
Imitation Learning of Whole-Body Grasps
Kaijen Hsiao

Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

Cambridge, MA 02139
Email: kjhsiao@mit.edu

Tomas Lozano-Perez
Computer Science and Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, MA 02139

Email: tlp@mit.edu

Abstract— A system is detailed here for using imitation learn-
ing to teach a robot to grasp objects using both hand and whole-
body grasps, which use the arms and torso as well as hands.
Demonstration grasp trajectories are created by teleoperating
a simulated robot to pick up simulated objects, modeled as
combinations of up to three aligned primitives—boxes, cylinders,
and spheres. When presented with a target object, the system
compares it against the objects in a stored database to pick a
demonstrated grasp used on a similar object. By considering the
target object to be a transformed version of the demonstration
object, contact points are mapped from one object to the other.
The most promising grasp candidate is chosen with the aid of a
grasp quality metric. To test the success of the chosen grasp, a
collision-free grasp trajectory is found and an attempt is made
to execute it in simulation. The implemented system successfully
picks up 92 out of 100 randomly generated test objects in
simulation.

I. I NTRODUCTION

One of the challenges in humanoid robotics is enabling
robots to grasp and manipulate objects as flexibly as humans
do. In addition to well-understood fingertip grasps, humans
often use what are termed ”whole-body grasps”—grasps that
can use non-fingertip surfaces such as an entire finger, palm,
arm, or even torso. Such grasps include wrapping a hand
around the handle of a hammer, lifting a vase with both hands,
sandwiching a racket under one arm, or slinging a club over
a shoulder. We are interested in enabling robots to do both
fingertip and whole-body grasps; examples of the types of
grasps we do are shown in Fig. 1.

Fig. 1. Example Fingertip and Whole-Body Grasps

Using non-fingertip surfaces often makes grasps more pow-
erful or stable. However, analyzing and synthesizing whole-
body grasps is difficult because they may involve a large

number of contacts, because there may be multiple steps in
the grasp sequence, and because there are many constraints
arising from the kinematics of the robot.

Our goal is to plan complex grasp sequences with a large
number of contacts, as well as multiple steps in the grasp
sequence. For instance, tucking a racket under an arm requires
a grasp sequence with several steps: first the handle is grasped
with a one-hand grasp, then the racket must be accurately
placed beneath the arm, then the arm must sandwich the racket
stably, and finally the hand must be removed. Figuring out
how to accomplish this grasp sequence requires finding grasps
(which we will also call keyframes) with several different
combinations of body parts—just the hand, the hand and the
arm, and just the arm—and continuity must be maintained
between keyframes, so that the hand grasps the handle in
the same place in the first two combinations and the arm
sandwiches the head of the racket in the same place in the latter
two. The same issues arise in other complex grasp sequences
such as regrasping operations, and while we are currently
working on whole-body grasps, we would like our method
to be applicable to both types of manipulation tasks.

Synthesizing grasps by constructing or globally optimizing
individual contact locations requires worst-case time exponen-
tial in the number of contacts [18]. Furthermore, such optimal
grasps may be kinematically infeasible and so additional
search may be required.

Humans appear to grasp most objects by finding good pre-
grasp locations and then wrapping their hands around the
object. Taxonomy-based, heuristic methods of grasping, such
as [20], typically define hard-coded rules of grasping objects
that identify possible pre-grasp locations for the hand to close
around. These methods work well for simple situations, but it
is difficult to generalize them to new tasks.

Instead of synthesizing new grasps from scratch or requiring
that rules be hard-coded to deal with every situation, our
method uses a database of successful grasp strategies obtained
through human demonstration. As long as there is a grasp
sequence in the database that can be applied to a target object,
the task becomes one of picking the correct grasp sequence
and then adapting it to the target object.

Our goal, therefore, is to enable a simulated robot to learn
whole-body grasps through imitation: a human demonstrates
picking up several simulated objects, and the robot chooses
appropriate demonstrated grasp sequences and performs them



on target objects with different geometries/positions than the
training objects.

Fig. 2. Demonstrating Grasps

II. A PPROACH

Currently, we model objects as a set of at most three
primitives (boxes, cylinders, or spheres). The centers of the
primitives lie on a line and their axes of symmetry must
be either perpendicular or parallel to each other. Arbitrary
orthogonal axes are used for spheres and for the curved part
of cylinders.

