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Abstract— We cast the partially observable control problem as original state space. Furthermore, the resulting beliafest
a fully observable underactuated stoc_:hastic control problgm in dynamics are nonlinear, underactuated (number of control
belief space and apply standard planning and control techniques. inputs is smaller than the dimension of the belief spaced, an

One of the difficulties of belief space planning is modeling the . - . .
stochastic dynamics resulting from unknown future observations stochastic (transitions depend on observations which have

The core of our proposal is to define deterministic belief- Y€t been made).
system dynamics based on an assumption that the maximum A number of powerful tools exist for planning and control

likelihood observation (calculated just prior to the observation) of high-dimensional non-linear underactuated systemé wit
is always obtained. The stochastic effects of future observatisn Gaussian process noise. In order to apply these tools, this

are modelled as Gaussian noise. Given this model of the dynamics, defi inal belief d ics b d
two planning and control methods are applied. In the first, linear paper detnes nominal beliel space dynamics based on an

quadratic regulation (LQR) is applied to generate policies in the assumption that all future observations will obtain theaxn
belief space. This approach is shown to be optimal for linear- imum likelihood values (this assumption is also made in.[4])

Gaussian systems. In the second, a planner is used to find locally During execution, the system tracks the true belief basati®n
optimal plans in the belief space. We propose a replanning ,pcenations actually obtained. Departures from the nahin

approach that is shown to converge to the belief space goal, . . .
in a finite number of replanning steps. These approaches are belief dynamics caused by these unexpected observatiens ar

characterized in the context of a simple nonlinear manipulation treated as Gaussian process noise. As a result, it is pegsibl
problem where a planar robot simultaneously locates and grasps apply standard control and planning techniques. In pdaicu

an object. we use linear quadratic regulation (LQR) to calculate Ibelie
space policies based on a local linearization of the belief
space dynamics. However, in spite of this linearizatiorg th
Control problems in partially observable environments aresulting belief space policy is shown to be optimal for
important to robotics because all robots ultimately pereéie  underlying linear-Gaussian systems and produces readsonab
world through limited and imperfect sensors. In the contepblicies within a local region about the linearization pgoin
of robotic manipulation, tactile and range sensors mount&dhen large, more “jarring” observations cause system bigief
on the manipulator near the contact locations can providdeave the locally stabilized region, we propose replanfiom
tremendous advantage in precision over remote sensing.[1,tBe new belief state. We analyze this replanning approadh an
However, co-locating the sensors with the contacts this wagmonstrate that, under certain conditions, it is guaeghte
complicates planning and control because it forces theesystultimately reach a goal region in belief space in a finite nemb
to trade off sensing and acting. It essentially requires tlé replanning steps. The method is explored in simulation.
system to solve a difficult instance of the partially obsblea
control problem, often modeled as a partially observabfe Related Work
Markov decision process (POMDP). Unfortunately this prob- For discrete systems, the optimal value function is convex
lem has been shown to be PSPACE complete, even for a finiteer the space of all possible multinomial distributiongov
planning horizon, discrete states, actions, and obsen&fB]. the state space (this “belief” space is a simplex). For aefinit
One solution to the partially observable control problemlanning horizon, the value function is piecewise lineahve
is to form plans in the “belief space” of the manipulator maximum number of facets doubly exponential in the number
the space of all possible distributions over the state spao&observations and the planning horizon [5]. The ‘mosglijk
The controller then selects actions based not only on thtate’ approximation to POMDPs assumes that the world state
current most-likely state of the robot, but more genencalithat is most likely in the current belief state is in fact true
on the information available to the robot. A hallmark othen takes the optimal action for the state in the MDP that
belief-space planning is the ability to generate informati underlies the POMDP. This approximation takes uncertainty
gathering actions. However, planning in the belief space iis the future evolution of the system seriously, but ignores
challenging for a number of reasons. Even coarse finiteacertainty about the current state. More sophisticatesioms
dimensional approximations of the belief state distritnti of this approximation include Q-MDP [6] and FIB [7]. A
require planning in dimensions that are much larger than thendamental failing of these approaches is that they assume

I. INTRODUCTION



that there is no uncertainty either in the current stateifdhe Both g and f are required to be a differentiable functions of
next states), and so the system is never driven to take actian and u;. Although we expect our technique to extend to
for the explicit purpose of reducing uncertainty. An aptoa systems with noisy process dynamics, consideration igdimi
related to the current work is the belief roadmap [8]. Thi® deterministic systems to simplify the analysis.

