
Continuous-State POMDPs with Hybrid Dynamics

Emma Brunskill, Leslie Kaelbling, Tomas Lozano-Perez, Nicholas Roy
Computer Science and Artificial Laboratory
Massachusetts Institute of Technology

Cambridge, MA
emma,lpk,tlp,nickroy@csail.mit.edu

Abstract

Continuous-state POMDPs provide a natural representation
for a variety of tasks, including many in robotics. However,
existing continuous-state POMDP approaches are limited by
their reliance on a single linear model to represent the world
dynamics. We introduce a new switching-state (hybrid) dy-
namics model that can represent multi-modal state-dependent
dynamics. We present a new point-based POMDP planning
algorithm for solving continuous-state POMDPs using this
dynamics model. We also provide a constrained optimization
approach for approximating the value function as a mixture
of a bounded number of Gaussians. We present results on a
set of example problems and demonstrate that when differ-
ent degrees of state accuracy are needed to accomplish a task,
our hybrid continuous-state approach outperforms a standard
discrete state technique.

1 Introduction
Partially observable Markov decision processes
(POMDPs) (Kaelbling, Littman, & Cassandra 1998)
provide a rich framework for describing a number of plan-
ning problems that arise in situations with hidden state and
stochastic actions. Most prior work has focused on solving
POMDPs with discrete states, actions and observations.
However, in many applications, such as navigation or

robotic grasping, the world is most naturally represented us-
ing continuous states. Though any continuous domain can
be described using a sufficiently fine grid, the number of
discrete states grows exponentially with the underlying state
space dimensionality. Existing discrete state POMDP al-
gorithms can only scale up to the order of a few thousand
states, beyond which they become computationally infeasi-
ble (Pineau, Gordon, & Thrun 2006; Spaan & Vlassis 2005;
Smith & Simmons 2004). Therefore, approaches for deal-
ing efficiently with continuous-state POMDPs are of great
interest.
Previous work on planning for continuous-state POMDPs

has typically modeled the world dynamics using a single
linear Gaussian model1 to describe the effects of an action

Copyright c© 2007, authors listed above. All rights reserved.
1In some prior work(Brooks et al. 2006; Thrun 2000) a spe-

cial exception is included to encode boundary conditions such as
obstacles in a robotic task.

(Brooks et al. 2006; Porta et al. 2006; Thrun 2000). Unfor-
tunately, this model is not powerful enough to represent the
multi-modal state-dependent dynamics that arise in a num-
ber of problems of interest. Consider a robot hopping across
an environment of sand and flat concrete. If the robot is
on sand, a single motion will only move it forward a small
amount, but on concrete the robot can move forward a large
amount. If instead the robot has faulty jump actuators, a
single action may jump the robot forward, or fail to move
the robot. Though such dynamics are easily represented in
discrete-state environments using the standard transition ma-
trices, a single linear Gaussian continuous-state model will
be insufficient to adequately model these multi-modal state-
dependent dynamics. In this paper we present a hybrid dy-
namics model for continuous-state POMDPs that can rep-
resent a stochastic distribution over a number of different
linear dynamic models. This dynamics model can also com-
pactly represent the shared dynamics of many states, in con-
trast to typical discrete state models which require specify-
ing the dynamics separately for each state.
We develop a new point-based approximation algorithm

for solving these hybrid-dynamics POMDP planning prob-
lems that builds on Porta et al.’s continuous-state point-
based approach (Porta et al. 2006). A second contribution of
our paper is the use of constrained optimization to approx-
imate the value function in order to ensure computational
tractability. Constrained optimization provides a principled
way to balance representational accuracy and computational
efficiency when computing the approximation.
We present experimental results on a set of small prob-

lems to illustrate how the representational power of the hy-
brid dynamics model allows us to address problems not pre-
viously solvable by existing continuous-state approaches.
Finally, we also demonstrate how our hybrid approach can
outperform discrete state approaches when various levels of
representational granularity are needed to find a good policy.

