the normal, where we

look at the extremum of the normal variation. Suggestive contours look at curvature

in the direction of the view vector, where we look at curvature in the direction of

tA, the highest normal variation as seen from the screen plane. These directions have

different definitions, but sometimes they align: foreshortening happens along the view

direction, thus inflating the view-dependent curvature in that direction and making

it more likely to be the direction of tA. However, even when these directions are the

same, suggestive contours find where the curvature in that direction is zero, where

we find where the curvature is maximum.

Suggestive contours and apparent ridges trade off situations where they draw

63

single or double lines. In the model of the brain (Fig. 6-10), suggestive contours

create double lines at all the crevices, while we provide cleaner single lines. We locate

the valley of the crevice, while suggestive contours locate the two inflection points

surrounding the valley. However, in the column model, (Fig. 6-4), we provide two

apparent ridge lines for the beveled wing surface (at the ridge and valley), whereas

suggestive contours provide a simpler one (at the inflection).

One of the strong attributes of suggestive contours is that they extend contour

lines. Apparent ridges do as well (see (Fig. 6-11). Apparent ridges lengthen the

contour because nearby places of “almost contour” are locations where the perspective

foreshortening effect is highest, leading to high view-dependent curvature values.

Suggestive contours miss important features in convex regions of an object. For

example, no lines are drawn on the rim of the table in Fig. 6-1, whereas apparent

ridges successfully locate important features in these examples.

Given that the suggestive contours and apparent ridges are so different, it is hard

to say that one is clearly better than the other. Rather, both provide an interesting

choice of lines with different strengths and weaknesses.

6.4 Comparison to edge detection

Given head-on illumination with a single light source at the viewpoint and lambertian

shading, suggestive contours are drawn in the shaded areas of an object. As seen

in the tablecloth example, dark shaded areas correspond directly to the suggestive

contour lines. These lines only make sense given a certain shading setup; if the light

is moved, the suggestive contour lines would seem arbitrary. On the other hand,

apparent ridge lines are drawn where shading edges are detected as an average over

many light sources, suggesting that apparent ridges are drawn at locations that are

important independent of the light direction.

In Fig. 6-12, we show a Monte-Carlo experiment where a diffuse surface is rendered

from a given viewpoint with thousands of random lighting configurations. The average

output of a Canny edge detector [2] on those thousands of images matches remarkably

64

well the lines exctracted with our technique. We have performed similar experiments

with real photographs with flash illumination and compared Canny edge detection

to a drawing performed on a scan of the object (Fig. 6-13). While the viewpoints

are not matched perfectly, we can see that the two extraction approaches agree,

which confirms that our lines are related to edges in shaded views. This also draws

interesting relation to Raskar et al.’s NPR camera [26].

6.5 Performance evaluation

Ridges and valleys and suggestive contours are quick to compute. Though the compu-

tations require information about the curvature and the curvature derivative, these

values do not change with each viewpoint and can be precomputed for an object.

On the other hand, apparent ridges rely on the view-dependent curvature and its

derivative which change, and must be recomputed, for each viewpoint. With our

unoptimized code on a 2.33 GHz Intel Core 2 Duo Macintosh, apparent ridges are

computed in real time for small meshes, ∼ 1.5 seconds on 50,000 polygon meshes,

and ∼ 9 second for 250,000 polygon meshes.

In addition to performance, one limitation of apparent ridges compared to sugges-

tive contours is that they involve higher-order derivatives, which makes them more

prone to numerical noise in digital meshes.

65

Figure 6-12: Experiments with Canny edge detection. (a) Average edge image for a
single light source and Lamberttian shading. (b) Average edge image for 10 random
light sources and Lambertian shading. (c) Apparent ridge drawing.

Example of photograph Average edge map Apparent ridges

Figure 6-13: Comparison between the average Canny edge detection on 120 pho-
tographs with different lighting and our apparent ridges.

66

Chapter 7

Conclusions and Future Work

We have introduced apparent ridges for non-photorealistic line drawings. Apparent

ridges produce visually pleasing line drawings, and capture important information

about an objects shape. A variety of line types, such as silhouette contours and the

sharp ridges of a polyhedron, are special cases of our single definition. Apparent

ridges are related to, but distinct from, suggestive contours. Both are based on a

combination of view dependent and view independent factors. Both produce pleasing

images, but in many cases we find that the apparent ridge images are more natural

in appearance. Finally, apparent ridges enhance ridge and valley lines to be more

perceptually pertinent. Traditional and apparent ridges are based on the curvature

of the object surface, but in addition apparent ridges account for foreshortening of

the object when it is viewed from a specific location. This creates a smoother and

richer picture than the sharp ridges and valleys alone.

Future work includes doing perceptual experiments do verify whether apparent

ridges alone better convey shape information than other feature lines. Adding a notion

of lighting into the equations and images, and incorporating notions of scale and line

importance are also exciting future challenges. The fact that apparent curvature

maxima are closely defined by the viewpoint is encouraging for animation because it

could eliminate the flickering of contour lines which only appear briefly. Our initial

findings are that apparent ridges work very well for an animated camera. We also

would like to try more sophisticated thresholding techniques to get better drawings,

67

and to explore the use of view-dependent curvature to describe mesh saliency. Finally,

we strive to make computations of apparent ridges possible in real-time.