method ranks paths through a probabilistic roadmap defimedj Belief svstemn
the underlying state space in terms of the change in covgian y

over the path. Perhaps the main distinction between this ancf\lthough the underlying state of the system is not directly
our current work is that our formulation allows a variety oPbserved, we assume that the controller tracks a fixed param-
planning and control techniques to be used. As a resulioert€terization of a probability distribution over staté(x). The
types of trajectories can be found more efficiently and it b@arameters of the probability density function (pdf) ofsthi
comes possib'e to find po"cies over the belief Space in eodit distribution will be referred to as the “belief state” andnca

to trajectories. An approximation method closely related € tracked using Bayesian filtering as a function of control
our current proposal is the nominal belief-state obsepuatiactions and observations:

(NBO) approach that plans based on an expectation of nominal

(maximum likelihood) observations [4]. The current work Plzt4) :nP(thla:tH)AP(mt+1\x,ut)P(x)7

makes plans based on a similar assumption. However, Wgere ) is a normalization constant. Notice that since the
consider the problem in a more general context and analyzgjet ypdate is a function of the measured observations
approaches to control and replanning in the belief space. ,qcreq during execution, it is impossible in general taijote

Our approach is also related to the ‘determinize-and-réplaypead of time exactly how system belief will change until the
approximation to MDPs that assumes world dynamics ag®servations are made.

det_erministic for the purposes of _planning. It takes thet firs £or the rest of this paper, we will focus on Gaussian belief
action, observes the actual resulting state, and thenn®playiate gynamics where the extended Kalman filter belief @pdat
This approach, as embodied in FF-Replan, has been very SUGised. On each update, the extended Kalman filter linearize

cessful (won the ICAPS06 planning competition) in a varief,e process and observation dynamics (Equations 2 and 1)
of contexts [9]. However, it cannot effectively ‘hedge ist8 51,6t the current mean of the belief distribution:

by taking into consideration outcomes that have low likediti

but very high or very low utility. In domains that have Tep1 & Ag(wy — me) + f(me, ug), 3)
these outcomes, the replanning approach can be significa
suboptimal, but it remains efficient and highly effectiveamh -
there are no terrible outcomes. Our approach can be viewed z  Ciwe —me) + g(f(me, ue)) +w, @

as ‘determinize-and-replan’, applied to POMDPs. It has thvherem, is the belief state mean, antl = %(mt,ut), and
significant advantage over the most-likely state approbah tC; = %(mt), are Jacobian matrices linearized about the mean
it can and does explicitly plan to gain information. Andand action.

by replanning when surprising observations are obtained, i For the Gaussian belief system, the distribution is a

remains robust to unlikely outcomes. Gaussian with meanm,, and covarianceX;: P(z) =
N (z|ms,X;). This belief state will be denoted by a vector,

Il. PROBLEM SPECIFICATION by = (ml,s])T, wheres = (sT,...,s])T is a vector

composed of the columns of = (sy,...,s4). If the system

We reformulate the underlying partially observable prable
as a fully observable belief space problem with an assatial
cost function.

kes action,u;, and makes observation,, then the EKF
elief state update is:

g1 =1 — FtCtT(CtFtC;T + Wt)_lctrtv 5)

T T —1
Consider the following partially observable control prebl. M1 = fo + DG (GLCE +Wo)™ (201 — 9(f2)), (6)
Let z; € X be the unobserved-dimensional combined statewhere
of the robot and the environment at tinte Although the Iy = A5 A
state is not observed directly, noisy observationss 7, are
available as a non-linear stochastic functionuef

A. Underlying system

and f; denotesf (my, u;).

