
Rotamer Optimization for Protein Design through MAP
Estimation and Problem-Size Reduction

EUN-JONG HONG,1,2 SHAUN M. LIPPOW,1,3∗ BRUCE TIDOR,1,2,4 TOMÁS LOZANO-PÉREZ1,2

1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

2Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139

3Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

4Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

Received 27 February 2008; Revised 22 September 2008; Accepted 10 November 2008
DOI 10.1002/jcc.21188

Published online 2 January 2009 in Wiley InterScience (www.interscience.wiley.com).

Abstract: The search for the global minimum energy conformation (GMEC) of protein side chains is an important
computational challenge in protein structure prediction and design. Using rotamer models, the problem is formulated as
a NP-hard optimization problem. Dead-end elimination (DEE) methods combined with systematic A∗ search (DEE/A∗)
has proven useful, but may not be strong enough as we attempt to solve protein design problems where a large number of
similar rotamers is eligible and the network of interactions between residues is dense. In this work, we present an exact
solution method, named BroMAP (branch-and-bound rotamer optimization using MAP estimation), for such protein
design problems. The design goal of BroMAP is to be able to expand smaller search trees than conventional branch-and-
bound methods while performing only a moderate amount of computation in each node, thereby reducing the total running
time. To achieve that, BroMAP attempts reduction of the problem size within each node through DEE and elimination
by lower bounds from approximate maximum-a-posteriori (MAP) estimation. The lower bounds are also exploited in
branching and subproblem selection for fast discovery of strong upper bounds. Our computational results show that
BroMAP tends to be faster than DEE/A∗ for large protein design cases. BroMAP also solved cases that were not solved by
DEE/A∗ within the maximum allowed time, and did not incur significant disadvantage for cases where DEE/A∗ performed
well. Therefore, BroMAP is particularly applicable to large protein design problems where DEE/A∗ struggles and can
also substitute for DEE/A∗ in general GMEC search.

© 2009 Wiley Periodicals, Inc. J Comput Chem 30: 1923–1945, 2009

Key words: dead-end elimination; side-chain placement; branch-and-bound; protein design; combinatorial
optimization; global minimum energy conformation; maximum-a-posteriori estimation

Introduction

Determining low-energy placements for side chains on a fixed
backbone is an important problem in both protein structure
prediction and protein design. A typical approach to the pro-
tein structure prediction is homology modeling1–3 followed by
refinement of the model through determination of the side-
chain conformations. Determining the side-chain conformation
for a given backbone structure and an amino acid sequence
is called “side-chain placement” and is solved through find-
ing the minimum energy conformation. In addition, in protein
design problems, also referred as the “inverse folding problem”,4–6

an amino acid sequence that will stably fold to the target

backbone structure is to be found. Given a backbone structure and
energy functions, the protein design problem is also solved as a
generalized side-chain placement problem, that is, by finding the
minimum energy conformation of side chains, drawing from a range
of amino acid types at each residue position.7, 8 If the backbone struc-
ture is not assumed to be fixed, one can still design with a flexible
backbone by using iterative steps, where a side-chain placement

∗Present address: Codon Devices, Inc., One Kendall Square, Building 300,
Cambridge, Massachusetts 02139.

Correspondence to: T. Lozano-Pérez; e-mail: tlp@csail.mit.edu

© 2009 Wiley Periodicals, Inc.

1924 Hong et al. • Vol. 30, No. 12 • Journal of Computational Chemistry

problem is solved for each perturbed fixed backbone structure.9

The search for the minimum energy conformation is, therefore, one
of the most important computational challenges in computational
protein design.

In finding the minimum energy conformation, the search space
can be simplified by allowing only some finite number of fixed side-
chain conformations, called rotamers.10, 11 With the rotamer model,
the energy function of a protein sequence folded onto a specific
backbone template can be described in terms of:12

1. the self-energy of the backbone template from the interactions
within the backbone [denoted as Etemplate];

2. the singleton interaction energy between the backbone and
rotamer conformation r at position i of the sequence [denoted
as E(ir)];

3. the pairwise interaction energy between rotamer conformation
r at position i and rotamer conformation s at position j, i "= j
[denoted as E(ir , js)].

Then, the energy of a protein sequence of length n in a
specific backbone template structure and conformation C =
{C1, . . . , Cn|Ci is the conformation of position i} can be written in
a functional form as

E(C) = Etemplate +
n∑

i=1

E(Ci) +
n−1∑

i=1

n∑

j=i+1

E(Ci, Cj). (1)

Energy terms E(ir) and E(ir , js) can be computed for a given back-
bone template and the set of allowed rotamers using coordinates of
atoms and specified molecular force fields, such as AMBER,13–15

CHARMM,16, 17 MMFF,18 or OPLS.19 The conformation C that
minimizes the energy function E(C) is often called the global min-
imum energy conformation (GMEC). In this work, we consider the
problem of finding the GMEC when given a backbone conforma-
tion, a set of rotamers, and energy terms, and call such a problem
“the GMEC problem”. Note that Etemplate is constant by definition
and can be ignored when we minimize E(C).

The GMEC problem is a strongly NP-hard optimization prob-
lem as one can readily show by reduction from the satisfiability
problem.20 Despite the theoretical hardness, one finds that many
instances of the GMEC problem are easily solved by the exact
method of dead-end elimination (DEE).12 Elimination procedures
such as Goldstein’s conditions and unification,21 logical singles-
pairs elimination,22 the magic bullet pairs heuristic,23 splitting,24

generalized elimination conditions,25 hybrid optimization through
scheduling of various elimination conditions,26 and more recently
divide-and-conquer enhancement to DEE27 are often able to reduce
the problem size dramatically, while demanding only reasonable
computational power.

Other than DEE, there exist various approaches to solve the
GMEC problem exactly. Leach and Lemon,28 Gordon and Mayo,29

and Wernisch et al.30 describe a branch-and-bound method. Eriks-
son et al.,31 Althaus et al.,32 and Kingsford et al.33 present integer
linear programming approaches. Leaver-Fay et al.34 describe a
dynamic programming approach based on tree-decomposition. Xu35

describes another method based on tree-decomposition and presents
a tree-decomposition algorithm for protein backbone structures. Xie

and Sahinidis36 describe a method that combines several residue-
reduction and rotamer-reduction techniques. Yanover et al.37 use
a tree-reweighted belief propagation algorithm as a linear-program
solver with better scalability, and Weiss et al.38 extend this approach
by suggesting a search scheme for an integral solution when the solu-
tion of the linear program is fractional. Each exact approach may
have some advantages over others depending on the characteris-
tics of the problem being considered. For example, for a simplified
version of the problem where the number of rotamers per posi-
tion is limited or interactions between residue positions are sparse,
even deterministic algorithms with guaranteed time bounds exist.
However, it is known that protein structures and stabilities can be
predicted better with more side-chain flexibility, that is, by using a
larger rotamer library.39, 40 In addition, the network of interactions
between residue positions can be dense as is often observed in pro-
tein cores. Therefore, we are interested in protein design problems
where all possible pairs of positions are assumed to interact and
a large number of similar rotamers is offered at each position. To
our knowledge, only DEE-like methods or DEE followed by branch-
and-bound methods have shown success in solving such hard protein
design cases exactly.

There also exist approximate approaches for the GMEC prob-
lem. Koehl and Delarue41 present the self-consistent mean field
theory. Desjarlais and Handel42 and Jones43 use genetic algorithms.
Jiang et al.44 use simulated annealing and Monte Carlo sampling.
Wernisch et al.30 describe a heuristic for protein design. Yanover
and Weiss45 use belief-propagation methods. However, inaccuracy
during GMEC search may introduce uncertainty in the analysis step
where correction of energy functions or modification of the design
protocol is to be made. Therefore, we are primarily interested in
finding the exact GMEC and will not further consider approximate
methods in this work.

Enhanced DEE26 performs well for some of the hard protein
design cases of interest to us. However, finding dead-ends using the
known elimination conditions does not always eliminate as many
rotamers or rotamer pairs as necessary. In case the remaining con-
formational space after DEE application is too large to literally
enumerate, a systematic search method such as A∗ algorithm28, 46

is often followed to find the GMEC (call the combined method
DEE/A∗). However, such a combined scheme will not be useful
unless DEE reduces the size of conformational space to the point
where a systematic search is applicable.

Here we describe a new exact solution method for the GMEC
problem that can substitute for DEE/A∗, especially in solving
hard design cases. Our method, named BroMAP (branch-and-
bound rotamer optimization using MAP estimation), is based on
the branch-and-bound (BnB) framework and a new subproblem-
pruning method. We present lower-bounding methods and problem-
size reduction techniques, organized into a BnB framework, so that
BroMAP is guaranteed to find an optimal solution.

Our numerical experiments confirm the utility of BroMAP in
GMEC search for large protein design problems, including ones that
are challenging for DEE/A∗. In our experiments, all cases solved by
DEE/A∗ were also solved by BroMAP, and using BroMAP did not
incur significant disadvantage over DEE/A∗. Moreover, BroMAP
excelled on the cases where DEE/A∗ did not perform well; for each
case, which took longer than one hour but was eventually solved by

Journal of Computational Chemistry DOI 10.1002/jcc

Rotamer Optimization for Protein Design 1925

Figure 1. Top branch-and-bound framework of BroMAP. In the search tree, node numbers (inside the
ellipses) correspond to the order of subproblem creation. Numbers shown next to ellipses represent the
order of node expansion. Labels “low” and “high” marked on the branches indicate the types of child
subproblems. As shown by the diagram in the middle, each subproblem is another instance of the GMEC
problem; the ellipses represent the residue positions in the subproblem, and the filled dots represent available
rotamer choices at each position. The lines connecting rotamers at different positions represent possible
interactions between pairs of rotamers. The text box on the right side lists types of computations executed
when a node is expanded.

DEE/A∗, BroMAP took at most 33% of the DEE/A∗ running time.
Among 68 test cases of various types and sizes, we found BroMAP
failed to solve three cases within the 7-day allowed time whereas
DEE/A∗ failed to solve 17 of them.

Compared with DEE, BroMAP has an advantage that it can
attack smaller subproblems separately using various problem-size
reduction or lower-bounding techniques instead of having to keep
the problem as a whole. Meanwhile, the use of DEE as one of the
problem-size reduction techniques in BroMAP allows the strengths
of DEE for protein design problems to be transferred to BroMAP.

BroMAP has the advantage of reducing the search trees over
conventional BnB approaches in two ways. First, it uses problem-
size reduction techniques within each node so that the effect of
problem-size reduction from branching is often larger than that
of a conventional BnB method. Hence, the depth of the result-
ing search tree is also smaller. Second, it quickly finds a strong
upper-bound (at the end of the first depth-first dive) with the help
of informed branching and subproblem selection. This facilitates
effective pruning of nodes that follow, and therefore often results
in sparse search trees growing mostly in one direction. BroMAP
achieves these advantages without excessive computation by using
new inexpensive lower-bounding methods and limiting the effort
spent by bounding or problem-size reduction.

Followings are the contributions made in this work:

1. Development of lower-bounding methods for minimum confor-
mation energy of individual rotamers and rotamer pairs using a
maximum-a-posteriori estimation method called tree-reweighted
max-product algorithm47;

2. Adoption of problem-size reduction techniques (DEE and elim-
ination by lower-bounds) within the BnB framework;

3. Use of rotamer lower-bounds in branching and subproblem
selection for fast discovery of strong upper-bounds;

4. Extensive evaluation of BroMAP and DEE/A∗ on various types
and sizes of protein design problems.

Overview of the Method

In this section, we present an overview of BroMAP in a top-down
manner. We start with a brief description of the branch-and-bound
method as the framework of BroMAP. Then, the pruning scheme
used by BroMAP is discussed in more detail.

Branch-and-Bound Framework

Figure 1 shows an overview of BroMAP. It is organized at the top
level as a branch-and-bound method (BnB), a general problem-
solving technique particularly effective for combinatorial prob-
lems.48 The basic idea of BnB is to partition the original problem
recursively and solve these smaller subproblems. In the resulting
search tree, each subproblem is another instance of the GMEC prob-
lem, with a different number of rotamers or residue positions from
the original problem at the root node.

BnB solves the GMEC problem as a kind of tree search problem.
It maintains a global upper-bound U, which is the energy of the best
conformation found so far. The initial value of U is set to the energy
of an arbitrary conformation. BroMAP can be recursively described
as follows:

1. Select a subproblem from the queue.
2. Can the subproblem be fully solved within limited time and mem-

ory? If so, (a) compute the minimum energy; (b) set U to the
minimum energy if it is less than U; (c) return to step 1.

Journal of Computational Chemistry DOI 10.1002/jcc

1926 Hong et al. • Vol. 30, No. 12 • Journal of Computational Chemistry

Figure 2. Splitting a subproblem. Rotamers at a position are divided
into two groups and each child of the subproblem takes only one group
of rotamers.

3. Compute a lower bound and an upper bound on the minimum
energy for this subproblem. If the upper bound is less than U, set
U to the upper bound.

4. If the lower bound exceeds the current global upper-bound U,
then discard (prune) this subproblem and return to step 1.

5. When possible, exclude ineligible conformations from the search
space.

6. Pick one residue and split its rotamers into two groups; define
two child subproblems based on this split (see Fig. 2).

7. Add the child subproblems to the queue and return to step 1.

A node is said to be “expanded” (i.e. processed) by steps 2 to
7. This description leaves many details unspecified: how to attempt
solutions, how to obtain bounds, how to identify ineligible confor-
mations, how to choose the residue and rotamers for the node split,
and what order to solve the subproblems. We provide these details
in the subsequent sections.