2 POMDPs
Partially observable Markov decision processes (POMDPs)
have become a popular model for decision making under
uncertainty in artificial intelligence (Kaelbling, Littman, &
Cassandra 1998). A POMDP consists of: a set of states S; a
set of actions A; a set of observations Z; a dynamics model
that represents the probability of making a transition to state

s′ after taking action a in state s, p(s′|s, a); an observation
model describing the probability of receiving an observation
z in state s, p(z|s); a reward model that specifies the reward
received from being in state s and taking action a, R(s, a);
the discount factor to trade off the value of immediate and
future rewards, γ; and an initial belief state distribution, bo.
A belief state bt is used to summarize the probability of

the world being in each state given the past history of obser-
vations and actions (o1:t, a1:t). A policy π : b → a maps
belief states to actions. The goal of POMDP planning tech-
niques is to construct a policy that maximizes the (possibly
discounted) expected sum of rewards E[

∑T
t=1

γtR(st, at)]
over an action sequence of length T . The policy is often
found by computing this expected reward using a value func-
tion over the space of belief states. As the space of possible
belief states is infinite, the value function cannot be repre-
sented by enumeration.
The POMDP formulation described above is agnostic

about whether the underlying world states, actions, and ob-
servations are discrete or continuous. In the case where S,
A, and Z are discrete, Sondik (Sondik 1971) showed that
the optimal finite horizon value function is piecewise linear
and convex (PWLC) in the belief space and can therefore
be represented by a finite set of |S|-dimensional α-vectors.
Each α-vector corresponds to a “policy tree” specifying con-
ditional sequences of actions, which depend on the observa-
tions received: α(s) is the value of executing this tree in
state s. Therefore the expected value of starting at belief b
and following policy tree j is computed by calculating the
expected value of αj under the distribution b, 〈b,αj〉 which
is equal to

∑

s∈S αj(s)b(s) for discrete S. Given an optimal
value function represented by a set of α-vectors, for a given
belief b the optimal action is chosen by selecting the action
associated with the α-vector that maximizes 〈b,αj〉.
In exact POMDP solutions, the number of α vectors re-

quired may grow exponentially with the length of the hori-
zon, and this intractable growth often occurs in practice.
Therefore the majority of prior work has focused on ap-
proximate solution techniques. Point-based value itera-
tion (Pineau, Gordon, & Thrun 2006; Spaan & Vlassis 2005;
Zhang & Zhang 2001) is one class of approximation tech-
niques that exploits the piecewise linear and convex nature
of the optimal discrete state value function. Point-based
techniques estimate the value function at only a small set
of N chosen belief points B̃, resulting in a value function
represented by at most N α-vectors. This representation is
constructed by iteratively computing an approximately opti-
mal t-step value function Vt from the previously-computed
(t − 1)-step value function Vt−1 by backing up the value
function at beliefs b ∈ B̃ using the Bellman equation:

Vt(b) = max
a∈A

∑

s∈S

R(s, a)b(s) + . . .

γ
∑

z∈Z

max
αt−1∈Vt−1

∑

s∈S

∑

s′∈S

p(s′|s, a)p(z|s′)αt−1(s
′)b(s)

= max
a∈A

[

∑

s∈S

R(s, a)b(s) + γ
∑

z∈Z

max
αazj

〈αazj , b〉

]

(1)

where αazj is the vector associated with taking action a, re-
ceiving observation z and then following the (t − 1) policy
associated with αj . It is efficient to compute the dominant
α-vector at each b, and those vectors taken together provide
an approximation of Vt over entire belief space. Due to the
PWLC property of discrete state POMDPs, this approximate
representation is guaranteed to be a lower bound on the op-
timal value function. Different point-based techniques in-
clude carefully adding new elements to B̃ to improve this
lower bound (Pineau, Gordon, & Thrun 2006) or updating a
subset of B̃ at each iteration (Spaan & Vlassis 2005).