C. Cost function
In general, we are concerned with the problem of reaching

where g is the deterministic component of the measuremeft 9iven region of state space with high certainty. For a
function andw is zero-mean Gaussian noise with possiblfpaussian belief space, this corresponds to a cost function
state-dependent covariand®;. This paper only considers thethat is minimized at zero covariance. However, it may be

case where the underlying process dynamics are deterizinisfore important to reduce covariance in some directions over
others. Let{ni,...,7} be a set of unit vectors pointing in

Ter1 = f(@g, up). (2) k directions in which it is desired to minimize covariance and

2t = g(lt) + w, (1)



let the relative importance of these directions be desdribe [1l. SIMPLIFIED BELIEF SPACE DYNAMICS
the weightswy, ..., w,. We define a finite horizon quadratic

; In order to apply standard control and planning techniques
cost function:

to the belief space problem, it is necessary to define the

k , Tl dynamics of the belief system. Given our choice to use
J(br.7,ur1) = sz (A] Sri) +meQﬁlt+ﬂtTRﬂm the EKF belief update, Equations 5 and 6 should be used.
i=1 t=T 7 Notice that Equation 6 depends on the observatipnsince

these observations are unknown ahead of time, it should
be necessary to evaluate the expected value of seeing each

relative to a desired state-action point or trajectaty,and;, . . .
. . . . observation and take the expectation over all observations
and X7 is the covariance matrix at the end of the plannin . N, . R
owever, since it is difficult to evaluate this marginalinat

horizon. The first summation penalizes departures from zerg S .

. o L we make a key simplifying assumption for the purposes of
covariance along the specified directions. The second summ . ' .
. . ) . planning and control: we assume that future observatioas ar
tion over the planning horizon penalizes departures from a

desired mean and action or mean and action trajectory Wﬂﬁr_mally d|str|buted_ about a maximum I|k_eI|hood_. If_act|on
positive definite cost matrice@ and R. While Equation 7 is ue 1S takgn frpm belief staté;, then the maximum likelihood

. i S ) : observation is:
guadratic, the first summation is not expressed in the stdnda
form. However, its terms can be re-written in termsspthe Zmi = arg max P(z|bs, uy). (10)
vector of the columns oE: z

wherem; = m;—m; andu; = u; —1u; are the mean and action

Evaluating the maximum likelihood observation for the EKF

(7] 21;)* = 8" Lis, using Equation 10, we have:
where the cost matrix;, is a function ofrn;:
K g e = argmax [ Plarlo) Po b w)deen
N N T
i1 ning 1
I, — : : = argij/N(ZtJrﬂCt(a?tﬂ —my) +g(ft), We)

i = : : )

MM d fing, g N(zeq1|fe, Te)daia

. . . , = argmax N (ze41|Ce(fr — me) + g(f2),
wheren;, ; is the j'" element ofi;. As a result, we re-write rg max (41 |Celfe = m) + 9(f2)

the cost function as: CTCE + W)
T-1 = C(fe —mu) +9(f)
J(brr,urer) = s"As+ > i Qi + if Riiy,  (8) ~ g(f)). (11)
t=1
where Substituting into Equation 6, and restating Equation 5, the

K simplified dynamics are:
; bit1 = F'(be, ue), (12)

Although not included in Equation 8, all plans in the beliefvhere I’ evaluates to thé,, corresponding ton;.; and
space are required to satisfy certain final value consgainti+1,
First, a constraint on the final value mean of the belief syste mip1 = fi + v, (13)
is specified:mr = myr. B-LQR (Section V) incorporates _
this r(J:onstraint by augmenting the(cost functic)m (eq?atiﬁ)w 1 S =T = DCH(GDCT + W) I Gy, (14)
Direct transcription (Section V-A) incorporates this coaBt andy is Gaussian noise.
directly. Second, direct transcription incorporates ast@int

on the magnitude of the final covariance cost (first term of IV. LQR IN BELIEF SPACE
Equation 8).:3TA5 <7 . Linear quadratic regulation (LQR) is an important and
For a policy defined over the belief space, simple approach to optimal control [10]. While LQR is optimal
s = (by) only for linear-Gaussian systems, it is also used to stabili
t — t)s

non-linear systems in a local neighborhood about a nominal
the expected cost-to-go from a belief stateat time¢ with ~ point or trajectory in state space. LQR in belief space (B-

a planning horizorl” (the planning horizon could be infinite) LQR) is the application of LQR to belief space control using
is: the simplified belief system dynamics (Equations 13 and 14).