Our general approach is as follows:
1) A human demonstrates a database of grasp sequences

by teleoperating the simulated robot, as shown in Fig.
2. Each demonstration is recorded as a sequence of
keyframes in which contacts with the object are added
or removed, and in which hand grasps with many con-
tacts are represented by a reduced set of representative
contacts.

2) Given a target object, an appropriate demonstration
grasp sequence is chosen from the database.

3) Keyframes from the demonstration sequence are adapted
to the target object. This is done by assuming that the
target object is a transformed version of the demonstra-
tion object and by mapping contacts appropriately, as in
Fig. 5.

4) Adapted grasp sequences are filtered for kinematic fea-
sibility, and a grasp quality measure is used to pick the
best one.

5) A collision-free trajectory to carry out the grasp se-
quence is found.

6) The new grasp sequence is tested in simulation, using
low-level controllers to wrap hands stably around the
object.

Although our approach offers no guarantees that it will find a
good grasp (for instance, if no appropriate grasp is contained
in the database then no adaptation of an existing grasp will
be successful), it is possible to adapt the grasp in time that
is independent of the number of contacts in the grasps; the
adaptation process takes into account the kinematics of the
robot; and our overall approach is potentially useful for other
manipulation tasks such as regrasping.

III. R ELATED WORK

In the realm of grasping, most of the approaches deal with
finding or analyzing sets of contacts at precise locations on the

surface of an object. The goal is to find a set of contacts that
guarantee force-closure, and perhaps additionally that make
up a high quality grasp according to some quality measure, as
in [6], [25], and [19].

However, these approaches ignore the kinematics of the
robot, assuming that the robot can not only reach any set of
contacts on the surface of the object, but that arbitrary forces
can be exerted at those contact points. One of the main ideas
behind our approach is that the actual set of contacts that can
be made by a hand is severely limited by the geometry of the
hand, and thus finding sets of independent contacts that cannot
be reached is wasteful. A few approaches take kinematics into
account, such as [17], [16], [12], [21], [23], and [2].

Since we are dealing with enveloping, two-hand, and more
complex whole-body grasps in addition to fingertip grasps,
we need to handle issues that are less important for a fingertip
grasp planner. A two-hand grasp can have on the order of
32 contacts, and all of them are defective, meaning that there
are not enough degrees of freedom to create arbitrary forces
at each contact. Rather than trying to construct or search for
good grasps from scratch, we can use previous experience to
figure out how to grasp a new object that may be similar to one
we have seen before. There are several approaches that deal
with learning to grasp from experience, such as [3] and [8]. In
the works that most closely relate to ours, [18] shows how to
adapt a demonstrated grasp to a new object by finding a family
of grasps that are guaranteed to have a quality value that is
some percentage of the original grasp, and [11] shows how
to create humanlike enveloping grasps by finding portions of
objects that fit the curvature of a specific demonstrated hand
shape.

A number of more taxonomy-based appraoches to robot
grasping have been proposed. In taxonomy-based or heuristic
grasping, grasp taxonomies are used to grasp objects by
classifying objects into categories that should be grasped by
each canonical grasp, and then pre-shaping the hand into
the appropriate grasp shape and using low-level controllers
to execute the grasp. Works related to this sort of approach
include [7], [4], [20], [9], [14].

In general, in order to extend any of the heuristic methods
to dealing with under-arm, over-shoulder, or other grasps, one
would have to hand-code heuristics for each new grasp type.
While this is possible, it precludes extension to more complex,
yet-unseen manipulation tasks. For a more complete survey of
the field of grasping, see [1].

In the field of imitation learning there is work dealing
with the imitation learning of pick-and-place operations, such
as [24], [5], and [15].

IV. REPRESENTATIONS

A. Modeling Objects with Primitives

To make adapting grasps between objects easier, we require
that models be provided for all objects that consist only
of shape primitives such as spheres, boxes, and cylinders.
Examples of such primitive models are shown in Fig. 3.



Modeling objects with primitives allows us to simplify
the problem drastically by providing a sensible method of
‘chunking’ each object; also, the symmetries inherent in the
primitives provides a reduced number of relevant rotational
alignments between objects.