3 Switching State-Space Dynamics Models
Our interest lies in using the rich framework of POMDPs
to handle continuous-state problems directly without con-
verting to a discrete representation. One critical represen-
tational issue is how to flexibly represent the dynamics in
a continuous-state system. Previous approaches to planning
in continuous-state POMDPs have frequently used a single
linear Gaussian model to represent the new state distribution
after an action. In general the dynamics of robotic grasp-
ing and many other problems of interest are highly complex
and nonlinear. However we can approximate such dynam-
ics using a “switching state space” model. This model will
allow us to both represent actions that result in multimodal
stochastic distributions over the state space, and succinctly
represent any shared dynamics among states.
Switching state-space models (SSM) (also known as hy-

brid models and jump-linear systems) are a popular model
in the control community for approximating systems with
complex dynamics (Ghahramani & Hinton 2000). Typically
an SSM consists of a set of linear state transition models.
At each time step a hidden discrete mode state indexes a
particular transition model which is used to update the hid-
den continuous-state vector. Frequently, the transition dy-
namics of the mode states are modeled as a Markov pro-
cess (Ghahramani & Hinton 2000) (see figure 1(a) for an
illustration). SSMs have been used to approximate the dy-
namics of a diverse set of complex systems, including plan-
etary rover operation (Blackmore et al. 2007). The bulk of
prior similar work on SSMs has focused on model parameter
learning, and we are not aware of any prior work on using
these models for POMDP planning tasks.
In order to model systems involving multi-modal, state-

dependent dynamics (such as on sand vs concrete), we create
a particular variant of an SSM that conditions the mode tran-
sitions on the previous continuous-state, similar to (Black-
more et al. 2007). Figure 1(b) displays a graphical model
of the dynamics model used in this paper, which can be ex-
pressed as

p(s′|s, a) =
∑

h

p(s′|s, m′ = h)p(m′ = h|s, a) (2)

where s, s′ are the continuous states at time t and t + 1 re-
spectively, a is the discrete action taken at time t, andm′ is
the discrete mode at time t+1. In this paper we will assume
that for each action a the hidden modem can take on one of
H values. Each mode value h and action a is associated with

(a) Typical SSM (b) Our Dynamics Model (c) Example of mode model
Figure 1: Switching State-Space Models

a linear Gaussian modelN (s′; ζhas + βha,σ2
ha). For math-

ematical convenience we model the conditional probability
of a mode taking on a particular value h given the previous
continuous-state s and action a using a weighted sum of F
Gaussians

p(m′ = h|s, a) =
F

∑

f=1

wfhaN (s; µfha,σ2

fha). (3)

This representation is slightly unusual since we are express-
ing the probability of a discrete variable m conditioned on
a continuous variable s. Note that for finiteH it is impossi-
ble to select the parameters wfha, µfha,σ2

fha such that the
sum of probability of the next mode state m′ taking on any
value for a given state s,

∑

h p(m′ = h|s, a), sums to 1
for all states s. Therefore in practice we will choose mod-
els that approximately sum to 1 over all the states of in-
terest in a particular experimental domain. We choose to
make this slightly awkward representational choice rather
than normalizing the distribution across modes (such as by
using a softmax function) because it allows closed form up-
dates of the belief state and value function, as will be shown
in the following sections. See figure 1(c) for an example
mode model p(m|s).
Substituting equation 3 into equation 2, the full dynamics

model is a sum of Gaussian products:

p(s′|s, a)=
H

∑

h=1

N (s′; ζhas+βha,σ
2

ha)
F

∑

f=1

wfhaN (s; µfha,σ2

fha).

An added benefit of this model is that it can flexibly repre-
sent relative transitions (transitions that are an offset from
the current state, by setting ζ &= 0) and absolute transitions
(transitions that go to some arbitrary global state, by setting
ζ = 0 and β &= 0). This allows the model to compactly rep-
resent domains in which many states share the same relative
or absolute transition dynamics.

4 Point-Based POMDP Planning with
Hybrid Models

We now describe a new planning algorithm for POMDPs
with hybrid dynamics models. Recently Porta et al. (Porta
et al. 2006) showed that for a continuous-state space S and
discrete actions A and observations Z , the optimal finite
horizon value function is piecewise linear and convex and
may be represented by a finite set of α-functions2. There-

2The expectation operator 〈f, b〉 is a linear function in the belief
space and the value function can be expressed as the maximum of
a set of these expectations: for details see (Porta et al. 2006).