J(by) = E o AT (e, m(brir_1))} © Since the belief system dynamics are always non-linear; pol

B cies found by B-LQR can be expected to be only locally stable.

where the expectation is taken over future observationdowever, as we show below, it turns out that B-LQR is optimal
The optimal policy minimizes expected cost*(b,) = and equivalent to linear quadratic Gaussian (LQG) control
argmin, J7(b;). for systems with linear-Gaussian process and observation



dynamics. Moreover, B-LQR produces qualitatively intéres Theorem 1:If the cost function is of the form of Equa-

policies for systems with non-linear dynamics. tion 8, and the underlying process and observation dynamics
We are interested in the finite horizon problem with a findEquations 1 and 2) are linear, then B-LQR is optimal.

state constraint on the mean of the belief system. The final Proof: We show that under the conditions of the theorem,

state constraint is accommodated by adding an additiorral teB-LQR is equivalent to LQG and is optimal as a result.

to Equation 7 that assigns a large cost to departures from theFirst, if the underlying observation dynamics are linelagnt

desired final mean value: %Lnjtl = 0 andA; is block diagonal. Also, note that if the cost

is of the form in Equation 8, then the state cd8t, is also

block diagonal with respect to mean and covarianeeand

s). As a result of these two facts, the solution to the belief

space Riccati equation (Equation 16) at tim&;, always has

J(b'r:Ta UT:T) = m%QlargeﬁLT + STAS

T
+> i Qi + iy Riiy.  (15)
t=1

. . _ . , the form,
Since B-LQR is operating in belief space, is necessary
L ; : . : St 0
to linearize Equation 12 about a nominal belief and action, St = o P )
denotedb; and u;:
OF - where S; is the solution of the Riccati equation in the

Ay = %(bt,ﬂt) underlying space,

and oF - Sy = Q+A15TSt+1At
B, = %(bt’ut)' —A$St+1Bt(BfSt+1Bt + Rt)_lBtTStJrlAu

Notice thaF the mean of the Gau55|an. belief system has d P, is arbitrary. Substituting into Equation 17, we have:
same nominal dynamics as the underlying system. As a result,

A; always has the form: uw* = —(BFSiy1By + Ry) " 'BI S, 1 Aymy.
Ay = ( aj}il as?ﬂ ) , Since this is exactly the solution of the LQG formulationdan
om, dsy LQG is optimal for linear-Gaussian process and observation
whereA,; = %L (i, @) (see Equation 3). Also, note that sincdynamics, we conclude the B-LQR is optimal. u

the control input never directly affects covarian@ always

has the form V. PLANNING

B, = < B;)t ), Since B-LQR is based on a local linearization of the
simplified belief dynamics, it is clear that planning method
where B, = ﬂ(mtﬂt)- Finally, since Equation 15 only as-that work directly with the non-linear dynamics can havedret

ou . .
signs departures from the mean a recurring cost, the regurrPerformance. A number of planning methods that are applied
cost matrix for belief state is to underactuated systems are relevant to the belief spane pl

0 0 ning problem: rapidly expanding random trees (RRTs) [11],
Q= < 0 0 ) . LQR-trees [12], and nonlinear optimization methods [13].

_ _ . _ _ ~ Presently, we focus on an approach based on nonlinear opti-
Using the above, the Riccati equation for the discrete timgization known as direct transcription. After finding a noti
finite horizon problem is: trajectory through belief space, the trajectory is stabdi us-

B T ing time varying B-LQR about the trajectory. After introdoig
Se = Q4 A Senh the method lanning strat dd trat
- TS,, By 4 By)-BTS,.1 A, (16) e method, we propose a replanning strategy and demanstra
—A; Si11B: (B, St 1B + Ry) t Dt+188, that it is guaranteed to reach an arbitrary belief objecitive

wheres, is the expected cost-to-go matrix for linear-Gaussidite time.
systems,J™ (b;) = bI'S;b;. The optimal action for linear- . o
Gaussian systems is: A. Direct transcription
Direction transcription is an approach to transcribing the
optimal control problem to a nonlinear optimization prable
An important difference between the above and the usual L(BRippose we want to find a path from timeto 7' starting
formulation is that cost is measured with respect to difiereat b; that optimizes Equation 8. Direction transcription pa-
points than those about which the system is linearized. lameterizes the space of possible trajectories by a sefies o
particular, the first term in Equation 8 measures cost with segments. Let be a user-defined integer that defines the
respect to zero covariance wherdéasds the linearization about length of each segment in time steps. Then the number of
the current belief. segments ik = I, Let b, andu},,_, be sets of belief
The following theorem demonstrates that B-LQR is equisstate and action variables that parameterize the trajedator
alent to LQG control for linear-Gaussian systems. terms of the segments. Segmelvegins at timeé and ends at