The key advantage of BnB over naive enumeration-based meth-
ods comes from being able to approximately solve subproblems,
that is, to obtain bounds on the answer that allow many sub-
problems to be pruned, thus avoiding exploration of the entire
solution space. If the bounds are weak, BnB may end up generating
too many subproblems to be effective. The purpose of branch-
ing in a BnB method is to reduce the size of the subproblems so
that they can be either solved or pruned effectively with limited
resources.

In our BnB formulation, the branching rule (splitting the
rotamers of a residue) only brings about a modest reduction in
the search space of each child subproblem compared to its par-
ent subproblem. Furthermore, there is no net reduction in the total
search space when one considers both children. A critical compo-
nent of our approach is to reduce the size of the total search space,
by eliminating ineligible conformations, before splitting. This is
in the spirit of the dead-end elimination algorithm or “branch-and-
terminate”29 but employing additional elimination by our new lower
bounds.

Solving Subproblems

There are two well-known approaches to solving the GMEC prob-
lem exactly. One is DEE12, 21, 24 and the other is integer linear
programming (ILP).48 Both of these methods are guaranteed to
solve the GMEC problem given unbounded resources but have
unpredictable running times as a function of the problem size.

DEE is an iterative method that eliminates a non-GMEC rotamer
by comparing its energetics with those of other rotamers at the same
position. The same rules are also applied to eliminate rotamer pairs.
When a rotamer can be eliminated from consideration, this can be
represented by reducing the set of rotamers at a residue position.
Eliminated rotamer pairs, on the other hand, are tracked via “pair
flags”, which indicate ineligible assignments for pairs of positions.
When the numerical properties of the energy terms are favorable
or when the problem size is relatively small, DEE successfully
eliminates many non-GMEC rotamers or rotamer pairs so that the
GMEC can be easily found from the remaining small conformational
space. In general, we will need to perform a systematic search of
the remaining conformational space; the A∗ heuristic search algo-
rithm46 is usually used for this purpose. However, DEE may fail to
reduce the size of the conformational space to the point where it is
practical to search for the GMEC using A∗. This is what motivates
our BnB approach.

ILP is a popular approach to solving combinatorial optimiza-
tion problems but we have found that direct application of general
ILP solvers to protein design problems is generally impractical (see
Appendix B). Furthermore, as we discuss below, DEE has the addi-
tional advantage of reducing the size of the conformational space at
each subproblem, even when it fails to completely solve the subprob-
lem. Therefore, we have used a DEE-based solver as our method
for solving subproblems.

Bounding Subproblems

In addition to completely solving subproblems, we also need a way
of obtaining lower bounds to prune nodes more efficiently. The
classical approach for obtaining bounds for a combinatorial opti-
mization problem is via the relaxation to linear programming (LP)
after formulating the problem as ILP. For example, we obtain LP
by treating the integer-valued variables in the ILP formulation of
the GMEC problem, i.e. eqs. (B1)–(B5) of Appendix B, as real.
Although LP problems are solvable in polynomial time, it is still
the case that the LP problems resulting from the relaxation of typ-
ical protein design problems are often too large and thus require
impractical amounts of computing time and memory.

The less expensive lower-bounding method that we use in this
work is the tree-reweighted max-product algorithm (TRMP),47

which will be introduced later in this paper. TRMP lower bounds
are known to be no better than the LP lower bounds, and there are
no guarantees of how close to the LP bound a TRMP bound will
be. However, the relatively low computational cost and its good
performance in practice makes TRMP an excellent lower-bounding
tool.

Another key advantage of TRMP is that, like DEE, it can be
used to compute lower-bounds for parts of the conformational space
efficiently and to eliminate them as discussed below.

Journal of Computational Chemistry DOI 10.1002/jcc

Rotamer Optimization for Protein Design 1927

Figure 3. Elimination by rotamer lower bounds. The x-axis lists all rotamers of the subproblem in an
arbitrary order. The vertical dotted lines indicate division of rotamers by positions they belong to. Two
types of y-values are plotted for each rotamer ir : (1) minimum energy that a conformation including ir
can have, (2) a lower bound of (1) obtained by a lower-bounding method. Three horizontal lines are also
depicted, each representing (a) an upper bound U, (b) the optimal value of the subproblem, (c) a lower bound
of (b) obtained from the same lower-bounding method. Rotamers that can be eliminated by comparison
against U are indicated by filled triangles.

On the other hand, the upper bounds are also obtained by TRMP
for the subproblems that are not exactly solved. This is based on a
heuristic use of TRMP, but often produces stronger upper bounds
than random sampling of conformations. We present the details on
upper-bounding by TRMP later in the article.

Reducing Subproblem Size

As we mentioned earlier, a critical component of our BnB method-
ology is that we attempt to reduce the size of the search space for
each subproblem by removing ineligible conformations. Smaller
subproblems are easier to solve and to bound. We use two tech-
niques to accomplish this: DEE discussed above and elimination
by lower bounds. The latter is illustrated in Figure 3 and discussed
below.

For each rotamer r at an arbitrary position i, we can think of
an assignment of rotamers in other positions such that no other
assignment can give a lower conformational energy when position i
is fixed to r. We call the energy corresponding to such an assignment
the minimum conformational energy of ir . Similarly, we can define
the minimum conformational energy for an arbitrary pair of rotamers
(ir , js) such that i "= j.

Suppose we know a lower-bound L(ir) of the minimum con-
formational energy of ir and a global upper-bound U such that
L(ir) > U. Then, rotamer ir can be eliminated from the sub-
problem without affecting whether the subproblem is prunable
or not. Similarly, if we have a lower bound of the minimum
conformational energy of a rotamer pair greater than U, the
rotamer pair can also be eliminated. Figure 4 illustrates the
problem-size reduction by elimination of rotamers and rotamer
pairs.

The problem is obtaining useful lower bounds for each rotamer
or rotamer pair. If we use LP relaxation, we would need to solve
LP problems as many times as the number of rotamers or rotamer
pairs, and each LP problem can be still very large. A more practical
solution follows from the theoretical properties of TRMP, which
allow us to obtain the lower bounds for all rotamers and rotamer

pairs in one TRMP convergence plus post-processing time at most
cubic of the number of rotamers. We will discuss how we can obtain
these lower bounds using TRMP later in the paper.

When a rotamer pair is eliminated by a TRMP lower bound, we
mark the rotamer pair with a pair flag, as done in DEE. However,
such a pair flag is more general than the pair flags used in con-
ventional DEE since the elimination is done relative to the current
global upper-bound U. Thus, it is possible for TRMP to flag rotamer
pairs belonging to the minimum energy conformation of the sub-
problem in case the optimal value of the subproblem is greater than
U. When this happens, the optimal value of the subproblem after
the elimination can be greater than before the elimination. How-
ever, if the optimal value is less than or equal to U, elimination by
lower bounds is guaranteed to produce reduced subproblems with
unchanged optimal value.

If enough pairs are eliminated by TRMP lower bounding, it may
be that some positions may not have any remaining valid assign-
ments. In this situation, the whole subproblem is infeasible and can
be pruned.

Conventional DEE never flags rotamer pairs that belong to the
minimum energy conformation. Therefore, the interaction of DEE
with these general pair flags should be carefully considered to avoid
illegal elimination by DEE. In our work, this is done by numer-
ically enforcing the pair flags, that is, by replacing the pair flags
with very large (artificial) pairwise energies. This guarantees cor-
rect elimination by DEE conditions based on energy comparison
(e.g. Goldstein’s conditions). Meanwhile, when logical elimination
is attempted (e.g. logical singles-pairs elimination or unification),
general pair flags are used as if they are conventional pair flags.

Note that we use elimination by lower bounds together with
the modified DEE in each node of the search tree. In a previous
work,29 lower bounds were used in the BnB framework to “termi-
nate” singles, but DEE is only used as a preprocessing procedure
before applying the BnB method. In another work,26 elimination by
lower bounds was applied in conjunction with DEE to the whole
problem, but no branching was used. The lower bounds used there
were also computed differently, by fixing conformations for a subset

Journal of Computational Chemistry DOI 10.1002/jcc

1928 Hong et al. • Vol. 30, No. 12 • Journal of Computational Chemistry

Figure 4. Reduction by elimination of rotamers and rotamer pairs. Although elimination of rotamers brings
explicit reduction of the problem size, elimination of rotamer pairs will be implicitly represented by pair
flags. Rotamer eliminations in (c) were made consistent with bounds of Figure 3. (a) Original subproblem.
(b) Rotamer-pair elimination. (c) Rotamer elimination.

of positions and finding minimum values over decomposed sets of
positions.

Subproblem Splitting and Selection

Our strategy of subproblem selection is depth-first search (DFS),
where one selects the deepest subproblem to expand, breaking ties
by choosing the node with the smallest lower bound. The goal is to
first find a good upper-bound by following DFS through the children
with the lower bounds, then to prune the remaining subproblems
using that upper-bound. To implement this strategy, we need to split
subproblems so that they have substantially different lower bounds.

As discussed earlier, we can compute inexpensive lower bounds
for individual rotamers by TRMP. Therefore, we can split a sub-
problem by dividing rotamers of a selected position into two groups
according to their rotamer lower bounds, so that the maximum
rotamer lower bound of one group is less than or equal to the min-
imum rotamer lower bound of the other group. We call the child
from the former group “the low child” and the other as “the high
child”. The low child is more likely to have an optimal value less
than that of the high child. A splitting position is selected so that
difference between maximum and minimum rotamer lower bounds
is large. This splitting scheme will also tend to make the high child
easier to prune than the low child.

The leftmost diagram in Figure 1 illustrates our subproblem
selection strategy. We can see that the tree first grows along the
line of low-subproblems then the high-subproblems are traversed.
We call the DFS along all low-branches until the first leaf node is
reached as “the first depth-first dive”. If the splitting is successful
and nonoptimal nodes are pruned effectively, the search tree should
be highly skewed toward low-branches.

Bounding the GMEC Energy through MAP Estimation
In this section, we formulate the GMEC problem as a maximum-
a-posteriori (MAP) estimation problem and introduce the MAP
estimation method, particularly TRMP, as a lower-bounding tool
for the GMEC energy.

Problem Formulation

Probabilistic inference problems,49 including the MAP estimation
problem, involve a random vector x = (x1, x2, . . . , xn) characterized

by a probability distribution that maps a sample x ∈ X to a prob-
ability p(x). The MAP estimation problem asks to find a MAP
assignment x∗ such that x∗ ∈ arg maxx∈X p(x), where X is the
sample space for x. In the GMEC problem, we number the sequence
positions by i = 1, . . . , n, and associate with each position i a dis-
crete random variable xi that ranges over Ri, a set of allowed rotamers
at position i. Then, we can define a probability distribution p(x) over
X = R1 × · · · × Rn as

p(x) = 1
Z

exp{−e(x)}, (2)

for a normalization constant Z and e(x) = ∑n
i=1 ei(xi) +∑n−1

i=1
∑n

j=i+1 eij(xi, xj), where ei(r) = E(ir) for r ∈ Ri, and
eij(r, s) = E(ir js) for (r, s) ∈ Ri×Rj . Therefore, the GMEC problem
for minimizing e(x) is equivalent to the MAP estimation problem
for p(x), that is, the assignment that maximizes the probability
minimizes the energy. Note that the value of Z is conventionally
determined so that

∑
x∈X p(x) = 1. However, computing the exact

value of Z that satisfies this condition is not necessary in finding the
MAP assignment of p(x) because 1/Z simply scales the exponen-
tial function of eq. (2). We will see later that our algorithm does not
depend on the value of Z .

A probability distribution over a random vector can be related
to a graphical model.49 An undirected graphical model G = (V , E)

consists of a set of vertices V that represent random variables and
a set of edges E connecting some pairs of vertices. The structure
of a graphical model is determined by conditional independencies
among the random variables. That is, a probability distribution p(x)

can be represented by an undirected graphical model G if p(x) can
be factorized into non-negative functions (called compatibility func-
tions), each of which is defined over variables in a clique of G. The
typical motivation for using the graphical model is finding as sim-
ple a model as possible that captures conditional independencies
among variables. However, we generally consider a complete graph
with n vertices as the graphical model for the GMEC problem, that
is, the protein design problems we are interested in have molecular
interactions between every pair of positions.

Journal of Computational Chemistry DOI 10.1002/jcc

Rotamer Optimization for Protein Design 1929

In the following sections, we will often describe distributions by
their associated graphical model; for example, a “tree distribution”
refers to a distribution represented by a tree graphical model.

Max-Marginals and Max-Product Algorithm

Wainwright et al.50 define (singleton) max-marginals µi as the max-
imum of p(x) when one of the variables xi is constrained to a specific
value, i.e. µi(xi) = κi max{x′|x′

i=xi} p(x′). Similarly, pairwise max-
marginals µij are defined as µij(xi, xj) = κij max{x′|x′

i=xi ,x′
j=xj} p(x′),

the maximum of p(x) when a pair of the variables are constrained
to a specific pair of values. Note that κi and κij are constants
that can vary depending on i and j. Hereafter, we will simply
denote all the constants as κ . It is known that any tree distri-
bution p(x) can be factorized in terms of its max-marginals as
p(x) ∝ ∏

i∈V µi(xi)
∏

(i,j)∈E
µij(xi ,xj)

µi(xi)µj(xj)
.49 If we knew the max-

marginals of a tree distribution p(x), we could easily compute the
maximum value of p(x).