Fig. 3. Real Objects and Their Primitive Models

This primitive modeling is only used for transforming
contacts from one object to the other. Although our current
implementation only works with the primitive models, prior to
and after transforming contacts, more complex models could
be used. Contact points on the complex model would merely
be transferred to the nearest points on the simplified model,
and vice versa.

Differences between the actual geometries and their prim-
itive models can be treated essentially as errors. This means
that objects that are poorly modeled by a small number of such
primitives may be grasped incorrectly by our system. Fig. 3,
however, shows that for the purposes of grasping, even fairly
complex objects can be reasonably modeled with primitives.

In our implementation, we use only user-provided objects
consisting of a maximum of three primitives (sphere, cylinder,
and box) in a line, with axes of symmetry aligned. All the
primitive models of objects in Fig. 3 are of this description.
With a moderate increase in the complexity of the grasp
adaptation process, it would be possible to use more com-
plicated primitive models, with other types of primitives such
as handles or cones, more primitives, or differently arranged
primitives.

B. Template Grasps

The grasps in the template grasp database are created
by having a human teleoperate the simulated robot to pick
up simulated objects. Our implementation uses the Nest of
Birds(TM), a set of four magnetic sensors that determine the
position and orientation of both wrists and elbows. Addition-
ally, switches held in each hand allow the user to choose one
of three pre-grasp configurations (C-shaped hand, L-shaped
hand, or flat palm) and tell each hand when to wrap around
the object and when to let go.

Data is recorded at the start and end of the simulation, as
well as every time contact between the object and a new body
part is made or lost. The information recorded at each of these
points is called a keyframe; a demonstrated grasp trajectory is
thus a sequence of keyframes. For instance, our demonstration
of tucking a sign under one arm has seven keyframes: start
position, hand grasping handle, sign touching torso, sign
touching upper arm, sign touching lower arm, hand being
removed, and end of simulation. Six of the seven keyframes

(all but the hand being removed, since it is nearly identical
to the one before it) are shown in Fig. 4. The parameters
recorded for each keyframe are: global object position, arm
joint angles, and locations of contact points on both the object
and the body/table.

Fig. 4. Keyframes in Under-Arm Grasp Demonstration

A picture of a user demonstrating a grasp using the Nest of
Birds(TM) is shown in Fig. 2. The simulated world you see
in Fig. 2, which is the same world used to execute adapted
grasps of target objects, is created using Open Dynamics
Engine (ODE), an open-source physics simulator that provides
a fair approximation of real-world physics and collision de-
tection [22].

C. Representative Contacts

To further simplify choosing good pre-grasp locations, in-
stead of transforming all contacts made in the demonstration
grasp, we reduce the potentially large number of contacts made
by both hands to a small set of representative contacts. The
geometry of the hand and the object imposes severe constraints
on the relative locations of the hand contacts. Finding 16
separate locations for points on a single hand is terribly
wasteful, since for a given hand position, the range of possible
contacts is severely limited.

For our current implementation, we track only the position
and orientation of the middle knuckle on the palm relative
to the object, so that the transformed contact location only
gives the general pre-grasp location on the target object. The
representative contact(s) are used to locate the hands relative
to the object. Once the position of a hand relative to the object
is specified, the grasp is essentially specified, since we would
in general prefer the fingers to simply wrap around the shape
of the object. The actual wrapping of fingers is taken care of
by a low-level hand controller during execution of the grasp.

V. PICKING A TEMPLATE GRASPSEQUENCE

When presented with a target object, a template grasp must
be chosen from the database of demonstrated grasps. This is
done by choosing the grasp that was used on the most similar
object, as determined using a nearest-neighbor classification
system. The parameters we used to compare objects were:
object dimensions, object mass, inertia in each of three direc-
tions, and the z-axis of the object. The automatically-assigned



z-axis of the object is a feature that expresses the alignment of
primitives in the object. Distance between two objects is based
on a weighted sum of differences between feature values for
the two objects being compared at a particular relative rotation.
Distances are found for each of the three relative rotations
that we will consider while transforming contacts, discussed
in section VI; the lowest of the three is considered the final
distance between the two. Additionally, template grasps can
be flipped from right to left, so that a right-hand grasp turns
into a left-hand grasp; this effectively doubles the number of
possible template grasps. In this implementation, the weights
are hand-tuned.