68

Bibliography

[1] Michael Burns, Janek Klawe, Szymon Rusinkiewicz, Adam Finkelstein, and Doug

DeCarlo. Line drawings from volume data. In SIGGRAPH ’05: ACM SIG-

GRAPH 2005 Papers, pages 512–518, New York, NY, USA, 2005. ACM Press.

[2] J. Canny. A computational approach to edge detection. In RCV87, pages 184–

203, 1987.

[3] Roberto Cipolla and Peter Giblin. Visual motion of curves and surfaces. Cam-

bridge University Press, New York, NY, USA, 2000.

[4] Doug DeCarlo, Adam Finkelstein, and Szymon Rusinkiewicz. Interactive ren-

dering of suggestive contours with temporal coherence. In NPAR 2004, pages

15–24, June 2004.

[5] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony San-

tella. Suggestive contours for conveying shape. ACM Transactions on Graphics,

22(3):848–855, July 2003.

[6] Philippe Decaudin. Cartoon looking rendering of 3D scenes. Research Report

2919, INRIA, June 1996.

[7] Manfredo P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-

Hall, 1976. 503 pages.

[8] Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X. Sil-

lion. A frequency analysis of light transport. ACM Transactions on Graphics,

24(3):1115–1126, August 2005.

69

[9] R. W. Fleming, A. Torralba, and E. H. Adelson. Specular reflections and the

perception of shape. Journal of Vision, 4(9):798–820, 2004.

[10] A. Girshick, V. Interrante, S. Haker, and T. Lemoine. Line direction matters:

an argument for the use of principal directions in 3d line drawings, 2000.

[11] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter S. Shirley, and Rich Riesen-

feld. Interactive technical illustration. In 1999 ACM Symposium on Interactive

3D Graphics, pages 31–38, April 1999.

[12] J. Gravesen and M. Ungstrup. Constructing invariant fairness measures for sur-

faces. Advances in Computational Mathematics, 17:67–88, 2002.

[13] Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. In Proceedings

of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference

Series, pages 517–526, July 2000.

[14] Victoria Interrante, Henry Fuchs, and Stephen Pizer. Enhancing transparent

skin surfaces with ridge and valley lines. In VIS ’95: Proceedings of the 6th

conference on Visualization ’95, page 52, Washington, DC, USA, 1995. IEEE

Computer Society.

[15] Robert D. Kalnins, Philip L. Davidson, Lee Markosian, and Adam Finkelstein.

Coherent stylized silhouettes. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Pa-

pers, pages 856–861, New York, NY, USA, 2003. ACM Press.

[16] Robert D. Kalnins, Lee Markosian, Barbara J. Meier, Michael A. Kowalski,

Joseph C. Lee, Philip L. Davidson, Matthew Webb, John F. Hughes, and Adam

Finkelstein. Wysiwyg npr: Drawing strokes directly on 3d models. ACM Trans-

actions on Graphics, 21(3):755–762, July 2002.

[17] J. J. Koenderink, A. J. van Doorn, C. G. Christou, and J. S. Lappin. Shape

Constancy in Pictorial Relief. Perception, 25(2):155–164, February 1996.

[18] Jan J. Koenderink. Solid shape. MIT Press, Cambridge, MA, USA, 1990.

70

[19] J.J Koenderink. What does the occluding contour tell us about solid shape?

Perception, 13:321–330, 1984.

[20] J Lewis. Personal communication. Boeing Computer Services, Seattle, Washing-

ton, November 1993.

[21] Antonio M. Lopez, Felipe Lumbreras, Joan Serrat, and Juan J. Villanueva. Eval-

uation of methods for ridge and valley detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 21(4):327–335, 1999.

[22] O. Monga, S. Benayoun, and O.D. Faugeras. From partial derivatives of 3-d

density images to ridge lines. Proceedings CVPR, pages 354–359, June 1992.

[23] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. Ridge-valley lines on

meshes via implicit surface fitting. ACM Trans. Graph., 23(3):609–612, 2004.

[24] M. Pauly, R. Keiser, and M. Gross. Multi-scale feature extraction on point-

sampled surfaces, 2003.

[25] Ramesh Raskar. Hardware support for non-photorealistic rendering. In HWWS

’01: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on

Graphics hardware, pages 41–47, New York, NY, USA, 2001. ACM Press.

[26] Ramesh Raskar, Kar-Han Tan, Rogerio Feris, Jingyi Yu, and Matthew Turk.

Non-photorealistic camera: depth edge detection and stylized rendering using

multi-flash imaging. ACM Transactions on Graphics, 23(3):679–688, August

2004.

[27] Szymon Rusinkiewicz. Estimating curvatures and their derivatives on triangle

meshes. In Symposium on 3D Data Processing, Visualization, and Transmission,

2004.

[28] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-d

shapes. In Computer Graphics (Proceedings of SIGGRAPH 90), volume 24,

pages 197–206, August 1990.

71

[29] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John

Snyder. Silhouette clipping. In SIGGRAPH ’00: Proceedings of the 27th annual

conference on Computer graphics and interactive techniques, pages 327–334, New

York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[30] M.C. Sousa and P. Prusinkiewicz. A few good lines: Suggestive drawing of 3d

models. Computer Graphics Forum (Proc. of EuroGraphics ’03), 22(3):xx–xx,

2003.

[31] Thomas Strothotte and Stefan Schlechtweg. Non-Photorealistic Computer

Graphics. Modelling, Animation, and Rendering. Morgan Kaufmann, 2002.

72