fore point-based approaches to continuous state POMDPs
that exactly represent the α-functions will also provide a
lower bound on the value function. Porta et al.’s algorithm
provides an approximation of a lower bound on the value
function: our algorithm is inspired by theirs and handles
multi-modal state-dependent dynamics and formulates the
approximation step as a constrained optimization problem.
For clarity we will explain the mathematics for a one-

dimensional state space, but it is easily extended to higher
dimensions. We will assume that the reward model
r(s, a) and observation model p(z|s) are represented by
a weighted sum of Gaussians. To be precise, we as-
sume the reward function r(s, a) is expressed as a sum
of G Gaussian components for each action a, r(s, a) =
∑G

g=1
wagN (s; µag,σ2

ag), and each discrete observation
z ∈ Z is expressed as a sum of L Gaussian components
p(z|s) =

∑L
l=1

wzlN (s; µzl,σ2
zl) such that ∀s

∑

z p(z|s) =
1. Here we have assumed an observation model very
similar to the mode representation (equation 3) and the
same comments made for that choice apply here to the
observation model. We choose to represent the belief
states b and α-functions using weighted sums of Gaus-
sians. Each belief state b is a sum of D Gaussians b(s) =
∑D

d=1
wdN (s; µd,σ2

d), and each αj , the value function of
policy tree j, is represented by a set ofK Gaussians αj(s) =
∑

k wkN (s; µk,σ2
k). Recall that for each action a, there are

H modes and F Gaussian components per mode.
We do not lose expressive power by choosing this rep-

resentation because a weighted sum of a sufficient number
of Gaussians can approximate any continuous function on a
compact interval (and our domains of interest are closed and
bounded and therefore fulfill the criteria of being compact).
But, of course, we will be effectively limited in the number
of componentswe can employ, and so in practice our models
and solutions will both be approximations.

4.1 Belief Update and Value Function Back ups
Point-based POMDP planners must include a method for
backing up the value function at a particular belief b (as in
equation 1) and for updating the belief state b after a new ac-
tion a is taken and a new observation z is received. Choos-
ing a weighted sum of Gaussians representation allows both
computations to be performed in closed form.
The belief state is updated using a Bayesian filter:

ba,z=i(s) = p(s′|z = i, a, b)

∝ p(z = i|s′, a, b)p(s′|a, b)

= p(z = i|s′)p(s′|a, b)

where the last equality holds due to the Markov assump-
tion. We compute the update by substituting in the dy-
namics and observation models, and normalizing such that
∫

s
ba,z(s)ds = 1, yielding

ba,z=i(s) =
∑

dfhl

ddfhlN(s|µdfhl,σ
2

dfhl) .

Hence the representation of the belief as a mixture of Gaus-
sians is closed under belief update.
The other key computation is to be able to back up the

value function for a particular belief. Since we also use dis-
crete actions and observations, this can be expressed as a
slight modification to equation 1 by replacing sums with in-
tegrals and writing out the expectation:

Vt(b) =max
a∈A

∫

s∈S

R(s, a)b(s)ds + γ
∑

z∈Z

max
αazj

∫

s

αazjb(s)ds

=〈max
a∈A

R(s, a) + γ
∑

z∈Z

max
αazj

αazj , b〉

where we have used the inner-product operator 〈f, b〉 as
shorthand for expectation to obtain the second equality. As
stated previously, αazj is the α-function for the conditional
policy corresponding to taking action a, receiving observa-
tion z and then following the previous t− 1-step policy tree
αj , and can here be expressed as

αazj(s) =

∫

s′

αj,t−1(s
′)p(z|s′)p(s′|s, a)ds′.

Substituting in all the chosen representations yields

αazj(s) =

∫

s′

K
∑

k=1

wkN (s′; µk,σ2
k)

L
∑

l=1

wlN (s′; µl,σ
2
l). . .

H
∑

h=1

N (s′; ζhas + βha,σ2

ha)
F

∑

f=1

wfhaN (s; µfha,σ2

fha)ds′

=
F

∑

f=1

H
∑

h=1

K
∑

k=1

L
∑

l=1

wfhawkwlN (s; µfha,σ2

fha) . . .

∫

s′

N (s′; µk,σ2

k)N (s′; µl,σ
2

l)N (s′; ζhas + βha,σ2

ha)ds′.