u* = —(BY Sts1Be + Re) B Sepahibi. (A7)



timeid+d — 1. The cost function, Equation 8, is approximatedivergences. We propose the basic replanning strategyedt

in terms of these segments: in Algorithm 1 (above). On the first time step, the algorithm
T ~ J , solves for a belief space trajectory using direct transionip
(brr,urr) &~ J(byg, ueg) that satisfies the final value constraints on the mean. It is

assumed that such a trajectory always exists and is found by
direct transcription within the planning horizdf, Second, the
algorithm solves for a locally stable policy about the tcapey.

The belief state on the last time step of this segment can Rext, the system executes the policy until the mean comgonen

k
= sTAs+ > T Qm; + @ R, (18)

Jj=1

found by integratingF’ over §: of belief departs from the planned trajectory by more than a
i54+5—1 given thresholdg:
¢(b)) = F(bj,us) + Y Flbeyr,ui) — F(by,us).  (19) My — iy = Ty > 6.
t=1id

It is assumed that the threshold, is chosen such that B-
IJTtQR is stable within the threshold. When the threshold is
violated, the system replans using direct transcriptiod the
process starts over. While we expect that it will be possible
ffs characterize this threshold using sum-of-squares Lyaypu
unction verification techniques from the convex optimiaat
literature, we leave a closer examination of this approach f
vy = ¢(by,uh) future work.

It is now possible to define the nonlinear optimization peoil
that approximates the optimal control problem. We wa
assignments to the variables,., and u}.,, that minimize
the approximate costf (., ,u}.,) subject to constraints that
require each segment to be dynamically consistent with
neighboring segments:

C. Analysis of belief space covariance during replanning

b, = éb_y,uh ) (20) Under Algorithm 1 the mean comppnt_ant 01_‘ pelief can be
shown to reach the final value constraint in a finite number of
Since we have a final value constraint on the mean compong#lanning steps. Essentially, we show that each time thef be
of belief, an additional final value constraint is added: system deviates from the planned trajectory by more than
b = by 1) _covariance decreas_eg by a finite amqunt. Each time thissccur
it becomes more difficult for the belief state mean to exceed
By approximating the optimal control problem using Equahe threshold again. After a finite number of replanning step
tions 19 through 21, it is possible to apply any optimizatiothis becomes impossible and the system converges to the final
method available. In the current work, we use sequentiglue constraint. In the following, we shall denote the $aéc
quadratic programming (SQP) to minimize the Lagrangiamorm of a matrix,A, by ||A||2. The spectral norm of a matrix
constructed from the costs and constraints in Equation&1.9- evaluates to its largest singular value.
At each iteration, this method takes a Newton step found byLemma 1:Suppose that 1) the observation process noise
solving the Karush-Kuhn-Tucker (KKT) system of equationdias non-zero covariance in all directiong;, € {R? : ||3|| =
Ultimately SQP converges to a local minimum. For mor&}, Wio > Wy, > 0, 2) the underlying process dynamics

information, the reader is recommended to [13]. are deterministic, 34, has eigenvalues no greater than one,
. 4) the observations are boundef, < z,,4., 5) the planner
B. Replanning strategy always finds a belief trajectory that meets the final value
constraints within the planning horizof,. Then, the change
Algorithm 1 in covariance||X, — X.4+1]|2, between time, whenm, =0
and timet, whenm,, > 6 (the replanning threshold) is no less
0. initialize b than a constant function &¥,,.;,., zmaz, ¢, 7 = b—a, andA.
1. = = plan found using direct transcription
2. whilem; —m; < 0 Proof: Sincem changes by at leagt over r timesteps,
3. u = time-varying-LQR{, b) there is at least one timestep betwegmandt, (timet.) where
4. b= EKF(b,u,z) Amg = ||meq1 —me|| > £. This implies:
Q < |FCCCT(CCFCCCT + WC)_I(Zchl - Zc+1)|

Since the actual belief transition dynamics are stochastic 7
a mechanism must exist for handling divergences from the
planned trajectory. One approach is to use time varying Tnce
LQR about the planned path to stabilize the trajectory. In
this case, the linearization of the belief system dynamics,