While this set of features does not take into account fine
object features that may be useful for selecting an appropriate
grasp, bulk object characteristics appeared to be both more
important as well as sufficient for applying the template
grasps we chose. While two objects with a similar, hand-sized
protrusion could both be grasped by wrapping a hand around
the protrusion, if one of the two objects is large and heavy, a
human would be more likely to grasp it with a two-hand grasp
that provides greater support.

The nearest neighbor classification system can be used to
rank the template grasps, and more than one of the best grasps
can be examined for suitability, particularly if the size of the
database is large.

VI. T RANSFORMATIONS

Because each object is made up only of a small number of
known primitives, we can imagine morphing one object into
the other through a small set of geometric transformations such
as: expanding/shrinking primitives, morphing one primitive
to another, adding/removing primitives, or splitting/combining
primitives. Now imagine grasping the demonstration object
and then morphing the object within the grasp according to
these transformations. If the two objects are reasonably similar,
it is likely that the grasp will still succeed. This is the intuition
behind our method of contact transformation, which essentially
equates ’chunks’ of one object consisting of subsets of that
object’s primitives with ’chunks’ of another object, and grasps
both sets of ‘chunks’ in the same manner.

This is particularly useful for grasp sequences or other
manipulation tasks that have multiple steps, such as picking up
a racket and sandwiching it under an arm, or object regrasping
operations, since each grasp in the sequence is connected to the
grasp before and after. By equating parts of the template object
with parts of the target object and grasping them in the same
way throughout the entire grasp sequence, grasp continuity in
the adapted grasp sequence is automatically assured.

Fig. 5 shows a box being transformed into a hammer
using the above-listed transformations, via three sequences
of transformations that will morph one object into another.
In the first transformation, the box shrinks into the head of
the hammer, and a cylindrical handle is added on. In the
second, the box shrinks to the size of the handle, morphs into
a cylinder, and has a box head tacked on. In the third, the box
splits into two primitives, one of which becomes the head of

Fig. 5. Transformation sequences from box to hammer

the hammer, and the other of which shrinks to the size of the
handle and then morphs into a cylinder. While there are more
roundabout ways of morphing from the box to the hammer
with this particular relative orientation, those are the shortest
routes, and the only ones of interest to us.

We want to consider more than one possible relative orien-
tation, however. Because our objects consist of primitives in
a line with symmetry axes aligned, the most useful rotations
are those that cause the axes of both the template and target
objects to be aligned (meaning all axes are either parallel or
orthogonal to each other). In our current implementation, we
consider only three possible relative rotations between the two
objects. The first is the alignment that requires the least amount
of relative rotation to bring the two objects into alignment from
their initial starting positions, and the other two are rotated by
±90 degrees around the vertical axis. Because our objects are
always sitting on a table rather than floating in space, rotating
about any other axis (which would result in being able to grab
tipped-over objects after seeing a grasp of them upright) often
results in collisions between fingers and the table, so we do
not use them.

This is not as restrictive as it sounds, however, since the
grasps we might desire of tipped-over objects can almost
always be obtained through transformations of other template
grasps. For example, an object previously grasped with a side
grasp that has been tipped over can now be grasped using a
demonstrated top grasp.

To transform objects through a sequence of transformations,
each transformation is performed in turn. As a shorter way to
think about how objects can be transformed, we can consider
the perspective that a sequence of transformations is equivalent
to matching chunks of an object to chunks of the target object,
with each chunk in the old object morphing into the equivalent
chunk in the target object. For each matching chunk-pair, we
can expand all the primitives of the original object to just fit



inside the closest bounding box/cylinder/sphere that fits around
both chunks, combine them into one primitive, then split that
bounding primitive into appropriate parts that shrink into the
primitives in the target object. Thus, merely considering all
the different ways of matching chunks between objects covers
all the relevant sequences of transformations.

The number of possible transformations scales exponentially
with the number of primitives in both template and target
object. For only three primitives that are in a line and axis-
aligned, we simply compare all 125 possible transformations.
For the more general case, with more primitives or with arbi-
trary orientations/alignments of primitives, we would like to
compare the structure of the template object to the structure of
the target object to search more likely geometric matches first.
If both objects are expressed as primitives in a part hierarchy,
then we can use principles from 3-D object recognition to
compute a partial distance between two matches, as in [13].
If we wish to limit the number of transformations considered,
we can then do so by either setting a cutoff on the number of
transformations searched, or by setting a cutoff on the distance
between the two matches.

