Using machine learning to predict where people look

Tilke Judd, Antonio Torralba, Frédo Durand

Understand where humans look

- For applications in graphics, design, robotics
- reading, skimming, search
- measure and reduce clutter

http://www.useit.com/alertbox/reading_pattern.html

Applications

provide equal or improved performance without eye tracking equipment

Saliency

- measure of conspicuity
- likelihood of a location to attract attention of human

Saliency Models

(a) Original image

(b) Hou and Zhang

(c) Itti and Koch

- Itti and Koch
 - Ruth Rosenholtz
- Hou and Zhang

L. Itti and C. Koch. A saliency-based search mechanism for overt and covert shifts of visual attention, 2000.

R. Rosenholtz. A simple saliency model predicts a number of motion popout phenomena. Vision Research 39, 19:3157–3163, 1999.

X. Hou and L.Q. Zhang. Saliency detection: A spectral residual approach. 2007.

Saliency Models

- based on biologically plausible linear filters
- measure intensity, illumination, and color contrast
- lots of parameters
- bottom up model

Bottom-up saliency model. From Itti and Koch [2001]

People don't always look where low-level models predict

(a) Original image

(b) Itti and Koch Saliency Map

(c) eye tracking locations

- Top down task and scene dependent cues
- Bottom up saliency cues

Our Learning Approach

- Goal: Learn a model of where people look directly from eye tracking data
- Steps
 - Collect eye tracking dataset
 - Learn a new model

Collecting a database of eye tracking data

Collect eye tracking data

Natural images of objects and scenes downloaded from Flickr and LabelMe

Collect eye tracking data

screen resolution 1280x1024

each image shown for 3 seconds

eye tracker measures location of eye fixation several times a second.

user rests head in chin rest

[Photo Credit: Jason Dorfman CSAIL website]

15 users on 1003 images

fixations for one user

first 5 fixations for 15 users

Average fixation locations / continuous saliency map

top 20% salient locations

Where do you look?

How consistent are humans?

Low entropy saliency maps

High entropy saliency maps

Bias towards the center

Avg of all saliency maps

40% of fixations within the center 11% of image 70% of fixations within the center 25% of image

Human performance

Where people look

People

Animals

Text

Body parts

Size of Region of Interest

Learning a model

Features

- Low level illuminance, orientation, color
- Mid level? vanishing point, horizon line
- High level face detection, object detection

Image filtered with Difference-of-Gaussian(DoG) filters

Viola Jones Face detector

Features

Itti Color

Red

Auto Horizon Line

Blue Prob

Torralba Saliency

Itti Intensity

ColorHist m=2

CarDetection

Itti Orientation

Blue

ColorHist m=4

Dist to Center

Red Prob

ColorHist m=8

Eyetracking labels

Auto Faces

ColorHist m=16

Learn a model

- collect positive salient and negative non salient examples (10 pos : 10 neg)
- Linear support vector machine
- Test on single features and all features

Saliency maps from different models

NPR application

Conclusion

- Have new large collection of eye tracking data
- Can learn models of saliency and BEYOND
- Future work: enhance model, applications for saliency, explore cropping

Questions?