Example 1. (Max-marginals).50 Let x ∈ {0, 1}3 be a random
vector defined by a graphical model of Figure 5 and compatibility
functions ψ such that

ψi(xi) = 1, for all xi ∈ {0, 1} and i ∈ {1, 2, 3}, (3)

and

ψij(xi, xj) =
{

1 if xi = xj

4 otherwise
for all (i, j) ∈ {(1, 2), (2, 3)}. (4)

That is, p(x) = 1
50 ψ1(x1)ψ2(x2)ψ3(x3)ψ12(x1, x2)ψ23(x2, x3).

Then, it is easy to verify max{x′|x′
1=x1} p(x′) = 42/50 for all x1 ∈

{0, 1}. Therefore, we can define max-marginals µ1(x1) = 1 for all
x1 ∈ {0, 1}, i.e. max{x′|x′

1=x1} p(x′) = 42

50 µ1(x1) and κ1 = 50
42 . Since

µ2(x2) and µ3(x3) can be defined similarly, we obtain µi(xi) = 1
for all xi ∈ {0, 1} and i ∈ {1, 2, 3}.

Likewise, we can verify max{x′|(x′
1,x′

2)=(x1,x2)} p(x′) is 4/50 if x1 =
x2, and 42/50 otherwise. Since we obtain the same result when
maximizing under fixed (x2, x3) values, we can define µij(xi, xj) as

µij(xi, xj) =
{

1 if xi = xj

4 otherwise
for all (i, j) ∈ (1, 2), (2, 3). (5)

i.e. max{x′|(x′
i ,x

′
j)=(xi ,xj)} p(x′) = 4

50 µij(xi, xj) and κij = 50
4 .

In this example, we realize µi(xi) = ψi(xi) and µij(xi, xj) =
ψij(xi, xj) for all i, j, and also µij(xi, xj) = ψij(xi, xj)ψi(xi)ψj(xj).
This makes us easily verify that p(x) is factorized by max-marginals:

p(x) = 1
50

ψ1(x1)ψ2(x2)ψ3(x3)

× ψ12(x1, x2)ψ1(x1)ψ2(x2)

ψ1(x1)ψ2(x2)

ψ23(x2, x3)ψ2(x2)ψ3(x3)

ψ2(x2)ψ3(x3)
(6)

= 1
50

µ1(x1)µ2(x2)µ3(x3)
µ12(x1, x2)

µ1(x1)µ2(x2)

µ23(x2, x3)

µ2(x2)µ3(x3)
. (7)

Figure 5. The diagram shows the graphical model and pairwise com-
patibility functions ψ12(x1, x2) and ψ23(x2, x3) of the distribution used
in Example 1.

Now, assume that we are given p(x) for every x, and the max-
marginals {µi, µij}. We illustrate how max-marginals can be used
to compute maxx p(x). We know p(x) = 1

Y µ1(x1)µ2(x2)µ3(x3)
µ12(x1,x2)

µ1(x1)µ2(x2)
µ23(x2,x3)

µ2(x2)µ3(x3)
for some Y . The value of Y can be easily

computed by comparing both sides of the equation for some spe-
cific assignment, e.g. (0, 0, 0). In this example, we obtain Y = 50
as shown in eq. (7). Assuming x∗ is a MAP assignment, we have

max
x

p(x) = p(x∗) = 1
50

µ1
(
x∗

1

)
µ2

(
x∗

2

)
µ3

(
x∗

3

) µ12
(
x∗

1 , x∗
2

)

µ1
(
x∗

1

)
µ2

(
x∗

2

)

× µ23
(
x∗

2 , x∗
3

)

µ2
(
x∗

2

)
µ3

(
x∗

3

) . (8)

Since we know x∗
i and (x∗

i , x∗
j) should be a maximizer of µi(xi)

and µij(xi, xj), respectively, the maximum value of p(x) can be
obtained simply by finding the maximum value of each µi(xi)

and µij(xi, xj) without needing to find the actual assignment x∗.
Therefore, maxx p(x) = 42/50.

Max-marginals are also useful in finding a MAP assignment for
a tree distribution.50 We can easily determine a MAP assignment
value for the root node of the tree by finding a value that maximizes
the singleton max-marginals of the root. Then, the MAP assignment
is determined for the rest of the nodes in the order of tree traversal
from the root to leaves; for each pair of parent and child nodes and a
given assignment for the parent node, the child node assignment is
a value that maximizes the corresponding pairwise max-marginals.

For a distribution over a nontree (cyclic) graphical model, know-
ing the exact max-marginals does not necessarily imply a MAP
assignment or the maximum value of p(x) can be easily found. There
are special cases that allow efficient computation of MAP assign-
ments for cyclic distributions using max-marginals. For example,
when each singleton max-marginals factor has a unique maximizer,
the assignment consisting of these maximizers is the unique MAP
assignment. More generally, an assignment that maximizes every
max-marginals factor of the distribution is a MAP assignment.47

Such an assignment can be more efficiently found by restricting the
search to a subgraph derived from singleton factors that have mul-
tiple maximizers.38 However, this search is still very large in case
there are many maximizers of each singleton max-marginals factor
and the subgraph is densely connected.

The ordinary max-product (also known as max-plus or min-
sum) algorithm49 is an iterative algorithm that estimates a MAP

Journal of Computational Chemistry DOI 10.1002/jcc

1930 Hong et al. • Vol. 30, No. 12 • Journal of Computational Chemistry

assignment by propagating a series of messages along the edges
of the graphical model. The algorithm exactly computes a MAP
assignment for tree distributions, but it does not guarantee finding
one for cyclic distributions. It is known that the ordinary max-
product algorithm applied to a tree distribution can be interpreted
as computing max-marginals exactly and efficiently.50 For general
cyclic distributions, there is no known method that efficiently com-
putes max-marginals; it can be as expensive as the original MAP
estimation problem.

Pseudo-Max-Marginals

Instead of attempting to compute max-marginals, Wainwright
et al.47 used the notion of pseudo-max-marginals in their tree-
reweighted max-product (message-passing) algorithm. Pseudo-
max-marginals are defined so that they become max-marginals
for each tree distribution used in the algorithm, and the original
distribution is represented as a convex combination of these tree
distributions.

The basic idea of the tree-reweighted max-product algorithm is
to express a cyclic distribution as a convex combination of distribu-
tions over a set of spanning trees. This convex combination of tree
distributions is used to upper bound the MAP probability, that is, to
lower bound the energy. It can be shown that the upper bound is tight
if and only if every tree distribution shares a common MAP con-
figuration, i.e. tree agreement.47 The tree-reweighted max-product
algorithm tries to induce this tree agreement by factorizing each tree
distribution with factors called pseudo-max-marginals and having
pseudo-max-marginals converge to the max-marginals of each tree
distribution.

Let us assume we use the tree-reweighted max-product algo-
rithm with T , a set of spanning trees of G, and some non-negative
constant ρ(T) for each T ∈ T such that

∑
T∈T ρ(T) = 1. The

tree-reweighted max-product algorithm requires that every vertex
and edge of G be covered by T , i.e. each vertex and edge in G is
in some tree T in T such that ρ(T) > 0. Then, by construction,
pseudo-max-marginals ν = {νi, νij} from the tree-reweighted max-
product algorithm satisfy “ρ-reparameterization”, that is described
as:

p(x) ∝
∏

T∈T

∏

i∈V(T)

νi(xi)
∏

(i,j)∈E(T)

νij(xi, xj)

νi(xi)νj(xj)

ρ(T)

=
∏

i∈V

νi(xi)
ρi

∏

(i,j)∈E

[
νij(xi, xj)

νi(xi)νj(xj)

]ρij

, (9)

where ρij is an edge coefficient such that ρij = ∑
T∈T :(i,j)∈E(T) ρ(T)

defined for all (i, j) ∈ E , and ρi is a vertex coefficient such that
ρi = ∑

T∈T :i∈V(T) ρ(T) defined for all i ∈ V . Note that, if T is a
set of spanning trees, then ρi is 1 for all i ∈ V .

A tree distribution pT (x; ν) for some T ∈ T and given pseudo-
max-marginals can be defined as

pT (x; ν) =
∏

i∈V(T)

νi(xi)
∏

(i,j)∈E(T)

νij(xi, xj)

νi(xi)νj(xj)
. (10)

Then, we have p(x) ∝ ∏
T∈T {pT (x; ν)}ρ(T) from eq. (9). The

pseudo-max-marginals ν∗ at convergence of the tree-reweighted
max-product algorithm satisfy the “tree-consistency condition” with
respect to every tree T ∈ T . That is, the pseudo-max-marginals
converge to the max-marginals of each tree distribution.

Example 2. (Pseudo-max-marginals).47 Let x ∈ {0, 1}3 be a
random vector on a graphical model illustrated in Figure 6a. Let
p(x) = 1

98 ψ1(x1)ψ2(x2)ψ3(x3)ψ12(x1, x2)ψ23(x2, x3)ψ31(x3, x1),
where ψi(xi) and ψij(xi, xj) are defined same as in Example 1. We
define pseudo-max-marginals ν̂ as follows:

ν̂i(xi) = 1, for all xi ∈ {0, 1} and i ∈ {1, 2, 3}, (11)

ν̂ij(xi, xj) =
{

1 if xi = xj

8 otherwise
for all (i, j) ∈ {(1, 2), (2, 3), (3, 1)}.

(12)

Figures 6b–6d illustrates the trees used for the convex combina-
tion and pseudo-max-marginals on each tree. It can be easily verified
that pseudo-max-marginals on each tree are in fact max-marginals.
Thus, the pseudo-max-marginals are tree-consistent. The distribu-
tion for each tree is given by eq. (10). For example, the distribution
for Figure 6b is

p1(x; ν̂) = ν̂1(x1)ν̂2(x2)ν̂3(x3)
ν̂12(x1, x2)

ν̂1(x1)ν̂2(x2)

ν̂23(x2, x3)

ν̂2(x2)ν̂3(x3)
. (13)

Then, by letting ρ(T) = 1/3 for all three trees, we obtain

1
98

p1(x; ν̂)
1/3

p2(x; ν̂)
1/3

p3(x; ν̂)
1/3

= 1
98

ψ1(x1)ψ2(x2)ψ3(x3)ψ12(x1, x2)ψ23(x2, x3)ψ31(x3, x1) = p(x),

(14)

from ψi(xi) = ν̂i(xi)
−1/3 and ψij(xi, xj) = ν̂ij(xi, xj)

2/3. This verifies
the pseudo-max-marginals satisfy ρ-reparameterization as well.

TRMP

Algorithm 1 in Appendix A describes “edge-based reparameteriza-
tion updates”47 defining T as a set of (not necessarily spanning) trees
in G, as used by Kolmogorov.51 Hereafter, we will call this algorithm
TRMP in short. Note that, although we define T as a set of general
trees covering all vertices and edges of G, it can be easily verified that
all the analyses done by Wainwright et al.47 can be applied to TRMP
in exactly the same way, to show TRMP has the same properties
owned by the original edge-based reparameterization updates.

TRMP can sometimes guarantee the optimality of an assignment
found at convergence for cyclic distributions. Even if TRMP does
not find the exact MAP assignment, we can easily compute the exact
maximum value for each tree distribution at TRMP convergence
as pseudo-max-marginals converge to max-marginals for each tree
distribution. Then, we can combine these to get an upper bound for

Journal of Computational Chemistry DOI 10.1002/jcc

Rotamer Optimization for Protein Design 1931

Figure 6. Illustration of pseudo-max-marginals and ρ-reparameterization. (a) Original distribution.
(b)–(d) Pseudo-max-marginals on each tree used by convex combination. (a) p(x) (b) p1(x; ν̂); ρ1 = 1

3 .
(c) p2(x; ν̂); ρ2 = 1

3 . (d) p3(x; ν̂); ρ3 = 1
3 .

the original, cyclic distribution (thereby obtaining a lower bound on
the energy).

We are free to choose any set of trees T and ρ(·) as long as each
vertex and edge is covered by some T ∈ T with ρ(T) > 0. In this
work, we consistently use a set of maximal stars S in place of T for
the convenience of implementation and the simplicity in computing
rotamer-pair lower bounds. A star is a tree where at most one vertex
is not a leaf. We denote the center of star S as γ (S). A maximal star is
a star that is not a subset of another star. Figure 7 illustrates covering a
graph by a set of maximal stars; all vertices and edges of graph (a) are
covered by S consisting of three maximal stars. In general, covering
dense graphs such as complete graphs requires O(n) maximal stars.
As explained in Lemma 3, computing a rotamer-pair lower bound
involves solving a constrained maximization problem for each tree
distribution. Therefore, using S allows us to address only O(n)

maximization problems in computing a rotamer-pair lower bound.
In addition, because of the structure of a star, maximization of each
tree (i.e. star) distribution can be simplified to one of the four cases
of eq. (21).

Following the terminology of Kolmogorov,51 we say ν is in a
normal form if it satisfies maxr∈Ri νi(r) = 1 for all i ∈ V , and
max(r,s)∈Ri×Rj νij(r, s) = 1 for all (i, j) ∈ E . Hereafter, we assume
ν of Algorithm 1 is always in a normal form. Then, from eq. (2)
and (9), and by introducing a positive constant νc, we obtain the
following equation:

exp{−e(x)} = νc

∏

S∈S

{pS(x; ν)}ρ(S). (15)

The value of νc can be computed by comparing both sides of eq.
(15) for any assignment x ∈ X . Equivalently, p(x) can be expressed
as follows:

p(x) = νc

Z

∏

S∈S

{pS(x; ν)}ρ(S). (16)

Bounding the GMEC Energy with TRMP

We also make heuristic use of TRMP to obtain upper bounds for
the GMEC energy. At convergence of TRMP, we occasionally find
an exact MAP configuration. TRMP provides an easy evaluation
condition called optimum specification (OS) criterion such that an
assignment is guaranteed to be a MAP configuration if it satisfies
the OS criterion. However, such an assignment may not exist for a
given reparameterization or it could be computationally expensive
to find. Therefore, in our upper bounding, instead of trying to find an
assignment that satisfies the OS criterion, we simply find an assign-
ment that maximizes the tree distribution for some star S ∈ S at
TRMP convergence, using dynamic programming.50 Another pos-
sible upper-bounding method is to randomly pick a maximizer for
each singleton max-marginals at TRMP convergence regardless of
the trees. Although neither of these procedures guarantees the qual-
ity of the upper bounds, the resulting upper bounds are empirically
close to the optimal values. The procedures can be repeated for dif-
ferent trees or different random selection of maximizers to improve
the upper bounds.