A and B, is made about the planned trajectoby, and and using the properties of the spectral norm, we have that:
uy.7—1. However, while this works for small departures from 0 . - . 1
the planned trajectory, replanning is needed to handlefarg < [ITcCe (CcTeCo + We) ™2 |12 Wi l22mas-

A

”PCCCT(CCFCCZ + WC)_1H2Zmaz-

L _1
I(CTeCF + We) "2 2 < Wi,

nin ||2 )



Dividing through by |1V 2
we have:

|22mae @nd squaring the result,

2
n

2
0
( 1 ) S ||FcCZ(CCFCC? + Wc)ilchcHQ-
TIWiinll2Zmax
Considering the covariance update equation (Equationai),
considering thaf| A.||2 < 1, it must be that

2
0
[Xe = Zepalle > <1>
TIIWoninll2zmas

and the Lemma is true for any value &f [ ]

Since Lemma 1 establishes thatdecreases by a constant
amount each time algorithm 1 replans, the following Theorem
is able to conclude that ultimately becomes so small that it isFig. 1. Comparison of the mean of the planned belief statectaie found
impossible for any observation to cause the mean of thefbelfé B-LQR (the dashed line) with the locally optimal trajegtéound by direct

. . transcription (the solid line).

state to change by more th@nover the planning horizon.

Theorem 2:Under the conditions of Lemma 1 and assum-
ing that tim.e varying B-LQR st'abilizes the trajectory withi g(x:) = z; + w, with zero-mean Gaussian observation noise
the replanning threshold, Algorithm 1 reaches a belief state, ', tion of statew ~ N(-|0,w(z)), where
that satisfies the final value conditions after a finite nundfer ’ '
replanning steps. }(5 2

Proof: Under Algorithm 1, the system does one of two

things: 1) it follows a planned trajectory until time vargiB- h5s a minimum when:, = 5, wherez, is the first element
LQR stabilizes the system within the final value constraintgs , Belief state was modeled as an isotropic Gaussian pdf
or 2) it exceeds the replanning threshold. In the second, cagger the state spacdi = (m,s) € R? x R*. The cost
we have by Lemma 1 that decreases by a constant and nofjynction (Equation 8) used recurring state and action costs
zero amount. For a small enough it is impossible form 10 of B = diag(0.5,0.5) and Q = diag(0.5,0.5), and a final
exceed for a bounded:,... over the finite planning horizon, cost on covariance) = 200. B-LQR had an additional large
T', and the system must follow the planned trajectory until thgyal cost on mean. Direct transcription used a final value
final value constraints are met. B constraint on meany = (0,0), instead. The true initial state
was z; = (2.5,0) and the prior belief (initial belief state)
was b; = (2,2,5). The replanning threshold was = 0.1.

We explored the capabilities of our approach to belief spage each replanning step, direct transcription was initiedi
planning in two experimental domains: the light-dark damaiwith a random trajectory. B-LQR linearized the belief syste

VI. EXPERIMENTS

and the planar grasping domain. dynamics about0, 0, 0.5).
i i 1) Results and discussionkigure 1 shows solutions to
A. The light-dark domain the light-dark problem domain found by B-LQR (the dotted

In the light-dark domain, a robot must localize its positiotine) and by direct transcription (the solid line). The B-
in the plane before approaching the goal. The robot's gbilit QR trajectory shows the integrated policy assuming that th
to localize itself depends upon the amount of light presént assumed observation dynamics were always obtained. The
its actual position. Light varies as a quadratic functiortt@ direct transcription trajectory shows the initial plan fiou
horizontal coordinate. Depending upon the goal positibe, tbefore replanning. Most importantly, notice that even tiiou
initial robot position, and the configuration of the lighhet the B-LQR trajectory is based on a poor linearization of the
robot may need to move away from its ultimate goal in orddxelief dynamics, it performs surprisingly well (comparettwi
to localize itself. Figure 1 illustrates the configuratiohtibe the locally optimal direct transcription trajectory). Hewver,
light-dark domain used in our experiments. The goal pasitiot is clear that B-LQR is sub-optimal because whereas the
is at the origin, marked by aX in the figure. The intensity in locally optimal trajectory lingers in the minimum-noiseyien
the figure illustrates the magnitude of the light over thenpla atz, = 5, the B-LQR trajectory overshoots past the minimum
The robot’s initial position is unknown. noise point tox, = 6.