To perform the integral we combine the three Gaussians in-
side the integrand into a single Gaussian which is a function
of s′ and other terms that are independent of s′. Integrating
over s′ yields

αazj =
F

∑

f=1

H
∑

h=1

K
∑

k=1

L
∑

l=1

wfhklN (s; µfhkl,σ
2

fhkl)

where
wfhkl = wfhawkwlN (sl; sk,σ2

k + σ2

l) . . .

N (µfha;
c − βha

γha
,σ2

fha +
C + σ2

ha

γ2
ha

),

C =
σ2

l σ
2
k

σ2
l σ

2
k

, µfhkl =
(C + σ2

ha)µfha + σ2
fhaγha(c − βha)

σ2
fha(C + σ2

ha)
,

σ2

fhkl =
σ2

fha(C + σ2
ha)

C + σ2
h + σ2

fhaγ
2
ha

, c =
µkσ2

l + σ2
kµl

σ2
l σ

2
k

.

The new αazj now has F × H × K × L components, com-
pared to the step t − 1 αj , policy tree, which only had K
components. To finish the value function backup, we substi-
tute αazj back into equation 4 and choose the policy tree α
that maximizes the future expected reward 〈α, b〉 of belief b

α(s) = max
a

R(s, a) + γ

|Z|
∑

z=1

max
αazj

αazj

= max
a

G
∑

g=1

N(s|µg,σ
2

g) + γ

|Z|
∑

z=1

max
αazj

αazj

Since all elements in this result are weighted sums of Gaus-
sians, the α function stays in closed form. Note that had we
utilized a softmax distribution for the observation model or
mode probabilities that it would not be possible to iteratively
perform the integrals in closed form.
Unfortunately, the number of Gaussian components in

a single α function has greatly increased: from K to
G + |Z|FHKL components. Compared to previous ap-
proaches (Porta et al. 2006) the new dynamics model has
introduced an extra factor of FH components. The num-
ber of components therefore scales exponentially in the time
horizon with base |Z|FHL.

4.2 Approximating the α functions
It is not computationally feasible to maintain all compo-
nents over multiple backups. Instead, by carefully combin-
ing the components generated after each backup, we main-
tain a bounded set of α functions. Since α functions repre-
sent the value of executing a particular policy tree over the
entire belief space, it is important to make the approximation
as close as possible throughout the belief space.3 To reduce
the number of components used to represent the belief states
and α functions, Porta et al. use a slight variant of Gold-
berger and Roweis’s method (Goldberger & Roweis 2005)
that minimizes the Kullback-Leibler (KL) distance between
the original model f(x) and the approximation f̃(x)

DKL(f ||f̃) =

∫

x

f(x) log
f(x)

f̃(x)
dx. (4)

However, the KL distance is not particularly appropriate as
a distance measure for quantities that are not probability dis-
tributions. It also can result in poor approximations in parts
of the space where the original function has small values
since if f(x) is zero then regardless of the value of f̃(x)
the distance for that x is always zero. An alternate distance
measure without these shortcomings is the L2 norm: a small
value means a good approximation α̃ of the value function
over the entire belief space.
The L2 norm, or sum squared error, between two

weighted sums of Gaussians is:

=
∫

s

[

∑M
i wiN (s; µi,σ2

i) −
∑N

j wjN (s; µj ,σ2
j)

]2

ds

3Ideally we could restrict this approximation to the reach-
able belief space; however analyzing the reachable belief space in
continuous-state POMDPs will be an area of future work.

=
∑M

i

∑M
i′ wiw′

iN (µi′ ; µi,σ2
i + σ2

i′) +
∑N

j

∑′N
j wjw′

jN (µj′ ; µj ,σ2
j + σ2

j′) −

2
∑N

j

∑M
i wjwiN (µi; µj ,σ2

j + σ2
i).