A lower bound for the GMEC energy minx e(x) can be easily
obtained at the convergence of TRMP with the following lemma:

Journal of Computational Chemistry DOI 10.1002/jcc

1932 Hong et al. • Vol. 30, No. 12 • Journal of Computational Chemistry

Figure 7. Example of covering a graph by maximal stars: G of (a) is completely covered by S1, S2,
and S3. (a) G, (b) S1, (c) S2, (d) S3.

Lemma 1. When ν and νc of (16) in a normal form satisfy the
tree-consistency condition, the MAP probability is upper bounded
by

max
x

p(x) ≤ νc

Z
. (17)

Therefore, the GMEC energy minx e(x) is lower bounded by
minx e(x) ≥ − ln νc from (2). This lower bound of the GMEC
energy is independent of the normalization constant Z because, in
(15), the product

∏
S∈S pS(x; ν) purely depends on the normalized

pseudo-max-marginals, that are generated without any reference to
Z . Note that Lemma 1 is true not only for star covers but for general
tree covers.

Example 3. To upper bound maxx p(x) using Lemma 1 and
the pseudo-max-marginals given in Example 2, we first need
to normalize pairwise pseudo-max-marginals. Since the maxi-
mum value of ν̂ij(xi, xj) for all (i, j) are 8, normalized pairwise
pseudo-max-marginals are as follows:

νij(xi, xj) =
{

1/8 if xi = xj

1 otherwise
for all (i, j) ∈ {(1, 2), (2, 3), (3, 1)}.

(18)

Singleton pseudo-max-marginals are already in a normal form.
Given the normalized pseudo-max-marginals, and p(x) for every
x, we can easily compute νc/Z = 64/98 from (16) due to the small-
scale nature of this toy problem. Then, by Lemma 1, the upper
bound of the MAP probability is 64/98. It is easy to see maxx p(x)

is equal to 16/98 attained by any of (x1, x2, x3) = (0, 0, 1), (0, 1, 0),
etc. The upper bound of the MAP probability (thereby the resulting
lower bound of the GMEC energy) is not tight in this example, but
the quality of bounds from Lemma 1 can be stronger depending on
pseudo-max-marginals from TRMP. In this example, on the other
hand, a tight lower-bound of p(x) (therefore a tight upper-bound of
the GMEC energy) is easily obtained by finding a MAP assignment
for any of the trees in T . For instance, (x1, x2, x3) = (0, 1, 0) is a
MAP assignment for tree distribution p1(x; ν), and also for p(x).

Elimination by TRMP Lower Bounds

We can exploit the tree-consistency of ν at TRMP convergence in
computing various lower bounds for a set of conformations. If a
lower bound greater than a global upper-bound U is obtained, we can
eliminate corresponding conformations from the subproblem while
conserving the inequality relation between the minimum energy of
the subproblem and U. We make a more precise argument for what
we call rotamer-pair elimination and rotamer elimination as follows.
Let P̃ be the set of flagged rotamer pairs in the subproblem of our
interest. Then, given conformational space X , we define L(X , P̃)

as the set of all legal conformations containing no flagged rotamer
pairs.

1. Rotamer-pair elimination: Suppose we have a lower-bound
LB(ζr , ηs) of the minimum conformational energy for
{x|(xζ , xη) = (r, s)}, the set of all conformations including
(ζr , ηs), such that min{x|(xζ ,xη)=(r,s)} e(x) ≥ LB(ζr , ηs) > U.
Elimination of (ζr , ηs) can be represented by the set of pair-flags
P̃′ = P̃ ∪ (ζr , ηs). We know minx∈L(X ,P̃′) e(x) is prunable if and

Journal of Computational Chemistry DOI 10.1002/jcc

Rotamer Optimization for Protein Design 1933

only if minx∈L(X ,P̃) e(x) is prunable. Therefore, we use P̃′ as the
updated set of pair flags.

2. Rotamer elimination: Suppose we have a lower-bound LB(ζr)

of the minimum conformational energy for {x|xζ = r}, the set
of all conformations including ζr , such that min{x|xζ =r} e(x) ≥
LB(ζr) > U. Elimination of ζr can be represented by the set
of pair-flags P̃′ = P̃ ∪ {(ζr , js)|s ∈ Rj , j ∈ V , j "= ζ }, which
includes all rotamer pairs stemming from ζr . Again, we know
minx∈L(X ,P̃′) e(x) is prunable if and only if minx∈L(X ,P̃) e(x) is
prunable. Therefore, we use P̃′ as the updated set of pair flags.

In both cases, the optimal value of minx∈L(X ,P̃) e(x) does not change
if minx∈L(X ,P̃) e(x) ≤ U.

The lower-bounds LB(ζr) and LB(ζr , ηs) can be, for example,
obtained by directly solving an LP relaxation of the ILP given in
Appendix B. However, solving LP may not be practical when the
problem size is large. In addition, solving LP for every rotamer or
rotamer pair will multiply the lower-bounding time by the num-
ber of rotamers or rotamer pairs. Here, we use upper-bounding
inequalities for the singleton and pairwise max-marginals to obtain
lower bounds for minimum conformational energies of rotamers and
rotamer pairs. Such lower bounds are at best as tight as the bounds
from solving the LP discussed in Appendix B,47 but requires com-
putation time for one TRMP run until convergence (no guaranteed
time bound) plus post-processing time at most cubic of the number
of rotamers. The rest of this section explains how we can efficiently
compute the rotamer and rotamer-pair lower bounds.

We have the following lemma on upper-bounding the singleton
max-marginals:

Lemma 2. When ν and νc of eq. (16) in a normal form satisfy the
tree-consistency condition, it is true for all r ∈ Rζ , ζ ∈ V that

max
{x|xζ =r}

p(x) ≤ νc

Z
νζ (r)ρζ . (19)

Example 4. From Lemma 2 and the normalized pseudo-max-
marginals given in Example 3, we find an upper bound for the
maximum probability of p(x) when x1 = 0 as (νc/Z)ν1(0)1/3 =
64/98 × 11/3. The bound is not tight because max{x|x1=0} p(x) =
16/98, but the tightness may change depending on the pseudo-max-
marginals from TRMP. Even when the resulting bound is not tight, it
could be still strong enough to eliminate the corresponding rotamer
through comparison against a global upper-bound U.

Lemma 2 combined with eq. (2) provides a rotamer lower-bound
LB(ζr) for each r ∈ Rζ and ζ ∈ V as min{x|xζ =r} e(x) ≥ LB(ζr) =
− ln νc − ρζ ln νζ (r).

To upper bound the pairwise max-marginals, we use the general
inequality

max
{x|xζ =r,xη=s}

p(x) ≤ νc

Z

∏

S∈S

[
max

{x|xζ =r,xη=s}
pS(x; ν)

]ρ(S)

. (20)

The maximization problem max{x|xζ =r,xη=s} pS(x; ν) can be easily
solved using the following lemma:

Lemma 3. When ν and νc of eq. (16) in a normal form satisfy the
tree-consistency condition,

max
{x|xζ =r,xη=s}

pS(x; ν)

=

1 if ζ , η /∈ V(S)

νζ (r) if ζ ∈ V(S) and η /∈ V(S)

νζη(r, s) if (ζ , η) ∈ E(S)

maxxξ ∈Rξ

νξζ (xξ ,r)νξη(xξ ,s)
νξ (xξ)

else (let ξ = γ (S))

(21)

Example 5. Let us bound max{x|(x1,x2)=(0,0)} p(x) using the nor-
malized pseudo-max-marginals given in Example 3. As discussed
above, we have to solve maximization problem for each star:

1. p1(x; ν) and p3(x; ν) (Figures 6b and 6d): this corresponds to the
third case of eq. (21). Therefore,
max{x|(x1,x2)=(0,0)} p1(x; ν) = max{x|(x1,x2)=(0,0)} p3(x; ν)

= ν12(0, 0) = 1/8.
2. p2(x; ν) (Figure 6c): this corresponds to the fourth case of eq.

(21). Therefore,

max
{x|(x1,x2)=(0,0)}

p2(x; ν) = max
x3

ν3,1(x3, 0)ν3,2(x3, 0)

ν3(x3)
= 1. (22)

By combining the above results in eq. (20), we obtain

max
{x|(x1,x2)=(0,0)}

p(x) ≤ (64/98)×(1/8)1/3×(1/8)1/3×11/3 = 16/98.

(23)

This bound is tight from max{x|(x1,x2)=(0,0)} p(x) = 16/98 attained
by x3 = 1. Note that the same pseudo-max-marginals that yielded
weak upper bounds in Examples 3 and 4, led to a tight upper bound
for the rotamer pair, a more constrained bounding problem.

LB(ζr , ηs), a lower bound for the minimum conformation
energy of rotamer-pair (ζr , ηs), is given by LB(ζr , ηs) = − ln νc

− ∑
S∈S ρS ln max{x|xζ =r,xη=s} pS(x; ν).

Note that there can be at most O(n) stars that correspond to
the fourth case of eq. (21) for each position pair (ζ , η). If we let
nrot be the average number of rotamers per position, the maximiza-
tion problem corresponding to the fourth case of eq. (21) requires
O(nrot) operations. Therefore, it will take O(nrotn) post-processing
operations to compute an upper bound for each rotamer pair using
Lemma 3, and O(n3

rotn
3) for all rotamer pairs.

In computing the rotamer lower bound for a rotamer ζr , we can
also use pair-flags information to obtain a lower bound, LB′(ζr),
for the constrained problem min{x∈L(X ,P̃)|xζ =r} e(x). If we have

LB′(ζr) > U, then conformations, {x ∈ L(X , P̃)|xζ = r} can
be excluded from the search space. This is equivalent to eliminating
rotamer ζr because all conformations containing xζ = r are in effect
excluded. Computing LB′(ζr) will take additional polynomial time
compared to LB(ζr), but it is particularly advantageous to leverage
the pair flags when there exist a large number of flagged rotamer
pairs. We used a simple search-based method to compute LB′(ζr)

Journal of Computational Chemistry DOI 10.1002/jcc

1934 Hong et al. • Vol. 30, No. 12 • Journal of Computational Chemistry

as follows; let p̂ = ∏
S∈S [max{x∈L(X ,P̃)|xζ =r} pS(x; ν)]ρ(S) for tree-

consistent ν in a normal form. Then, it is easy to see (νc/Z)p̂ is
an upper bound of max{x∈L(X ,P̃)|xζ =r} p(x). To compute p̂, we first
build a table for maxxj νi,j(r, xj) for every (i, j) ∈ E , and r ∈ Ri. This
takes O(n2

rotn
2) time. Using this table, it takes O(nrotn) additions to

compute max{x∈L(X ,P̃)|xζ =r} pS(x; ν); when the rotamer of γ (S) is

fixed, it takes O(n) additions to find the maximum value of pS(x; ν),
and there are O(nrot) rotamers in γ (S). Therefore, it takes O(nrotn2)

time to exactly compute p̂. Finally, the rotamer lower bound is com-
puted as LB′(ζr) = − ln νc − ln p̂. To compute LB′(ζr) for all ζ ∈ V ,
and r ∈ Rζ , it will take O(n2

rotn
3) post-processing time.

Overall, lower-bound computation for all rotamers and rotamer
pairs requires post-processing time of O(n3

rotn
3).

Results and Discussions

We performed computational experiments to evaluate the perfor-
mance of BroMAP. We used a set of various protein design cases
to measure and compare the running times of BroMAP and a fast
implementation of DEE/A∗ that includes most of the state-of-art
techniques.26 In the following, to distinguish the modified version
of DEE used in BroMAP from the DEE used in DEE/A∗, we will call
the former as DEE-gp (DEE for general pair flags). The two main
questions we are interested in investigating with the experiments are
(1) whether BroMAP can solve design cases previously unsolved
by DEE/A∗, and (2) whether we can use BroMAP generally as an
alternative to DEE/A∗ without being restricted to specific types of
design cases. Although we are mainly interested in the overall per-
formance of BroMAP here, Hong and Lozano-Pérez52 evaluate the
effectiveness of our pruning method by comparing it against linear
programming.

DEE/A* Implementation

We used an in-house implementation of DEE/A∗ written in the C pro-
gramming language.53 DEE/A∗ was performed with the following
options and order:

1. Eliminate singles using Goldstein’s condition.21 Repeat until
elimination is unproductive.

2. Eliminate singles using split flags (s = 1).24 Repeat until
elimination is unproductive.

3. Do logical singles-pairs elimination.22

4. Eliminate pairs using Goldstein’s condition with one magic
bullet.23

5. Do logical singles-pairs elimination.
6. If unification is possible, do unification,21 and go to (1).
7. Do A∗.46

For unification, the pair of positions that has the largest fraction
of flagged rotamer pairs is picked. However, because the energy
terms and pair flags must be stored in machine memory, we capped
the total number of rotamers that would result to be no greater than
a unification option Cuni. Therefore, any pair of positions that would
create a larger number of rotamers when unified than Cuni was not
considered, and the pair with the next-largest fraction of flagged
rotamer pairs was considered. We experimented with different val-
ues of Cuni, i.e. 6000, 8000, 10,000, 12,000, and 14,000, to obtain the
best running time for each test case. Note that this gives DEE/A∗,

the competing method an advantage over BroMAP in comparing
their running times, because it will give better DEE/A∗ times than
consistently using one of the Cuni values. Increasing Cuni and thus
the allowance for large unification can facilitate solving otherwise
difficult or unsolvable cases. However, for small to medium cases,
larger values of Cuni often result in slower solution times.