VII. M APPING CONTACTS THROUGH A TRANSFORMATION

For each sequence of transformations, we need a method
of mapping the contacts from an object to its transformed
equivalent. In doing so, we would like the contacts to roughly
maintain their relative positions while staying on the appro-
priate chunks of the target object.

One simple method, used in this implemention, is to move
the contacts as if they were on the surface of a sponge, so that
a contact on the corner of a box remains on the corner while
the box stretches or shrinks, or squashes to the closest point on
a sphere as if the box’s corners were squashed inward. Thus,
the positions of contacts are scaled with the boundary of the
object, maintaining their relative position with respect to edges
and corners. An example of this sort of contact transformation
is shown in Fig. 6; the corner contact on the square maps to the
closest point on the circle, or to the corner of the stretched-out
square.

More formally, if the coordinates of a contact with respect
to the center of a chunk of the demonstration object are
(px, py, pz), and the dimensions of the bounding box of that
chunk are(bx, by, bz), we can find the new coordinates on a
target object chunk of dimensions(b′

x, b′
y, b′

z) by shrinking the
coordinates by the old dimensions and then scaling them up by
the new dimensions. Thus, the new coordinates,(p′

x, p′
y, p′

z) =

(pxb′
x

bx
,

pyb′
y

by
,

pzb′
z

bz
). Since these coordinates may not be on the

surface of the target object, we take the closest point on the
target object to these coordinates.

VIII. G RASPCANDIDATE QUALITY METRICS

The process of finding all the possible transformations
between template and target object and adapting the contacts
using the chosen contact mapping results in a large number of
possible adapted grasp sequences, which we will refer to as
grasp candidates. To pick the best one, there are two factors

Fig. 6. Mapping Contacts Through a Transformation

to consider: kinematic feasibility and grasp quality. To decide
either, however, we must first do a quick optimization over the
arm angles for each grasp candidate to find the approximate
hand/arm locations that will best make the desired adapted
contacts for each keyframe. Once that is done, we can quickly
eliminate any grasp candidates that have either major collisions
or goals that are kinematically impossible to reach. Next, grasp
candidates that are too similar to each other can be eliminated,
so that for small objects, we do not consider a large number
of nearly identical grasps.

After paring down the grasp candidates in this manner, we
need to find a way to assign each remaining grasp candidate
a numerical quality value. Our current implementation uses
a quality value consisting of a weighted combination of an
empirically chosen set of features whose weights are learned
from a training set. These features include: geometric overlap
of the template and target objects when overlaid, the distances
that the contact points move when mapped, reachability of
the goal positions, and level of collisions found between body
parts and the object. While this method works fairly well at
picking good grasps, it is somewhat slow and does not directly
reflect the ability of a new grasp candidate to hold the object
stably. Alternatively, we could use a more standard grasp
quality measure, such as the convex hullL1metric from [6].
This would require an estimate of the actual contacts that
would be made from the chosen pre-grasp locations, which can
be made by using collision-checking to close fingers around
the object.

Finding the best grasp candidate, with its estimated kinemat-
ically feasible contact locations and grasp quality, is as far or
further than many grasp planners go. Our new grasp planning
approach is polynomial in the number of contacts (due to
finding the grasp quality of at least one grasp) and exponential
in the number of primitives (due to having to match all possible
chunks of one object with all possible chunks of the other). It
also requires searching for kinematically feasible arm positions
through an optimization process that in reality takes not much
more time than basic numerical inverse kinematics.

IX. F INDING COLLISION-FREE KEYFRAMES AND

TRAJECTORIES

In order to test our proposed grasps, we must carry out the
proposed grasp sequences in simulation. This process involves
adjusting the keyframes so that they are entirely non-colliding,
finding non-colliding paths between those keyframes, and
finally carrying out the proposed grasp trajectory to test for
success.



For each keyframe, a collision-free arrangement of both
arms and object must be found. This is done by optimizing
over the arm angles, penalizing for collisions and encourag-
ing positions that accurately make the desired contacts. For
keyframes in which the robot has control of the object, the
object is assumed to move with the body parts in contact
with the object; hand contacts are given precedence over arm
contacts, which are more likely to shift.