The underlying state space is the plane,c R2. The Figure 2 illustrates the behavior of the replanning periedm
robot is modeled as a first-order system such that roldm¢ Algorithm 1. The dotted line shows the mean of the
velocity is determined by the control actions,c R?. The belief space trajectory that was found on the first planning
underlying system dynamics are linear with zero processenoistep. The solid line shows the actual trajectory. Whereas the
f(zy,us) = x¢ + u. The observation function is identity,system expected that it began executionzat= (2,2), it



Fig. 2. Comparison of the true robot trajectory (solid lineplahe mean of Fig. 4. Trajectory found using direct transcription for theer-grasp domain.

the belief trajectory that was initially planned by diredrtscription (dotted The dotted line denotes the mean of the belief state trajecidre ellipses

line). sample the covariance matrix at various points along thect@jg The half
circle on the left represents the puck. Just to the right efghck, the end-
effector is illustrated at the approach point.

defined directly in front of the object. Although the end-
effector position is assumed to be known completely, stte i
not observed directly because the object position is unknow
The control actiony, € R?, specifies the end-effector velocity:

f(l’t, Ut) = Tt + Ut.

In order to get a smooth measurement function that is not
discontinuous at the puck edges, the puck was modeled using
Fig. 3. Laser-grasp domain. A range-finding laser (the dashe}l points a symmetric squashing function about the origin. The result

out from the robot end effector. The objective is to move the-efiector Was roughly circular Wi.th a “radius” of approximate@z65:
to a point just in front of the puck on the left (the manipulatpproach The measurement gradiedt, was zero outside of that radius.

configuration). State dependent noise was defined to be large when the laser
scan line was outside the radius of the puck (modeling an
. . unknown and noisy background). The noise function also in-
actually begap 'e'xecut|on at = (2.5,0). As a result_of_ _thlS corporated a low-amplitude quadratic abayt= 5 modeling
confusion, it initially took actions consistent with itsitial . cansor with maximum measurement accuradyuatits away

belief. However, as it moved into the light, it quickly cocted ¢ 0 1he target. The belief space was modeled as a non-
its misperception. After reaching the point of maximum ﬁghisotropic Gaussian in the plané: = (m,s) € R? x R®.

intensity, the system subsequently followed a nearly gittai The parameterization of covariance & rather thanR*

line toward the goal. is a result of incorporating the symmetry of the covariance
. matrix into the representation. The cost function was of the

B. Laser-grasp domain form of Equation 8 withQ = diag(10, 10, 10,10,10), R =

In the laser-grasp domain, a planar robot manipulator mu&t.g(10,10), and A = diag(10000, 0,10000) (denoting no
locate and approach a round puck as illustrated in Figure Beference for covariance in one direction over another).
The robot manipulator position is known, but the puck positi  2) Results and discussiorEigure 4 shows a representative
is unknown. The robot locates the puck using a range-boupldn found by direct transcription that moves the end-édiec
laser range finder that points out from the end-effectorgon along the dotted line from its starting location in the upper
line. The end-effector always points horizontally as iatiéd. right to the goal position in front of the puck (The geometry
In order to solve the task, the manipulator must move back aofithe experiment roughly follows Figure 3). The initial tel
forth in front of the puck so that the laser (the laser is alvawtate wa$, = (9,5, 5,0,5). The ellipses in Figure 4 illustrate
switched on) detects the puck location and then move to ttie planned trajectory of the Gaussian. First, notice that t
grasp approach point. The robot is controlled by specifyirgystem plans to move the laser in front of the puck so that it
Cartesian end-effector velocities. may begin to localize it. Corvariance does not change umil t

1) Setup:The underlying state space,c R?, denotes the end-effector is actually in front of the puck. Also, noti¢eat
position of the manipulator relative to an “approach pointthe plan lingers in front of the puck near the optimal sensor
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Fig. 5. Planned belief trajectory as a function of time stejpe Two black
lines denote the mean of the belief. The three blue lines dghetelements of
covariance. Notice that as the plan is “scanning” the pudferdnt elements
of covariance change in alternation.
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Fig. 6. Comparison between the initially planned trajecttihe blue line)
and the actual trajectory (the black line).

the incorrect prior is gradually corrected during the séagn
process until the true state of the system finally reaches the
origin.