Our DEE implementation uses a full table of energies. That is,
if there are q = ∑n

i=1 |Ri| rotamers in the problem, DEE allocates
memory for q2 floating point numbers.

When the DEE/A∗ procedure described above using various Cuni

values failed to solve a test case, we also tried singles-elimination
using split flags with s = 2 instead of s = 1, or allowed the number
of magic bullets to increase up to the number of positions.

BroMAP Implementation

BroMAP was implemented in C++. We used the PICO-library54 for
the BnB framework. The PICO-library provides the data structures
and methods to create/delete nodes and to search the tree. It also pro-
vides procedure skeletons, for instance, for upper/lower-bounding
methods.

In BroMAP, we restricted the amount of effort spent by DEE-gp
instead of allowing it to keep iterating singles/pairs-flagging and
unification until it finally solved the subproblem. This was done by
limiting the maximum number of iterations of singles/pairs-flagging
and also by using a smaller fixed Cuni value for unification than those
used by DEE/A∗.

Other than performing DEE-gp and TRMP bounding for each
subproblem, we also allowed rotamer-contractions.52 Rotamer-
contraction reduces the size of a subproblem by grouping similar
rotamers at a residue position as a cluster and replacing the cluster
by a new single rotamer. It also defines the pairwise energies for
the new rotamer so that the optimal value of the reduced subprob-
lem is always a lower bound of the optimal value of the subproblem
before the rotamer-contraction. Rotamer-contraction was iteratively
performed until we obtained a lower bound greater than U or the
number of executed rotamer-contractions reached a pre-determined
limit. We used a heuristic boundability index (BI) multiplied by a
positive integer Prc as such limits. The BI for a specific node is equal
to the number of ‘high’ branches on the path from the root to the
node. For example, in the search tree of Figure 1, assuming the BI
of the root node is equal to 0, BI’s are 0 for nodes 1, 3, 5, 7, 9, and
1 for nodes 2, 4, 6, 8, 11, and 2 for node 10. In these experiments,
we let Prc = 16 after exploring the overall effect of different values
of Prc on running times of BroMAP.

In case rotamer-contractions were performed multiple times in
bounding a subproblem as described earlier, we also performed addi-
tional DEE-gp and TRMP periodically on the subproblem reduced
by rotamer-contractions. After every PDEE consecutive rotamer-
contractions, we applied DEE-gp to see if we could solve the reduced
problem or only to flag more rotamers or rotamer pairs. TRMP was
also run until convergence after every PTRMP consecutive rotamer-
contractions to compute a lower bound for the subproblem or to
flag rotamers or rotamer-pairs using the TRMP lower bounds. In
this experiment, we let PDEE = 8, and PTRMP = 16.

Along the first depth-first dive, that is, until we exactly solve a
subproblem for the first time, we performed only DEE-gp, TRMP
bounding, and subproblem splitting, once respectively, but did not
use any rotamer-contraction. As with DEE/A∗, BroMAP also used

Journal of Computational Chemistry DOI 10.1002/jcc

Rotamer Optimization for Protein Design 1935

the A∗ search algorithm when DEE-gp could not eliminate any more
rotamers or rotamer pairs and the subproblem was considered small,
i.e. contained less than 200,000 rotamer pairs.

The BroMAP implementation needs to hold TRMP data, whose
size is of the order of the number of rotamer pairs. This corresponds
to

∑n−1
i=1

∑n
j=i+1 |Ri||Rj| floating point numbers, and is roughly

half the memory required by DEE/A∗. Because BroMAP also
performs DEE-gp, it requires additional memory of (

∑n
i=1 |Ri|)2

floating point numbers for the full DEE energy table. Therefore,
the maximum memory requirement of BroMAP is (

∑n
i=1 |Ri|)2 +∑n−1

i=1
∑n

j=i+1 |Ri||Rj| floating point numbers, which is roughly 1.5
times larger than that of DEE/A∗.

Platform

We used a Linux workstation with two dual-core 2 GHz AMD
Opteron 246 processors and 2 Gbytes of memory for the experi-
ment. The C/C++ codes for BroMAP and DEE/A∗ were compiled
using Intel C/C++ Compiler Version 9.1 for Linux. During com-
pile, OpenMP directives were enabled to parallelize the execution
of DEE, DEE-gp, and TRMP over two CPU cores. All other pro-
cedures, including A∗, were executed over a single core. Note that
BroMAP or DEE/A∗ was allowed to use the whole system memory
but only one processor at a time.

Test Cases

We used 68 test cases whose energy files are smaller than 300
Mbytes. An energy file contains floating point numbers representing
singleton and pairwise energies. We found energy files larger than
300 Mbytes are not handled well with the current implementation
of BroMAP on our workstation due to the memory requirement of
BroMAP.

We used three different model systems in obtaining test cases:

1. fn3: Derived from protein 10Fn3, the tenth human fibronectin
type III domain.55 It is a 94-residue β-sheet protein with an
immunoglobulin-like fold. Besides its natural in vivo role, the
protein has been engineered as an antibody mimic to bind with
high affinity and specificity to arbitrary protein targets.

2. d44.156 and d1.3:57 antibodies that bind to hen egg-white
lysozyme (HEL), though they bind different HEL epitopes. Each
has low nanomolar binding affinity, and was originally iso-
lated after murine immunization. For the d1.3 core designs,
we redesigned the core of the lysozyme protein, absent of the
antibody.

3. epo: Human erythropoietin (Epo) protein complexed to its recep-
tor (EpoR).58 One Epo binds to two EpoR with one high-affinity
and one low-affinity binding sites. Our epo interface designs
addressed the high-affinity binding site while our core designs
addressed the core of the EpoR from the high-affinity site.

Each case corresponds to one of three types of protein regions:

1. int: protein–protein binding interface.
2. core: protein core, i.e. side chains that are not solvent-exposed.
3. core++: protein core plus boundary positions that are partially

exposed to solvent.

We varied the types of amino acids offered at design positions
of each case as follows:

1. h: Hydrophobic amino acids (A, F, G, I, L, M, W, V).
2. hp: Hydrophobic plus polar amino acids (A, F, G, I, L, M, W, V,

H, N, Q, S, T, Y).
3. a: All type of amino acids, excluding proline and cysteine.

For core, we used both h and hp, and for core++, we used hp (with
both neutral tautomers of histidine allowed in each case). For int,
we used a, and allowed both neutral tautomers and the protonated
form of histidine. For all designs, if the wild-type amino acid was
not part of the library, it was added at that position. For some test
cases, the total number of positions in the search was greater than
the number of design positions. At these other positions, the native
amino-acid type was retained and its conformation was varied.

Each case was made using one of two different rotamer libraries:

1. reg: Standard rotamer library. This is based on the backbone-
independent May 2002 library.59 This library was supplemented
with three histidine rotamers for an unsampled ring flip, and two
asparagine rotamers to increase sampling of the final dihedral
angle rotation.

2. exp: Expanded rotamer library. This was created by expanding
both χ1 and χ2 of rotamers in reg by ±10◦. The hydroxyls of
serine, threonine, and tyrosine were sampled every 30 degrees.
For some int cases of d1.3, d44.1, and epo, crystallographic
water molecules were allowed conformational freedom. The oxy-
gen atom location was fixed to that of the crystal structure and
the hydrogen atoms were placed to create 60 symmetric water
molecule rotations.

For all libraries and cases, each crystallographic wild-type
rotamer was added in a position-specific manner to the library, using
the complete Cartesian representation of the side chain, rather than
just the dihedral angles.

The singleton/pairwise energies of rotamers were computed
using the energy function of CHARMM PARAM22 all-atom param-
eter set with no cut-offs for nonbonded interactions and a 4r
distance-dependent dielectric constant. All energy terms were used
(bond, angle, Urey-Bradley, dihedral, improper, Lennard-Jones, and
electrostatic). Rotamers that clashed with the fixed protein regions
were eliminated during case generation if their singleton energies
were greater than the smallest singleton energy at that position by
at least 50 kcal/mol. Further details on design methods and test case
construction can be found from Lippow et al.60

Table 1 lists composition and problem-size information of each
test case. Its last column also summarizes the experimental results
presented in the following.

Running Time Comparison

Among the 68 cases, BroMAP solved 65 cases within the 7-days
allowed time, whereas DEE/A∗ solved 51 cases for the same allowed
time. There were no cases DEE/A∗ solved but BroMAP was not able
to solve. The 14 cases solved by BroMAP but not by DEE/A∗ suggest
that BroMAP can be an alternative to DEE/A∗ for hard design cases
where DEE/A∗ performs poorly.

Journal of Computational Chemistry DOI 10.1002/jcc

1936 Hong et al. • Vol. 30, No. 12 • Journal of Computational Chemistry

Table 1. Test Case Facts.

No. Model Region AA Lib n nD w
∑ |Ri| Pairs logconf Solved by

1 fn3 core HP REG 14 14 0 743 2.5 E 5 50.2 Limited DEE
2 fn3 core++ HP REG 20 20 0 1778 1.5 E 6 83.7 Bro & DEE
3 fn3 core++ HP REG 23 23 0 1894 1.7 E 6 94.1 Bro & DEE
4 fn3 core++ HP REG 25 25 0 2048 2.0 E 6 102.9 Bro & DEE
5 fn3 core++ HP REG 27 27 0 2083 2.1 E 6 108.6 Bro & DEE
6 fn3 core HP EXP 14 14 0 8774 3.5 E 7 82.4 Limited DEE
7 D44.1 int A REG 7 4 0 476 8.5 E 4 21.6 Limited DEE
8 D44.1 int A REG 7 7 0 822 2.8 E 5 28.7 Limited DEE
9 D44.1 int A REG 8 8 0 965 4.0 E 5 33.4 Bro & DEE

10 D44.1 int A REG 9 9 0 1019 4.5 E 5 37.1 Bro & DEE
11 D44.1 int A REG 10 10 0 1133 5.6 E 5 40.6 Bro & DEE
12 D44.1 int A REG 11 11 0 1376 8.4 E 5 46.4 Bro
13 D44.1 int A REG 16 14 2 2020 1.9 E 6 70.1 None
14 D44.1 int A EXP 7 4 0 5026 9.5 E 6 36.4 Limited DEE
15 D44.1 int A EXP 7 5 0 7019 1.9 E 7 39.9 Bro & DEE
16 D44.1 int A EXP 7 6 0 7910 2.6 E 7 42.9 Bro
17 D44.1 int A EXP 7 7 0 8771 3.2 E 7 42.9 Bro
18 D1.3 int A REG 6 4 2 450 8.3 E 4 21.7 Limited DEE
19 D1.3 int A REG 11 8 3 767 2.6 E 5 38.5 Limited DEE
20 D1.3 int A REG 23 7 9 1618 1.2 E 6 78.8 Limited DEE
21 D1.3 int A EXP 6 4 2 3599 4.8 E 6 28.7 Limited DEE
22 D1.3 int A EXP 7 5 2 3616 4.8 E 6 28.7 Limited DEE
23 D1.3 int A EXP 8 6 2 4070 6.3 E 6 34.4 Bro & DEE
24 D1.3 int A EXP 11 4 3 4612 8.0 E 6 42.6 Bro & DEE
25 D1.3 int A EXP 11 6 3 4987 9.7 E 6 45.1 Bro & DEE
26 D1.3 int A EXP 11 7 3 5461 1.2 E 7 47.4 Bro & DEE
27 D1.3 int A EXP 11 7 3 5891 1.4 E 7 50.5 Bro
28 D1.3 int A EXP 11 8 3 6365 1.7 E 7 52.8 Bro
29 D1.3 core H REG 16 16 0 342 5.4 E 4 44.1 Limited DEE
30 D1.3 core H REG 20 20 0 430 8.6 E 4 54.6 Limited DEE
31 D1.3 core H REG 26 26 0 503 1.2 E 5 66.7 Limited DEE
32 D1.3 core H REG 34 34 0 567 1.5 E 5 81.4 Limited DEE
33 D1.3 core HP REG 16 16 0 980 4.4 E 5 59.5 Bro & DEE
34 D1.3 core HP REG 20 20 0 1228 7.1 E 5 74.1 Bro & DEE
35 D1.3 core HP REG 26 26 0 1431 9.7 E 5 92.3 Bro & DEE
36 D1.3 core HP REG 34 34 0 1582 1.2 E 6 112.7 Bro & DEE
37 D1.3 core H EXP 13 13 0 1844 1.5 E 6 56.3 Bro & DEE
38 D1.3 core H EXP 16 16 0 2734 3.5 E 6 75.7 Bro
39 D1.3 core H EXP 20 20 0 3370 5.3 E 6 91.8 Bro
40 D1.3 core H EXP 26 26 0 3894 7.1 E 6 111.6 Bro
41 D1.3 core H EXP 34 34 0 4444 9.4 E 6 142.0 Bro
42 epo int A REG 5 5 0 466 7.1 E 4 16.6 Limited DEE
43 epo int A REG 6 6 0 419 6.8 E 4 17.0 Limited DEE
44 epo int A REG 11 11 0 1005 4.4 E 5 39.4 Bro & DEE
45 epo int A REG 21 11 3 1503 1.0 E 6 67.5 Bro & DEE
46 epo int A REG 21 15 3 1999 1.9 E 6 79.6 Bro
47 epo int A REG 21 18 3 2138 2.1 E 6 87.5 None
48 epo int A EXP 5 5 0 5001 8.4 E 6 26.5 Limited DEE
49 epo int A EXP 6 6 0 4170 6.8 E 6 26.3 Bro & DEE
50 epo int A EXP 8 8 0 7544 2.3 E 7 46.4 Bro & DEE
51 epo int A EXP 9 9 0 8724 3.2 E 7 53.4 Bro & DEE
52 epo core H REG 17 17 0 291 3.9 E 4 43.5 Limited DEE
53 epo core H REG 22 22 0 395 7.4 E 4 58.1 Limited DEE
54 epo core H REG 28 28 0 433 8.9 E 4 65.4 Limited DEE
55 epo core H REG 33 33 0 573 1.6 E 5 82.7 Limited DEE
56 epo core H REG 41 41 0 727 2.6 E 5 103.3 Limited DEE