Given a sequence of adjusted keyframes, we can use a
probabilistic roadmap to find a collision-free trajectory to
traverse the keyframes, as described in [10].

X. SIMULATING TRAJECTORIES

Once a proposed collision-free grasp trajectory is found, we
can execute it in simulation to test whether the grasp has any
hope of working in the real world.

There are three main types of controllers that are needed
when executing a planned trajectory. The first perform position
control of the arms, to move them along the trajectory. The
second add torque components to the arm joints (on top of
the position control torques) that attempt to apply appropriate
forces at contact points between arm surfaces and the object.
To apply forces at contact points between the object and fixed
body parts such as the torso, the joint torques are calculated
by assuming that the object moves with the arm/hand parts
in contact with the object. This is a loose approximation, and
often results in imprecise but sufficient force generation.

The third type of controller wraps fingers around an object
when a hand is in the appropriate position for grasping. The
finger and thumb joints are made to bend along a preset
trajectory that creates a natural closing motion. When a joint
hits the object, all proximal joints on that digit are frozen in
place while distal joints continue to curl. When the tip of the
digit has hit the object, the finger freezes its shape except at the
base of the digit, which is proportional-controlled to maintain
a given level of force on the object.

Our current implementation uses a constant level of force
for all grasps. This turns out to be problematic, since for
instance, in a two-hand grasp, the fingers should only wrap
loosely around the object while the palms exert most of the
necessary force to hold up the object. On the other hand, for
fingertip grasps of medium-weight objects, the fingers must
exert a fair amount of force to maintain their grasp. If the
larger amount of force is used for both grasps, the fingers
tend to push too hard against the object in the two-hand grasp,
potentially disrupting the grasp. Thus, for our next iteration,
we plan to use different levels of force for different pre-grasp
configurations. More generally, finger force is a parameter
that could be either learned or specified by the user for each
demonstration.

The other major issue encountered by this simplistic system
of controllers is that of sliding. Since the controllers have
no special accommodation for sliding along surfaces, grasps
that require sliding are usually broken. For example, in the
keyframes for the demonstrated under-arm grasp in Fig. 4, the
object shifts position considerably while being sandwiched by

the arm. This resulted in the failure of all adapted under-arm
grasps, since attempts to slide the object result in dropping it.

XI. RESULTS

A. Template Grasps

The seven template grasps supplied in our database include
two precision grasps, two palm grasps, one two-hand grasp,
an over-shoulder grasp, and an under-arm grasp, as shown in
Fig. 7.

Fig. 7. Template Grasps

B. Successful Grasps

By adapting these seven template grasps, our current imple-
mented system can already pick up 92 out of 100 randomly
generated objects. Examples of successfully executed grasps
of a few of these randomly generated objects are shown in
Fig. 8.

Fig. 8. Successful Grasps of Random Objects



Examples of successful grasps of hand-generated test ob-
jects made to look more like real objects are shown in Fig.
1.

C. Failed Grasps

The eight failed grasps from of the set of 100 randomly
generated objects are shown in Fig. 9.

Fig. 9. Failed Grasps of Random Objects

Most of the grasps shown failed because of problems with
the grasp controllers, not because of problems with the chosen
pre-grasp location. All three grasps in the top row failed
because of incorrect finger forces applied in the two-hand
controller, as discussed in section X. The first two grasps in
the middle row failed because of problems with the thumb
controller that caused the thumb joint to go unstable; these
problems were largely an artifact of the simulation and have
since been resolved. The rightmost grasp in the middle row
failed because the grasp selected was an under-arm grasp,
which as we mentioned earlier, all resulted in failure. The
grasp of the tiny ball in the bottom left failed because it was
too tiny for the two-finger grasp from the demonstration. The
bottom middle object was dropped because the grasp chosen
was barely unreachable by the arm kinematics, causing the
thumb to land on a bad location. Our current quality metric
was unable to detect such a problem, but a convex hull quality
metric would have revealed the problem instantly. With the
exception of sliding in under-arm grasps, all of the problems
encountered with these objects are easily fixable.

REFERENCES

[1] Bicchi, Antonio. “Hands for Dexterous Manipulation and Robust Grasp-
ing: A Difficult Road Toward Simplicity,”IEEE Trans. on R & A, 16(6),
2000.

