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Understand where humans look

® For applications in
graphics, design, robotics

® reading, skimming, search

® measure and reduce
clutter

http://www.useit.com/alertbox/reading pattern.html




Applications

Level of detail
for NPR

Automatic
cropping

(a) original (b) gaze-based (c) distracting crop
Santella et al. [SIGCHI 2006]

provide equal or improved performance
without eye tracking equipment



Saliency

® measure of conspicuity

® |ikelihood of a location to attract attention
of human



Saliency Models

(a) Original image (b) Hou and Zhang (c) Itti and Koch
1 L. Itti and C. Koch. A saliency-based search mechanism for overt and
‘ Ittl a n d Ko C 1 covert shifts of visual attention, 2000.

. Ruth Rose n 1 0 ItZ R. Rosenholtz. A simple saliency model predicts a number of motion popout
phenomena. Vision Research 39, 19:3157-3163, 1999.

. H O u a,n d Zh a, ng X. Hou and L.Q. Zhang. Saliency detection: A spectral residual approach. 2007.



Saliency Models
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Bottom-up saliency model. From liti and Koch [2001]



People don’t always look where
low-level models predict

(a) Original image (b) Itti and Koch Saliency Map (c) eye tracking locations



Where people look

® Jop down task and scene dependent cues

® Bottom up saliency cues




Our Learning Approach

® Goal: Learn a model of where people look
directly from eye tracking data

® Steps
® Collect eye tracking dataset

® | earn a new model



Collecting a database
of eye tracking data



Collect eye tracking data
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Natural images of objects and scenes downloaded from Flickr and LabelMe



Collect eye tracking data

screen resolution
1280x1024

each image shown for
3 seconds

eye tracker measures
location of eye fixation
several times a second.

user rests head in chin rest [PhOtO Credit:]ason Dorfman CSAIL website]

|5 users on 1003 images



Eye tracking data
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fixations for one user



Eye tracking data
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first 5 fixations for |5 users



Eye tracking data

Average fixation locations / continuous saliency map



Eye tracking data

top 20% salient locations



Where do you look?
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How consistent are humans?

High entropy saliency maps



Bias towards the center

5.5 6 6.5 7 7.5

Entropy - Avg of all saliency maps

40% of fixations within the center | 1% of image



True Positives

Human performance

nGaussian center performance
IChance
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Where people look

Body parts Animals



Size of
Region of Interest

200 400 600 800

Radius of ROI




Learning a model



Features

® | ow level
illuminance, orientation, color

® Mid level?
vanishing point, horizon line

® High level

face detection, object detection

Image filtered with Difference-of-Gaussian(DoG) filters
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Viola Jones Face detector
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L earn a model

® collect positive salient and negative non
salient examples (10 pos : |10 neg)

® |inear support vector machine

® Test on single features and all features



Saliency maps from different models

Human ground

Itti and Koch Human ground Itti and Koch
truth and

truth and
. features . features
fixation fixation
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Performance
Avg of true pos and true neg rate
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NPR application




Conclusion

® Have new large collection of eye tracking

data

® Can learn mode

® Future work: en

s of saliency and BEYOND

nance model, applications

for saliency, exp

ore cropping



Questions!?