(continued)

Journal of Computational Chemistry DOI 10.1002/jcc

Rotamer Optimization for Protein Design 1937

Table 1. (Continued)

57 epo core HP REG 17 17 0 827 3.2 E 5 60.1 Bro & DEE
58 epo core HP REG 22 22 0 1103 5.8 E 5 79.9 Bro & DEE
59 epo core HP REG 28 28 0 1208 7.0 E 5 92.6 Bro & DEE
60 epo core HP REG 33 33 0 1615 1.3 E 6 115.9 Bro & DEE
61 epo core HP REG 36 36 0 1827 1.6 E 6 128.4 Bro
62 epo core HP REG 38 38 0 1956 1.9 E 6 136.6 Bro
63 epo core HP REG 41 41 0 1999 1.9 E 6 143.1 Bro
64 epo core H EXP 17 17 0 2307 2.4 E 6 73.5 Limited DEE
65 epo core H EXP 22 22 0 3006 4.2 E 6 99.0 Bro & DEE
66 epo core H EXP 28 28 0 3213 4.8 E 6 111.1 Bro & DEE
67 epo core H EXP 33 33 0 4322 8.9 E 6 140.0 Bro
68 epo core H EXP 41 41 0 5712 1.6 E 7 175.0 None

Each column represents (1) No.: case number, (2) Model: model system, (3) Region: protein regions being considered, (4)
AA: type of amino acids offered for design positions, (5) Lib: types of rotamer library used, (6) n: number of positions,
(7) nD: number of design positions, (8) w: number of mobile water molecules considered, (9)

∑ |Ri|: total number of
rotamers, (10) Pairs: total number of rotamer pairs, (11) logconf :

∑n
i=1 log |Ri|, (12) Solved by: methods that solved the

case (“Limited DEE” implies the case was solved by both BroMAP and DEE/A∗, but only DEE-gp was necessary for
BroMAP. “Bro” and “DEE” abbreviate BroMAP and DEE/A∗, respectively).

Among the 51 cases solved by both BroMAP and DEE/A∗, solv-
ing 23 cases by BroMAP required only the DEE-gp part of BroMAP.
As BroMAP only acted as a light DEE for these cases, comparing the
running times of BroMAP and DEE/A∗ on them is not meaningful.
After eliminating these 23 cases, we are left with 28 cases for which
we are interested in comparing the running times of BroMAP and
DEE/A∗. The running times for these 28 cases are shown in Table 2.
Additionally, the table lists results for 14 cases that only BroMAP
solved.

Figure 8 plots the ratio of BroMAP running time to DEE/A∗

running time vs. DEE/A∗ running time. Note that the plotted ratios
for cases solved only by BroMAP are upper bounds on actual ratios
because actual DEE/A∗ running times should be more than 7 days.
Overall, the plot suggests BroMAP gains advantage for cases as
DEE/A∗ takes longer. For all cases that DEE/A∗ took more than
one hour to solve, the maximum ratio was 0.33. Together with the
14 cases solved by BroMAP only, the experiment supports that
BroMAP can be an alternative to DEE/A∗ for hard design cases.
There are 5 cases for which the BroMAP solution time is at least
10% longer than DEE/A∗ solution time. Considering four of them
(cases 45, 58, 65, and 66) were almost ideally solved by BroMAP
(the GMEC was found at the end of the first depth-first dive and
there was no branching after the first depth-first dive), we find
more aggressive DEE conditions such as larger Cuni were criti-
cal in obtaining shorter running times on them. In terms of the
total running time, however, none of these five cases needed more
than 130 min to be solved by BroMAP. Therefore, using BroMAP
did not impractically slow down the solution time for cases in
Table 1.

For large hard cases, the system memory can be a limiting factor
on the performance of DEE/A∗ because the performance of DEE/A∗

often greatly depends on the unification procedure that requires
a large amount of memory. Although this implies larger system
memory could have given advantage to DEE/A∗ over BroMAP in

terms of running time, our results suggests that the memory con-
straints experienced by DEE/A∗ can be alleviated through the use
of BroMAP.

Table II lists the percentage of time used for each component
of BroMAP. In most cases, DEE-gp, A∗, and TRMP turned out to
be major contributors to the running time. If we sum running times
of BroMAP for all cases, it is found that 42% of the total time
was spent on DEE-gp and A∗, and 45% on TRMP. On the other
hand, considering the proportion between the total running time of
BroMAP and A∗ time, a great amount of time was spent on A∗ for
cases 11 and 12. This could be avoided by further restricting the size
of the subproblem for which A∗ is allowed to run.

Among cases in Table 2, BroMAP was able to solve six cases at
the root node without splitting. All other cases required BroMAP
to branch but many of them needed very little branching other
than those performed during the first depth-first dive. This trend
is observed through the skewness of the search tree, defined as
(number of low-subproblems split)

(total number of branchings)−1 . The ratio varies between 0 and 1 and
is larger than 0.5 if there are more low-subproblems split than high-
subproblems. We computed skewness for 36 cases where BroMAP
required more than one split. The minimum skewness from these
cases is 0.69 and 17 cases had skewness equal to 1, that is, needed
only low-subproblem splittings.

Figure 9 shows actual search trees generated by BroMAP during
solution of three cases. Box-shaped (shaded) nodes in each search
tree represent the subproblems that were exactly solved and resulted
in an upper bound less than or equal to the current best upper bound.
Therefore, the box-shaped node that is expanded latest is a node
where the GMEC is found in the search tree. Note that, for 27 cases
out of 42 cases in Table 2, an upper bound equal to the GMEC
energy was found at the end of the first depth-first dive. However,
early discovery of the GMEC did not necessarily lead to fast com-
pletion of BroMAP. For example, in Figure 9c, we can see the lower
bounding was not effective for large subproblems although they
were expanded after the optimal upper-bound was found, resulting
in a large number of branchings.

Journal of Computational Chemistry DOI 10.1002/jcc

1938 Hong et al. • Vol. 30, No. 12 • Journal of Computational Chemistry

Table 2. Results of Solving the Non-“Limited DEE” Cases with BroMAP and DEE/A∗.

No. Bro DEE T-Br F-Br Skew F-Ub Leaf Rdctn RC %DE %A∗ %TR

2 2.6 E 3 3.1 E 4 31 25 0.90 0.49 30.7 2.12 36 42.8 0.3 56.3
3 2.4 E 3 2.3 E 4 31 26 0.93 0.49 27.7 2.55 32 46.2 0.6 52.6
4 2.8 E 3 1.3 E 4 23 23 1 0 33.7 3.01 0 43.9 0.3 55.5
5 2.7 E 3 2.1 E 4 26 26 1 0.55 27.4 3.12 0 37.2 0.4 62.2
9 1.2 E 2 4.8 E 2 3 3 1 0 27.6 1.93 0 8.9 74.1 17.0

10 4.6 E 2 1.3 E 3 13 10 0.75 0.37 26.9 1.02 74 7.6 70.4 14.4
11 5.7 E 3 3.5 E 4 109 17 0.81 0.36 26.2 0.85 663 3.8 78.9 11.2
15 2.9 E 2 3.5 E 2 0 0 NA 0 NA NA 0 94.6 0.4 4.7
23 1.5 E 2 2.6 E 2 0 0 NA 0 NA NA 0 86.7 0 12.6
24 3.2 E 2 3.1 E 2 4 4 1 0 25.3 4.33 0 62.3 15.1 21.6
25 2.9 E 2 1.2 E 3 0 0 NA 0 NA NA 0 89.6 0 10.4
26 1.4 E 3 1.7 E 3 11 11 1 0.89 29.2 1.65 0 46.1 0.4 53.2
33 4.1 E 2 2.1 E 3 13 13 1 0 27.9 2.43 0 34.7 4.5 59.8
34 1.1 E 3 3.7 E 3 19 19 1 0 30.0 2.32 0 32.2 2.7 64.8
35 2.8 E 3 4.1 E 4 21 21 1 0 28.7 3.03 0 50.7 0.6 48.6
36 4.6 E 3 2.3 E 4 25 25 1 0 27.9 3.39 0 53.2 0.7 45.9
37 2.5 E 2 2.5 E 2 0 0 NA 0 NA NA 0 76.0 2.4 21.2
44 2.2 E 2 3.8 E 1 8 6 0.71 0.54 28.2 1.87 17 8.2 75.5 14.1
45 8.8 E 2 2.0 E 2 8 8 1 0 26.2 5.16 8 48.6 23.8 25.4
49 3.3 E 2 5.0 E 2 4 4 1 0 19.8 1.63 0 51.1 11.5 37.5
50 1.2 E 3 1.1 E 3 7 7 1 0 22.3 3.44 12 72.2 7.0 17.1
51 5.7 E 4 2.8 E 5 666 25 0.85 0.58 27.6 1.03 5656 16.7 21.2 41.8
57 4.6 E 1 2.7 E 2 0 0 NA 0 NA NA 0 84.8 0 15.2
58 1.5 E 3 1.0 E 3 19 19 1 0 28.8 2.69 0 42.5 0.2 57.1
59 4.4 E 2 4.0 E 3 0 0 NA 0 NA NA 0 70.6 0 29.1
60 1.5 E 4 4.6 E 4 32 32 1 0 37.3 2.46 0 30.1 0.1 69.7
65 4.6 E 3 1.7 E 3 15 15 1 0 22.7 5.09 0 61.9 0 37.8
66 7.7 E 3 2.4 E 3 15 15 1 0 33.9 5.15 0 67.2 0 32.6

Cases below were solved by BroMAP only
12 2.0 E 5 NA 2773 23 0.82 7.11 26.2 0.88 3.9 E 4 6.0 59.1 20.1
16 3.5 E 3 NA 12 11 0.91 0 23.6 1.75 30 41.7 6.0 49.3
17 1.1 E 5 NA 298 21 0.84 3.35 26.7 0.77 2576 17.7 28.1 32.7
27 8.0 E 3 NA 23 23 1 0 27.8 0.99 13 32.2 1.1 66.4
28 2.1 E 4 NA 175 25 0.91 0 28.0 0.99 1168 23.8 8.5 57.9
38 1.4 E 4 NA 155 31 0.87 0.50 30.2 1.47 571 30.9 0.4 62.8
39 1.2 E 5 NA 572 43 0.85 0 27.4 1.50 4791 30.4 0.1 58.4
40 1.8 E 5 NA 293 43 0.81 0 29.6 1.91 2440 35.9 0 56.1
41 2.1 E 5 NA 364 41 0.85 0 33 2.66 2771 34.2 0 57.5
46 5.0 E 5 NA 2675 36 0.69 8.28 27.8 1.44 1.4 E 5 18.8 18.8 35.3
61 2.8 E 4 NA 55 49 0.96 0.36 28.2 2.04 15 49.0 0 50.8
62 3.6 E 5 NA 232 58 0.88 0.27 30.1 1.84 1119 43.5 0 50.2
63 1.1 E 5 NA 143 53 0.85 0.29 32.8 2.08 506 41.4 0 55.4
67 1.3 E 5 NA 37 37 1 0 35.6 2.82 0 51.5 0 48.5

Columns (1) No.: case number, (2) Bro: BroMAP solution time in seconds, (3) DEE: DEE/A∗ solution time in seconds,
(4) T-Br: total number of branchings (i.e. splits), (5) F-Br: number of branchings during the first depth-first dive, (6) Skew:
skewness of the search tree defined as (number of low-subproblems split)

(total number of splits)−1 , (7) F-Ub: U −OPT , i.e. difference between the upper
bound from the first depth-first dive and the GMEC energy, (8) Leaf:

∑
i log10 |Ri| of the node at the end of the first

depth-first dive, (9) Rdctn: average reduction of
∑

i log10 |Ri| during the first depth-first dive, i.e. (logconf – Leaf)/(F-Br),
where logconf is defined in Table 1, (10) RC: number of rotamer-contractions performed, (11) %DE: BroMAP time
percentage used for DEE-gp, (12) %A∗: BroMAP time percentage used for A∗, (13) %TR: BroMAP time percentage used
for TRMP. Note that columns 11–13 may not sum to 100% because of time spent on rotamer-contraction and overhead
of using the branch-and-bound framework.

Journal of Computational Chemistry DOI 10.1002/jcc

Rotamer Optimization for Protein Design 1939

Figure 8. Ratio of BroMAP time to DEE/A∗ time vs. DEE/A∗ time for 42 cases in Table 2. Labels next to
data points are case numbers from Table 1. The 14 cases solved by BroMAP only are shown in the narrow
pane on the right side. The running time ratios for these cases were calculated by assuming the DEE/A∗ time
for each of them is 7 days although they were not solved by DEE/A∗ within 7 days. The trend line represents
a robust fit for the 28 cases that were solved by both BroMAP and DEE/A∗. The horizontal dashed line
represents the ratio equal to 1. Different symbols are used to represent each case depending on the type
of protein region (core, core++, or int) and the type of library used (reg or exp): (1) ◦ = core, ! =
core++, + = int, (2) empty = reg, filled = exp.