There is no analytic solution for the parameters wi, µi,σ2
i

that minimizes this expression, and numerical approaches
such as gradient descent are challenged by the high dimen-
sionality of the parameter space. However we can approxi-
mate this optimization using Zhang and Kwok’s recent work
on reducing the number components in kernel function mix-
ture models (Zhang & Kwok 2006). This work minimizes
an upper bound on the L2 norm by clustering the original
components into small groups, and fitting a single weighted
Gaussian to each group. More precisely, the L2 norm can be
upper bounded by a function of the L2 error of each cluster:

L2 ≤ M
M
∑

i=1

∫

wiN (s; µi,σ
2

i) −
∑

j∈Si

wjN (s; µj ,σ
2

j)

2

ds

where Si is the i-th cluster and M is the total number of
components in the approximation α̃. The parameter fitting
procedure is simplified from the general problem of gra-
dient descent by the clustering procedure. The complete
procedure can be performed iteratively, by creating clusters
through assigning all components in the original function to
their closest (in the L2 norm sense) component in the ap-
proximation, refitting a single component for each cluster,
and repeating.
Although the upper bound to the L2 norm can be easily

optimized, we would also like to constrain the exact L2 norm
error to be within some threshold. Therefore we formulate
our approximation step as a constrained optimization prob-
lem, using the objective function from Zhang and Kwok,
but requiring that the final approximation α̃ both lies below
a maximal L2 norm threshold, and contains no more than a
fixed maximum number of components,Mmax. This can be
stated mathematically as follows:

arg min
wi,µi,σ2

i
,M

M
M
∑

i=1

∫

wiN (s; µi,σ
2

i) −
∑

j∈Si

wjN (s; µj ,σ
2

j)

2

ds

s.t.||α̃− α||2 ≤ t & M ≤ Mmax

where t is L2 norm threshold.
We initialize the components of the approximation with

a random subset of the original components. The remain-
ing original components are then clustered to their closest
(in the L2 norm) component in the approximation, and then
a single component is refit for each cluster. In order to en-
sure the parameter initialization lies within the feasible re-
gion spanned by the constraints, we compute the L2 norm
of this initialization, and discard solutions that do not satisfy
the L2 norm constraint. Note that this also provides a prin-
cipled mechanism for selecting the number of components
constituting the approximation: the number of components

M in the approximation is increased until either an initial-
ization is found that lies within the feasible region of the
constraints, or M no longer satisfies the second constraint.
If both constraints cannot be satisfied,M is set toMmax.
Once the parameters are initialized and M is fixed, we

follow Zhang and Kwok’s procedure for optimizing.
For some problems it is computationally demanding to

even evaluate whether the L2 norm constraint has been vio-
lated. When the original number of componentsN is suffi-
ciently large, computing the component of the L2 norm aris-
ing from the product of the original α-function with itself
(an O(N2) computation) is very expensive. In this situation
we change the constraints of the problem to

〈α̃, b〉 − 〈αold, b〉 > 0 & M ≤ Mmax.

Recall that the value function α is being backed up for a
particular belief state b. A minimum requirement for the ap-
proximation α̃ is that the value of this belief under α̃ must
be greater than or equal to its value prior to the backup
〈αold, b〉, otherwise the approximation α̃ has failed to cap-
ture a new better policy for this belief state, and will not
be added to the pool of α-functions that represent the value
function. This quantity is fast to compute and serves as an al-
ternate constraint when computing the full L2 norm is com-
putationally intractable due to the size of N.

4.3 Planning
We now have the major components necessary to apply a
point-based approach to POMDP planning. First a set of be-
lief points B is selected by executing random actions from
an initial starting belief state b0. We initialize the value func-
tion as a single α function (see details below). Starting with
this initial α function, we iteratively perform value func-
tion backups for the chosen belief set B̃. Our point-based
approach closely matches Perseus (Spaan & Vlassis 2005)
which does not update all belief points at each round, and
maintains a fixed belief point set. Perseus operates by se-
lecting belief points randomly from B̃ and backing them up
until the newly constructed αt functions have improved or
maintained the previous Vt−1 value for all b ∈ B̃. Then all
previous αt−1 functions are discarded and only the new αt

functions created are used for the next backups round.

5 Experiments
To demonstrate the benefit of this approach we ran our
algorithm on two illustrative one-dimensional problems.
Both domains exhibit state-dependent dynamics single lin-
ear model. In the first example we motivate the need for
continuous-state representations by providing an example
where our continuous-state approach outperforms a discrete-
state POMDP solver on a task where the fine granularity
needed to perform well creates a very large discrete-state
space. In the second example we demonstrate the need for
hybrid models in order to handle tasks with multi-modal dy-
namics. In both examples the maximum number of com-
ponents allowed per α-function Mmax was 200 and the L2
norm threshold t was set at 10.