[2] Bicchi, Antonio. “On the Problem of Decomposing Grasp and Manipula-
tion Forces in Multiple Whole-Limb Manipulation,”Journal of Robotics
and Autonomous Systems, 1994.

[3] Coelho, J., J.H. Piater, and R.A. Grupen, “Developing haptic and visual
perceptual categories for reaching and grasping with a humanoid robot,”
in First IEEE-RAS Intl Conf on Humanoid Robots, 2000.

[4] Cutkosky, M.R. and R.D. Howe, “Human Grasp Choice and Robotic
Grasp Analysis,” inDexterous Robot Hands. Springer-Verlag, 1990.

[5] Ehrenmann, M., Zoellner, R.D., Rogalla, O., Dillmann, R. “Program-
ming Service Tasks in Household Environments by Human Demonstra-
tion,” IEEE Intl. Workshop on Robot and Human Interactive Communi-
cation, 2002.

[6] Ferrari, Carlo, and John Canny. “Planning Optimal Grasps,” ICRA, 1992.
[7] Iberall, T., and MacKenzie, C.L., “Opposition Space and Human Pre-

hension,”Dextrous Robot Hands, Springer-Verlag, 1990, 32-54.
[8] Kamon, Ishay, Tamar Flash, and Shimon Edelman, “Learning to grasp

using visual information,”ICRA, 1996.
[9] Kang S.B. and K. Ikeuchi, “Toward automatic robot instruction for

perception - recognizing a grasp from observation,”IEEE Trans. on
R & A, 9, 432-443, 1993.

[10] Kavraki, Lydia E., P. Svestka, J. Latombe, and M. Overmars. “Proba-
bilistic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces,”IEEE Trans. on R & A, 12(4), 566-580, 1996.

[11] Li, Ying, and Nancy Pollard. “A Shape Matching Algorithm for
Synthesizing Humanlike Enveloping Grasps,” IEEE-RAS Intl Conf on
Humanoid Robots, 2005.

[12] Lozano-Prez, Toms, Joseph L. Jones, Emmanuel Mazer, Patrick A.
O’Donnell. HANDEY: A Robot Task Planner. MIT Press, 1992.

[13] Medioni, Gerard G. and Alexandre R.J. Francois. “3-D Structures for
Generic Object Recognition,”ICPR, 2000.

[14] Miller, A., S. Knoop, H. Christensen, and P. Allen, “Automatic Grasp
Planning Using Shape Primitives,”ICRA, 2003.

[15] Ogata, H. and T. Takahashi, “Robotic assembly operation teaching in a
virtual environment,”IEEE Trans. on R & A, 10(3), 391-399, 1994.

[16] Platt, R., A. Fagg, and R. Grupen. “Extending Fingertip Grasping to
Whole Body Grasping,”ICRA, 2003.

[17] Platt, R., A. Fagg, and R. Grupen. “Nullspace Composition of Control
Laws for Grasping,”IEEE/RSJ Intl. Conf on Intelligent Robots and
Systems, 2002.

[18] Pollard, Nancy. “Synthesizing Grasps from Generalized Prototypes,”
ICRA, 1996.

[19] Ponce et al. “On computing four-finger equilibrium and force-closure
grasps of polyhedral objects,”Intl Journal of Robotics Research, 16,
1997.

[20] Rijpkema, H., Girard, M., “Computer Animation of Knowledge-Based
Human Grasping,” ACM SIGGRAPH, 1991.

[21] Simeon, Theirry, Laumond, J.P., Cortez, J, Sahbani, A. “Manipulation
Planning with Probabilistic Roadmaps,”IJRR, 23(7-8), 729-746, 2004.

[22] Smith, R. Open Dynamics Engine, www.ode.org, 2005.
[23] Strandberg, Morten, “Robot Path Planning: An Object-Oriented Ap-

proach,” Ph.D. diss., Royal Institute of Technology, Stockholm, Sweden,
2004.

[24] Tung, C. and A. Kak. “Automatic Learning of Assembly Tasks using a
Dataglove System,”IROS, 1995.

[25] Zhu, X., H. Ding, and H. Li. “A Quantitative Measure For Multi-
Fingered Grasps,”IEEE/ASME Intl Conf on Advanced Intelligent
Mechatronics, 2001.