Table 2 suggests that the search trees of BroMAP have smaller
depths than those from conventional BnB methods would have. A
simple branching without reduction within a node would only reduce
the problem size by a factor of two. That is, a child subproblem will
have

∑
i log10 |Ri| value smaller by log10 2 ≈ 0.30 than its parent

subproblem. However, column “Rdctn” shows the average reduc-
tion was far greater. Excluding the cases solved without branching,
the average of the average reduction of

∑
i log10 |Ri| along the first

depth-first dive was 2.32, a factor of 7 speed-up over reduction by
conventional BnB methods. It should be noted that the reduction
within a node can be even greater after a strong upper bound is found.
This is evidenced by highly skewed shapes of search trees. Over-
all, the reduced depth and high skewness of BroMAP search trees
suggest the number of nodes expanded by BroMAP is exponentially
smaller than that of conventional BnB methods using simple branch-
ing. Meanwhile, the effect of smaller search trees will be transferred
to shorter running times as well; the experimental results presented
by Hong and Lozano-Pérez52 show that the node processing time
by DEE-gp and TRMP is similar to the bounding time for solving a

linear programming (LP) problem, a typical bounding method used
in BnB methods, but the LP produces weaker bounds.

The plots in Figure 10 provide interesting insights on the hard-
ness of test cases. In Figure 10a, categorizing all test cases by their
solvability reveals cases with higher ratios of log conformation to
the number of design positions tend to be harder to solve. Figure
10b uses gray scale to represent the running times of BroMAP.
Although the performance of BroMAP is not particularly depen-
dent on protein regions, it is noted that int cases are smaller than
core cases. This is because we excluded small core cases from the
experiment because they are often too easy for either BroMAP or
DEE/A∗, and also excluded large int cases for the opposite reason.
There are two main reasons that int cases are harder than core.
First, int cases are offered more rotamers per position because we
allowed 8–14 amino acids for core cases whereas 18 amino acids
including R, K, D, and E were allowed for int cases. These four
additional amino acids offer even more rotamers per amino acid
than average because of their long side chains. Second, whereas
core cases are constrained by side-chain/side-chain interactions as

Journal of Computational Chemistry DOI 10.1002/jcc

1940 Hong et al. • Vol. 30, No. 12 • Journal of Computational Chemistry

Figure 9. Search trees of BroMAP for three cases. For each branching, the low-subproblem is placed on
the right-hand side, and the high-subproblem on the left-hand side. Shaded box-shaped nodes represent
the subproblems that were exactly solved and resulted in an update of the global upper bound. (a) Case 65
(skew = 1.0). (b) Case 3 (skew = 0.93). (c) Case 17 (skew = 0.84).

Journal of Computational Chemistry DOI 10.1002/jcc

Rotamer Optimization for Protein Design 1941

Figure 10. Each case is plotted by the number of design positions and
log number of conformations. In both (a) and (b), different symbols were
used for different protein regions: (1) + = int, (2) ◦ = core, (3) ! =
core++. In (a), cases were marked with different colors depending on
their solvability: (1) yellow, solved by limited DEE; (2) green, solved
by BroMAP and DEE/A∗; (3) blue, solved by BroMAP only; (4) red,
solved by none. In (b), the BroMAP running time on each case was used
to color the corresponding symbol. The color bar on the right side shows
mapping between a color and a running time in seconds. (a) Solvability.
(b) Protein region and BroMAP running time.

well as side-chain/backbone interactions, int cases are generally
less constrained by side-chain/backbone interactions, and therefore
there exist a larger number of compatible conformations.

TRMP Lower Bounds

We present a numerical example to illustrate the utility of TRMP
lower bounds in rotamer/rotamer-pair elimination. For this purpose,
we use subproblems of Case 17 at depth 2 to 11 (root node is at depth

1). These subproblems correspond to node numbers 2, 4, 6, . . . , 20,
and are colored in light gray in Figure 9c (nodes in the search tree are
numbered by the order of creation using depth-first search). Table 3
lists the lower-bounding result.

In each node, we obtain more elimination using rotlb2 (rotamer
lower bound from using pair flags) than using rotlb1 (rotamer lower
bound from not using pair flags). This is due to massive flagging of
rotamer pairs by rplb (rotamer-pair lower bound). Figure 11 shows
rotamers ordered by the value of rotlb1 on x-axis and their rotlb1,
rotlb2 values on y-axis for the subproblem of node 2. The difference
between rotlb1 and rotlb2 for the same rotamer shows pair-flags
information can strengthen the lower bounds, thereby doubling the
number of eliminated rotamers in this example.

Large elimination obtained for subproblems at small depth are
suspected to come from our splitting scheme of dividing rotamers
by their lower bounds. As we go deeper down the search tree, we
expect such distinction between rotamer lower bounds to become
less clear. The trend is observed by the median value of rotlb1 and
the percentage of eliminated rotamers and rotamer pairs for nodes
at different depths.

Computing rotlb2 takes more time than rotlb1, but Table 3 shows
that the difference is relatively insignificant compared to the time
for computing rplb. The time for computing rplb for every rotamer
pair was typically at least double the time for TRMP convergence,
suggesting that an efficiency improvement of rotamer-pair lower-
bound computation would significantly contribute to reducing the
running time of BroMAP.

Conclusions

In this work, we presented an exact solution method (BroMAP)
for the global minimum energy conformation search. Particularly,
BroMAP was designed to substitute the DEE/A∗ approach for large
protein design problems where a large number of rotamers is offered
at each position and there exist side-chain interactions between
all pairs of residue positions. BroMAP uses a branch-and-bound
(BnB) framework and performs problem-size reduction within each
subproblem using DEE and elimination by TRMP lower bounds.
BroMAP also exploits TRMP lower bounds in branching and sub-
problem selection. We performed computational experiments to
evaluate BroMAP on various types and sizes of protein design prob-
lems in comparison with DEE/A∗. The experimental results show
that BroMAP solved hard protein design cases faster than DEE/A∗,
and that BroMAP also solved many cases that DEE/A∗ failed to
solve within allowed time and memory. In addition, using BroMAP
on cases where DEE/A∗ performed well did not incur significant
disadvantage in running time.

The performance advantage of BroMAP over DEE/A∗ or con-
ventional BnB methods can be attributed to three factors. First,
the search trees are radically smaller than those from conventional
BnB methods. Problem-size reduction performed within each node
results in reduced depths of search trees, and early discovery of sub-
optimal upper bounds allows effective pruning of nodes that follow.
Second, on top of fast reduction by DEE within each node, BroMAP
can perform additional elimination and informed branching using
lower bounds from inexpensive computation. Third, the general
BnB framework of BroMAP allows additional lower-bounding
techniques such as rotamer-contraction to be easily incorporated.

Journal of Computational Chemistry DOI 10.1002/jcc

1942 Hong et al. • Vol. 30, No. 12 • Journal of Computational Chemistry

Table 3. TRMP Lower-Bounding Results for Subproblems of case 17.

Rot lb’s w/o p-flags Rot-pair lb’s Rot lb’s w/ p-flags

Node No. of rots No. of pairs TTR med %el time (s) med %el time med %el time

2 4504 8.4 E 6 148 −71.69 11 0 −40.21 74 1162 −70.91 26 7
4 3837 6.3 E 6 203 −70.98 9 0 −46.18 68 774 −70.61 21 3
6 3570 5.4 E 6 238 −80.98 3 0 −53.45 54 607 −80.56 7 4
8 3269 4.5 E 6 190 −84.57 1 1 −58.82 44 463 −84.35 3 1

10 2969 3.7 E 6 99 −73.98 12 0 −47.80 62 353 −73.59 17 2
12 2704 3.1 E 6 105 −84.00 7 0 −59.17 45 261 −83.81 8 1
14 2504 2.6 E 6 77 −84.10 13 0 −51.16 50 202 −83.93 14 1
16 2173 2.0 E 6 65 −82.25 5 0 −61.36 42 138 −82.13 8 0
18 1878 1.5 E 6 71 −88.56 5 0 −66.31 40 92 −88.47 9 0
20 1725 1.3 E 6 16 −86.09 7 0 −65.68 38 74 −85.94 8 0

The meaning of each column is, in order: (1) node number, (2) number of rotamers in the subproblem, (3) number of
rotamer pairs in the subproblem, (4) time (s) for TRMP convergence, (5) median rotamer lower bound when not using
pair flags (rotlb1), (5) percentage of rotamers such that rotlb1 > U, (6) time (s) for computing rotlb1 for all rotamers, (7)
median rotamer-pair lower bound (rplb), (8) percentage of rotamer pairs such that rplb > U, (9) time (s) for computing
rplb for all rotamer pairs, (10) median rotamer lower bound when using pair flags (rotlb2) after rotamer pairs were flagged
by rplb, (11) percentage of rotamers such that rotlb2 > U, (12) time (s) for computing rotlb2 for all rotamers. In the Table,
time for TRMP convergence was excluded from time for computing rotlb1, rotlb2, or rplb. The value of U is −55.13,
which is equal to the optimal value and was available as a global upper bound for each node in the table by the time they
were expanded.

It could be argued that the performance comparison between
BroMAP and DEE/A∗ was not thorough or fair because DEE can be
faster depending on what elimination conditions are used, how they
are combined,26 or how much memory is available for unification.

Figure 11. Plots of TRMP lower bound vs. rotamer, for all (4504)
rotamers in the subproblem of node 2 in solving case 17 by BroMAP;
rotlb1 is represented by a dot and rotlb2 by a ‘+’ symbol. Rotamers are
sorted on x-axis by the increasing order of rotlb1. All rotamers with lower
bounds greater than or equal to 0 were clipped at y = 0. The horizontal
line at y = −55.13 represents U. By comparing rotlb1 against U, 497
rotamers (4, 008th to 4, 504th in the order) were eliminated. Using rotlb2

instead increased the number of eliminated rotamers to 1171.

However, it should be noted that BroMAP also exploits DEE, and
that BroMAP can be regarded as an added structure to DEE/A∗

to allow a more effective use of it in a general framework. As a
result, if a better implementation of DEE/A∗ is given or a better
system environment is allowed, the performance of BroMAP is also
expected to benefit from it.

In our experiment, using rotamer-contraction did not always
improve the total running time of BroMAP, although it tends to
reduce the number of nodes expanded by BroMAP. However, among
the 14 test cases that were solved by BroMAP with rotamer-
contraction but not by DEE/A∗, two could not be solved by BroMAP
without rotamer-contraction within the 7-day time limit. In addition,
for the 51 test cases used for comparison of BroMAP and DEE/A∗,
the total running time of BroMAP was reduced by 17% on average
simply by using rotamer-contraction. Therefore, there is a question
of how much effort should be spent on rotamer-contraction to max-
imize the performance of BroMAP. On the other hand, observing
the behavior of BroMAP on many random instances to parameterize
its solution time by problem characteristics will be interesting and
may help improve the performance of BroMAP, because no direct
correlation between the problem size and the BroMAP solution time
has been found. Finally, a substantial fraction of BroMAP’s running
time is spent on post-processing of TRMP to compute rotamer-pair
lower bounds. Therefore, a speed-up of BroMAP could be made
through efficiency improvement of this postprocessing procedure.
Our future investigation will address these problems to extend the
applicability of BroMAP to larger protein design cases.

Acknowledgment

The authors thank the current and past members of Tidor group,
especially Michael Altman for his DEE/A∗ code and Alessandro
Senes for his advice and sparing his time.

Journal of Computational Chemistry DOI 10.1002/jcc

Rotamer Optimization for Protein Design 1943

Appendix A: TRMP

Algorithm 1 describes “edge-based reparameterization updates”47

for a set of general trees T . In line 2, 3, 5, and 6, κn
i and κn

ij are
constants that can be arbitrarily set as long as they are positive. ,(i)
is the set of vertices neighboring i in G for i ∈ V(G).

Appendix B. ILP Formulation

The ILP formulation for the GMEC problem referred in this article
is as follows:

min
{xir },{xir js }

∑

i∈V

∑

r∈Ri

E(ir)xir +
∑

(i,j)∈E

∑

(r,s)∈Ri×Rj

E(ir js)xir js

 (B1)

∑

r∈Ri

xir = 1, ∀i ∈ V (B2)

∑

s∈Rj

xir js = xir , ∀(i, j) ∈ E , ∀r ∈ Ri, (B3)

xir ∈ {0, 1}, ∀i ∈ V , r ∈ Ri, (B4)

xir js ∈ {0, 1}, ∀(i, j) ∈ E , (r, s) ∈ Ri × Rj . (B5)

An LP relaxation can be obtained by simply replacing integer
constraints (B4,B5) with interval constraints [0, 1]. The resulting LP
is equivalent to the tree-relaxed LP.47

Appendix C. Proof of Lemma 1

From eq. (16), we have

max
x

p(x) = max
x

νc

Z

∏

S∈S

{pS(x; ν)}ρ(S) ≤ νc

Z

∏

S∈S

{
max

x
pS(x; ν)

}ρ(S)

(C1)

Since ν is tree-consistent with every S ∈ S, we can easily find a
MAP assignment xS such that xS ∈ arg maxx pS(x; ν) using dynamic

programming.50 Then, due to the assumption that ν is tree-consistent
with S and is in a normal form, we have the following properties:

νi(xS
i) = 1, for all i ∈ V(S), (C2)

νij(xS
i , xS

j) = 1, for all (i, j) ∈ E(S). (C3)

Therefore,

max
x

pS(x; ν) = pS(xS; ν) =
∏

i∈V(S)

νi
(
xS

i

) ∏

(i,j)∈E(S)

νij
(
xS

i , xS
j

)

νi
(
xS

i

)
νj

(
xS

j

) = 1.