VIl. CONCLUSION

This paper explores the application of underactuated plan-
ning and control approaches to the belief space planning
problem. Belief state dynamics are underactuated because
the number of controlled dimensions (the parameters of a
probability distribution) exceeds the number of indepernde
control inputs. As a result, the dynamics are constrained in
a way that can make planning difficult. Our contribution
is to recast the belief space planning problem in such a
way that conventional planning and control techniques are
applicable. As a result, we are able to find belief space
policies using linear quadratic regulation (LQR) and Itcal
optimal belief space trajectories using direct transwiptWe
provide theoretical results characterizing the effectass of
a plan-and-replan strategy. Finally, we show that the aggro
produces interesting and relevant behaviors on a simpkpgra
problem where it is necessary to acquire information before
acting.

REFERENCES

[1] C. Corcoran and R. Platt, “Tracking object pose and shdpeng
robot manipulation based on tactile information,” IBEE Int'l Conf.
on Robotics and Automatiowol. 2, 2010.

[2] A. Petrovskaya, O. Khatib, S. Thrun, and A. Ng, “Bayesestimation

for autonomous object manipulation based on tactile sefisnr$EEE

Int'l Conf. on Robotics and Automatip2006, pp. 707-714.

C. Papadimitriou and J. Tsitsiklis, “The complexity of mavkdecision

processes,Mathematics of Operations Researalol. 12, no. 3, pp.

441-450, 1987.

S. Miller, A. Harris, and E. Chong, “Coordinated guidanof au-

tonomous uavs via nominal belief-state optimization,” American

Control Conference2009, pp. 2811-2818.

E. Sondik, “The optimal control of partially observable rkav pro-

cesses,” Ph.D. dissertation, Stanford University, 1971.

M. Littman, A. Cassandra, and L. Kaelbling, “Learning jot#s for

(3]

(4]

(5]
(6l

range. During this time, the trajectory makes short jumps up
and down, apparently “scanning” the puck. Finally, as tim%
approaches the planning horizon, the end-effector moves of
to the approach point. Figure 5 provides a more in-depth
look at what is going on while the plan scans the puck[g]
First, notice that the plan spends almost all its time in the
“sweet spot” scanning the puck. Second, notice that diffiere []
elements of covariance change during different phaseseof th
scanning motion. This suggests that during scanning, #@ pfioj
actively alternates between reducing covariance in differ
directions. The effect results from the fact that the dinems [*1]
of the observation (a scalar scan depth) is one while the
Gaussian belief is over a two-dimensional space. At a givéiz]
point in time, it is only possible to minimize one dimensidn o
covariance and the plan alternates between minimizinguari [13]
different dimensions, resulting in the scanning behawar.
nally, Figure 6 illustrates the behavior the replanningtsigy
where time varying B-LQR stabilization was used. Initially
the mean of the system prior is at = (9,5) but the true
state is atr = (10,4.5). The incorrect belief persists until
the system reaches a point in front of the puck. At this point,

partially observable environments: Scaling up,”Rmoceedings of the
Twelfth International Conference on Machine Learniig95.

M. Hauskrecht, “Value-function approximations for paty observable
markov decision processegiburnal of Atrtificial Intelligence Research
vol. 13, pp. 33-94, 2000.

S. Prentice and N. Roy, “The belief roadmap: Efficient pliag in linear
pomdps by factoring the covariance,” i2th International Symposium
of Robotics Researct2008.

S. Yoon and R. Fern, A. Givan, “FF-replan: A baseline foolmbilistic
planning,” inProceedings of the International Conference on Automated
Planning and Scheduling2007.

D. BertsekasPynamic Programming and Optimal Control: 3rd Edition
Athena Scientific, 2007.

S. Lavalle and J. Kuffner, “Randomized kinodynamic pleagy’ In-
ternational Journal of Robotics Reseayolol. 20, no. 5, pp. 378-400,
2001.

R. Tedrake, “LQR-trees: Feedback motion planning onrspaandom-
ized trees,” inProceedings of Robotics: Science and Systems (RSS)
2009.

J. Betts Practical methods for optimal control using nonlinear pram-
ming Siam, 2001.