Figure 2: Multi-modal state-dependent dynamics of Jump.
A given mode’s probability (such as step left) varies over the
state space, and more than one mode is possible for a state.

5.1 Power Supply Hunting: Variable Resolution
Navigation

We first demonstrate that when fine resolution is required
to execute a good policy, the continuous-state approach can
outperform the discrete-state POMDP solver Perseus on a
task with state-dependent dynamics. Here a robot must nav-
igate a long corridor (s ∈ [-21,21]) to find a power socket
which is located at -16.2. The robot can move left or right
using small or large steps that transition it 0.1 or 5.0 over
from its current location plus Gaussian noise of standard de-
viation 0.01. If the robot tries to move too close to the left or
right wall it will bump into the wall. The robot can also try
to plug itself in, which leaves the robot at the same location.
All movement actions receive a reward of 0.05. If the robot
plugs itself in at the right location it receives a large positive
reward (modeled by a highly peaked Gaussian); otherwise it
receives a lesser reward of 5.8. The power supply lies be-
neath the robot sensors so the robot is effectively blind.
We compared three planning approaches for this task: a

discrete-state planner, a linear-model continuous-state plan-
ner, and our hybrid-model continuous-state planner. Our al-
gorithm and the linear-model continuous-state planner were
trained using 1000 belief points gathered by starting in a ran-
dom state s ∈ [−21, 21]with a Gaussian approximately uni-
form belief and acting randomly for episodes of 30 steps.
The robot can always achieve at least the reward associ-
ated with only executing PlugIn. Therefore we used the
PlugIn action reward function, scaled to account for infi-
nite actions and discounting (multiplied by 1/(1−γ)) as the
initial lower bound value function.
We created 4 resolutions of uniformly spaced grids of the

domain and used the discrete- state value iteration technique
Perseus to solve each discrete version of the task.
The value functions produced by each planner were tested

by computing the average reward received over 50 episodes
of 100 steps/episode using the policy associated with the α-
functions/vectors in the value function. At the start of each
episode the robot is placed at a state s that is chosen ran-
domly from the uniform distribution spanning [-19,19]. The
robot’s belief state is initialized to be a set of 4 high variance
Gaussians spanning the state space. See Table 1 for results.
Our hybrid model finds a good policy that involves tak-

ing big and small actions to first localize the belief (at the

Models Continuous-state Discretized (Number of States)
Linear Hybrid 840 1050 1155 1208 1260 1470 2100

Time(s) 112 2473 665 1261 1685 2751 2939 4155 19438
Reward 290 465* 290 290 290 510* 488* 488* 488*

Table 1: Power Supply Experiment Results. *No signifi-
cant difference as measured by 3 t-tests (p > 0.05) between
the rewards received from running the hybrid-planner policy
and the 3 discrete-state policies respectively.

wall) and then taking three more steps to reach the power
socket. The linear model continuous-state POMDP runs
faster but fails to find a good policy since it cannot model
the state-dependent dynamics near the wall edges, and there
are no unique observations. The discrete-state solutions does
poorly at coarse granularities since the PlugIn reward gets
washed out by averaging over the width of a too wide state.
At fine state granularities the discrete approach finds a good
policy but require more time: our continuous-state planner
finds a solution faster than the coarsest discrete-state planner
that can find a good solution. It is also important to note that
it is hard to determine a priori what level of discretization
is required for a discrete-state planner to find a good policy,
and choosing a conservatively fine discretization can result
in a substantially longer planning time.