(C4)

Since (C4) is true for every S ∈ S and
∑

S∈S ρ(S) = 1, we obtain
maxx p(x) ≤ νc/Z from (C1).

Appendix D. Proof of Lemma 2

From eq. (16), we have

max
{x|xζ =r}

p(x) = max
{x|xζ =r}

νc

Z

∏

S∈S

{pS(x; ν)}ρ(S)

≤ νc

Z

∏

S∈S

{
max

{x|xζ =r}
pS(x; ν)

}ρ(S)

= νc

Z

∏

S∈S:ζ∈V(S)

{
max

{x|xζ =r}
pS(x; ν)

}ρ(S)

×
∏

S∈S:ζ /∈V(S)

{
max

{x|xζ =r}
pS(x; ν)

}ρ(S)

(D1)

By the definition of max-marginals and the assumption that ν is
tree-consistent, for S ∈ S such that ζ ∈ V(S), we have

νζ (r) = κζ max
{x|xζ =r}

pS(x; ν), (D2)

for some constant κζ . We know there exists r∗ ∈ Rζ such that

νζ (r∗) = max
xζ ∈Rζ

νζ (xζ) = κζ max
{x|xζ =r∗}

pS(x; ν). (D3)

Then, since ν is in a normal form, νζ (r∗) = 1. We know from (C4) in
the proof of Lemma 1, that max{x|xζ =r∗} pS(x; ν) = maxx pS(x; ν) =
1. Therefore, κζ = 1, and

max
{x|xζ =r}

pS(x; ν) = νζ (r). (D4)

On the other hand, for all S ∈ S such that ζ /∈ V(S), we know
max{x|xζ =r} pS(x; ν) = maxx pS(x; ν) = 1. Plugging the obtained
values of max{x|xζ =r} pS(x; ν) and

∑
S∈S:ζ∈V(S) ρ(S) = ρζ into (D1),

we obtain max{x|xζ =r} p(x) ≤ (νc/Z)νζ (r)ρζ .

Journal of Computational Chemistry DOI 10.1002/jcc

1944 Hong et al. • Vol. 30, No. 12 • Journal of Computational Chemistry

Appendix E. Proof of Lemma 3

1. If ζ , η "= V(S), we know max{x|xζ =r,xη=s} pS(x; ν) =
maxx pS(x; ν). Then, since ν is tree-consistent and in a normal
form, max{x|xζ =r,xη=s} pS(x; ν) = 1 from (C4).

2. If ζ ∈ V(S), and η /∈ V(S), we know max{x|xζ =r,xη=s} pS(x; ν) =
max{x|xζ =r} pS(x; ν). Then, from (D4), max{x|xζ =r,xη=s} pS(x; ν) =
νζ (r)

3. If (ζ , η) ∈ E(S), by the definition of max-marginals and
the assumption that ν is tree-consistent with every S, we
have νζη(r, s) = κζη max{x|(xζ ,xη)=(r,s)} pS(x; ν), for some con-
stant κζη. We also know there exists (r∗, s∗) ∈ Rζ ×
Rη such that νζη(r∗, s∗) = max(xζ ,xη)∈Rζ ×Rη νζη(xζ , xη) =
κζη max{x|(xζ ,xη=(r∗ ,s∗)} pS(x; ν). Then, since ν is in a normal form,
i.e. νζη(r∗, s∗) = 1 and we have max{x|(xζ ,xη)=(r∗ ,s∗)} pS(x; ν) =
maxx pS(x; ν) = 1 from (C4), we obtain κζη = 1. Therefore,
max{x|(xζ ,xη=(r,s)} pS(x; ν) = νζη(r, s).

4. If ζ , η ∈ V(S) and (ζ , η) /∈ E(S), let ξ = γ (S). Then,

max
{x|(xζ ,xη)=(r,s)}

pS(x; ν)

= max
{x|(xζ ,xη)=(r,s)}

νξ (xξ)νζ (r)νη(s)
νξζ (xξ , r)

νξ (xξ)νζ (r)

× νξη(xξ , s)
νξ (xξ)νη(s)

∏

j∈V(S)\{ζ ,η,ξ}
νj(xj)

νξ j(xξ , xj)

νξ (xξ)νj(xj)
(E1)

= max
{x|(xζ ,xη)=(r,s)}

νξζ (xξ , r)νξη(xξ , s)
νξ (xξ)

∏

j∈V(S)\{ζ ,η,ξ}

νξ j(xξ , xj)

νξ (xξ)

(E2)

= max
xξ

νξζ (xξ , r)νξη(xξ , s)

νξ (xξ)

∏

j∈V(S)\{ζ ,η,ξ}
max

xj

νξ j(xξ , xj)

νξ (xξ)

 .

(E3)

From the tree-consistency of ν, we have νξ (xξ) =
βξ j maxxj νξ j(xξ , xj) for some βξ j > 0. We can also easily find
xS such that xS ∈ arg maxx pS(x; ν) using the tree-consistency
of ν. Then, since ν is in a normal form, we have νξ (xS

ξ) = 1,
and maxxj νξ j(xS

ξ , xj) = νξ j(xS
ξ , xS

j) = 1. Therefore, βξ j = 1,
and νξ (xξ) = maxxj νξ j(xξ , xj). So the maximization over xj in
the parentheses of (E3) is equal to 1 for all j ∈ V(S)\{ζ , η, ξ}.
Therefore,

max
{x|(xζ ,xη)=(r,s)}

pS(x; ν) = max
xξ

νξζ (xξ , r)νξη(xξ , s)
νξ (xξ)

.

References

1. Chothia, C.; Lesk, A. M. EMBO J 1986, 5, 823.
2. Ring, C. S.; Cohen, F. E. FASEB J 1993, 7, 783.
3. Baker, D.; Sali, A. Science 2001, 294, 93.
4. Drexler, K. E. Proc Natl Acad Sci USA 1981, 78, 5275.
5. Pabo, C. Nature 1983, 301, 200.
6. Godzik, A.; Kolinski, A.; Skolnick, J. J Comput Aided Mol Des 1993,

7, 397.

7. Hellinga, H. W.; Richards, F. M. Proc Natl Acad Sci USA 1994, 91,
5803.

8. Dahiyat, B. I.; Mayo, S. L. Protein Sci 1996, 5, 895.
9. Kuhlman, B.; Dantas, G.; Ireton, G. C.; Varani, G.; Stoddard, B. L.;

Baker, D. Science 2003, 302, 1364.
10. Ponder, J. W.; Richards, F. M. J Mol Biol 1987, 193, 775.
11. Dunbrack, R. L.; Karplus, M. J Mol Biol 1993, 230, 543.
12. Desmet, J.; De Maeyer, M.; Hazes, B.; Lasters, I. Nature 1992, 356,

539.
13. Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.;

Alagona, G.; Profeta, S. Jr.; Weiner, P. J Am Chem Soc 1984, 106, 765.
14. Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. J Comput

Chem 1986, 7, 230.
15. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M. Jr.;

Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman,
P. A. J Am Chem Soc 1995, 117, 5179.

16. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;
Swaminathan, S.; Karplus, M. J Comput Chem 1983, 4, 187.

17. Mackerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck,
J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-Mccarthy,
D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick,
S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.;
Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.;
Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J Phys Chem B 1998,
102, 3586.

18. Halgren, T. A. J Comput Chem 1996, 17, 490.
19. Jorgensen, W. L.; Tirado-Rives, J. J Phys Chem 1996, 100, 14508.
20. Korte, B.; Vygen, J. In Combinatorial Optimization: Theory and

Algorithms, 2nd ed., Springer-Verlag, New York, 2002.
21. Goldstein, R. F. Biophys J 1994, 66, 1335.
22. Lasters, I.; De Maeyer, M.; Desmet, J. Protein Eng 1995, 8, 815.
23. Gordon, D. B.; Mayo, S. L. J Comput Chem 1998, 13, 1505.
24. Pierce, N. A.; Spriet, J. A.; Desmet, J.; Mayo, S. L. J Comput Chem

2000, 21, 999.
25. Looger, L. L.; Hellinga, H. W. J Mol Biol 2001, 307, 429.
26. Gordon, D. B.; Hom, G. K.; Mayo, S. L.; Pierce, N. A. J Comput Chem

2003, 24, 232.
27. Georgiev, I.; Lilien, R. H.; Donald, B. R. Bioinformatics 2006, 22, 174.
28. Leach, A. R.; Lemon, A. P. Proteins 1998, 33, 227.
29. Gordon, D. B.; Mayo, S. L. Structure 1999, 7, 1089.
30. Wernisch, L.; Hery, S.; Wodak, S. J. J Mol Biol 2000, 301, 713.
31. Eriksson, O.; Zhou, Y.; Elofsson, A. In Proceedings of WABI 2001, Vol.

2149 (LNCS); Springer, Aarhus, Denmark, 2001; pp. 128–141.
32. Althaus, E.; Kohlbacher, O.; Lenhof, H.-P.; Müller, P. J Comput Biol

2002, 9, 597.
33. Kingsford, C.; Chazelle, B.; Singh, M. Bioinformatics 2005, 21, 1028.
34. Leaver-Fay, A.; Kuhlman, B.; Snoeyink, J. In Pacific Symposium on

Biocomputing 10, World Scientific Publishing, Hawaii, U.S.A., 2005;
pp. 16–27.

35. Xu, J. In Proceedings of RECOMB 2005; Springer, Cambridge, MA,
2005; pp. 423–439.

36. Xie, W.; Sahinidis, N. V. Bioinformatics 2006, 22, 188.
37. Yanover, C.; Meltzer, T.; Weiss, Y. J Mach Learn Res 2006, 7, 1887.
38. Weiss, Y.; Yanover, C.; Meltzer, T. In Proceedings of UAI, Vancouver,

B.C., Canada, 2007, 2007.
39. Desjarlais, J. R.; Handel, T. M. J Mol Biol 1999, 289, 305.
40. Peterson, R. W.; Dutton, P. L.; Wand, A. J. Protein Sci 2004, 13, 735.
41. Koehl, P.; Delarue, M. J Mol Biol 1994, 239, 249.
42. Desjarlais, J. R.; Handel, T. M. Protein Sci 1995, 4, 2006.
43. Jones, D. T. Protein Sci 1994, 3, 567.
44. Jiang, X.; Farid, H.; Pistor, E.; Farid, R. Protein Sci 2000, 9, 403.
45. Yanover, C.; Weiss, Y. In Proceedings of NIPS 2002, Vancouver, B.C.,

Canada, 2002.

Journal of Computational Chemistry DOI 10.1002/jcc

Rotamer Optimization for Protein Design 1945

46. Hart, P. E.; Nilsson, N. J.; Raphael, B. IEEE Trans Syst Sci Cyber 1968,
2, 100.

47. Wainwright, M. J.; Jaakkola, T. S.; Willsky, A. S. IEEE Trans Inform
Theory 2005, 51, 3697.

48. Nemhauser, G. L.; Wolsey, L. A. In Integer and Combinatorial Opti-
mization; Wiley: NY, 1988.

49. Cowell, R. G.; Dawid, A. P.; Lauritzen, S. L.; Spiegehalter, D. J. In Prob-
abilistic Networks and Expert Systems; Springer-Verlag: New York,
1999.

50. Wainwright, M. J.; Jaakkola, T.; Jordan, M. I. Stat Comput 2004, 14,
143.

51. Kolmogorov, V. IEEE Trans Pattern Anal 2006, 28, 1568.
52. Hong, E.-J.; Lozano-Pérez, T. In Proceedings of WABI 2006, Vol. 4175

(LNCS); Springer, Zurich, Switzerland, 2006; pp. 219–230.
53. Altman, M. D. Computational ligand design and analysis in protein

complexes using inverse methods, combinatorial search, and accurate
solvation modeling. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 2006.

54. Eckstein, J.; Phillips, C. A.; Hart, W. E. Pico: An object oriented
framework form parallel branch and bound Technical report, RUTCOR,
Piscataway, NJ, 2001.

55. Main, A. L.; Harvey, T. S.; Baron, M.; Boyd, J.; Campbell, I. D. Cell
1992, 71, 671.

56. Braden, B. C.; Souchon, H.; Eisele, J. L.; Bentley, G. A.; Bhat, T. N.;
Navaza, J.; Poljak, R. J. J Mol Biol 1994, 243, 767.

57. Bhat, T. N.; Bentley, G. A.; Boulot, G.; Greene, M. I.; Tello,
D.; Dallacqua, W.; Souchon, H.; Schwarz, F. P.; Mariuzza,
R. A.; Poljak, R. J. Proc Natl Acad Sci USA 1994, 91,
1089.

58. Syed, R.; Reid, S.; Li, C.; Cheetham, J.; Aoki, K.; Liu, B.; Zhan, H.;
Osslund, T.; Chirino, A.; Zhang, J.; Finer-Moore, J.; Elliott, S.; Sitney,
K.; Katz, B.; Matthews, D.; Wendoloski, J.; Egrie, J.; Stroud, R. Nature
1998, 395, 511.

59. Dunbrack, R. L. Curr Opin Struct Biol 2002, 12, 431.
60. Lippow, S. M.; Wittrup, K. D.; Tidor, B. Nat Biotechnol 2007, 25,

1171.

Journal of Computational Chemistry DOI 10.1002/jcc