5.2 Locomotion over Rough Terrain: Actions
with Bimodal Next State Distributions

Our second example presents a domain where the dynamics
are state-dependent and multi-modal, and therefore poorly
represented by a unimodal linear model. In robotic legged
locomotion over rough terrain (such as DARPA’s LittleDog
project) a robot may need to traverse an uneven rocky sur-
face to reach a goal location. Our example is inspired by
this problem. The robot starts on an initial flat surface and
must traverse an area with 4 rocks separated by sand to reach
a goal location. At each step the robot can attempt to step
forward or signal it is done. The robot is faulty and works
best on hard surfaces: at each step it may succeed in execut-
ing a step or stay in the same place. Figure 2 displays the
multi-modal state-dependent nature of the dynamics. The
robot is receives a relatively very low reward for stepping
into the sand, and a medium reward for each step on the
rocks. A Signal action results in a large reward if the robot
has reached the final location, and a small reward otherwise.
The observation model provides a noisy estimate of where
the robot is (sand, rock 1-4, start or finish).
We tested our hybrid model and a linear model that aver-

ages the bimodal distributions. The models were tested in
a manner similar to the prior experiment (except using 100
beliefs). The agent can always perform at least as well as
performing the Signal action forever so the Signal action
reward was used as an initial value function, scaled to ac-
count for discounting and performing the action indefinitely.
The following table displays the results:

Average Total Reward Received
Hybrid Model 8055.5
Linear Model 3452.3

Since the hybrid model can correctly represent that a step
from the initial platform will keep the robot on the platform
or move it to the first rock, it can find a good policy of re-
peatedly trying to step and will eventually reach the goal
platform. In contrast, the linear model performs poorly be-
cause its dynamics model leads it to believe that stepping
from the platform will result in landing in a relatively unde-
sirable and hard to escape sandpit. Instead the linear model
policy simply signals immediately.

6 Discussion and Future Work
Our preliminary experiments demonstrate that our approach
produces good plans in tasks not amenable to linear-model
continuous-state approaches. The approach also outper-
formed a discrete-state planning approach in a task requir-
ing a fine grained resolution. Our approach is unlikely to
perform well in domains with many extremely sharp transi-
tions in its dynamics model since this is expensive to model
using a weighted sum of Gaussians, and may be represented
using a discrete model.
In the future we intend to apply this approach to higher

dimensional problems, such as robotic legged locomotion.
We would also like to further investigate and refine the pa-
rameter settings and approach used to perform the approxi-
mation step, as well as to compare to more recent discrete-
state POMDP planners such as FSVI(Shani, Brafman, &
Shimony 2007). However, this representation has been suf-
ficient to demonstrate the potential value of using hybrid
models in a continuous-state POMDP framework for solv-
ing problems with nonlinear dynamics.

References
Blackmore, L.; Gil, S.; Chung, S.; and Williams, B.
2007. Model learning for switching linear systems with
autonomous mode transitions. In IEEE Conference on De-
cision and Control.
Brooks, A.; Makarenko, A.; Williams, S.; and Durrant-
Whyte, H. 2006. Parametric POMDPs for planning in
continuous state spaces. Robotics and Autonomous Sys-
tems.
Ghahramani, Z., and Hinton, G. 2000. Variational learn-
ing for switching state-space models. Neural Computation
12:831–864.
Goldberger, J., and Roweis, S. 2005. Hierarchical cluster-
ing of a mixture model. In NIPS.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence 101:99–134.
Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime
point-based approximations for large POMDPs. Journal of
Artificial Intelligence Research 27:335–380.
Porta, J.; Spaan, M.; Vlassis, N.; and Poupart, P. 2006.
Point-based value iteration for continuous POMDPs. Jour-
nal of Machine Learning Research 7:2329–2367.
Shani, G.; Brafman, R.; and Shimony, S. 2007. Forward
search value iteration for POMDPs. In IJCAI.

Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In UAI.
Sondik, E. J. 1971. The Optimal Control of Partially Ob-
servable Markov Processes. Ph.D. Dissertation, Stanford
University.
Spaan, M., and Vlassis, N. 2005. Perseus: Randomized
point-based value iteration for POMDPs. Journal of Artifi-
cial Intelligence Research 24:195–220.
Thrun, S. 2000. Monte carlo POMDPs. In NIPS.
Zhang, K., and Kwok, J. 2006. Simplifying mixture mod-
els through function approximation. In NIPS.
Zhang, N., and Zhang, W. 2001. Speeding up the con-
vergence of value iteration in partially observable markov
decision processes. Journal of Artificial Intelligence Re-
search 14:29–51.

