
Domain and Plan Representation for Task and Motion Planning in
Uncertain Domains

Leslie Pack Kaelbling and Tomás Lozano-Pérez

I. INTRODUCTION

As robots become more physically robust and capable
of sophisticated sensing, navigation, and manipulation, we
want them to carry out increasingly complex tasks. A robot
that helps in a household must plan over the scale of hours
or days, considering abstract features such as the desires
of the occupants of the house, as well as detailed models
that support locating and getting objects, whether ingredients
and cooking tools for preparing a meal or finding medicines
for an elderly patient. The complexity of such tasks derives
from very long time horizons, large numbers of objects to
be considered and manipulated, and fundamental uncertainty
about properties and locations of those objects.

This paper describes a tightly integrated approach, weav-
ing together perception, estimation, geometric reasoning,
symbolic task planning, and control to generate behavior in
real robots that robustly achieves tasks in complex, uncertain
domains. It is founded on four main principles:
• Planning explicitly in the space of the robot’s beliefs
about the state of the world is necessary for intelligent
information-gathering behavior;
• Planning with highly simplified domain models is ef-
ficient and can be made robust by using perception to
detect execution failures and replanning online;
• Combining logical and geometric reasoning enables
effective planning in extremely large state spaces;
• Online hierarchical planning interleaved with execution
enables effective planning over very long time horizons.

Recent research [1], [2], [3] has established the value
of planning in belief space using simplified models and
replanning. We have recently developed an approach to
combining logical and geometric methods with online hi-
erarchical planning that is effective in large deterministic
domains with long planning horizons [4]. Our goal is to
integrate these two ideas into a method for planning, acting,
and estimating in large uncertain robotic domains.

Several other approaches to integrating task and motion
planning exist, although none of them treats issues of uncer-
tainty. In the work of Cambon et al. [5], a symbolic domain
acts as a constraint and provides a heuristic function for a
complete geometric planner. Plaku and Heger [6] extend this
approach to handle robots with differential constraints and
provide a utility-driven search strategy. The work of Wolfe
et al. [7] provides a hierarchical combined task and motion
planner based on hierarchical transition networks (HTNs)
and applies it to a manipulation-planning problem.

CSAIL, MIT, Cambridge, MA 02139 {lpk, tlp}@csail.mit.edu

Hierarchical task and motion planning Our basic ap-
proach to integrating task planning and motion planning
has two key properties: (1) It is aggressively hierarchical.
It makes choices and commits to them, limiting the length
of plans and exponentially decreasing the amount of search
required. (2) It operates in the domain of continuous geom-
etry, and does not require any a priori discretization of the
state or action spaces.

Most work in hierarchical planning uses a hierarchical
structure as a way to speed the construction of a complete
low-level plan [8] . Instead, we construct a plan at an abstract
level, commit to it, and then recursively plan and execute
actions to achieve the first step in the abstract plan without
constructing the rest of the plan in detail. The risk associated
with this approach is that the abstract plan might not be
executable: the particular way that the first step is carried
out could make it impossible to carry out subsequent steps,
at least without undoing the results of earlier steps. We
attempt to avoid such failures by constraining the abstract
plan steps so that they are serializable; that is, so that for any
realization of the first plan step, there exist realizations for
the subsequent ones. So, we simply execute the first abstract
step, observe the resulting world state, and then plan in detail
for the next one. This approach results in dramatic speed-ups
from the hierarchical problem decomposition when serializ-
ability holds. If serializability fails, an interleaved plan is
constructed that achieves the effects of both steps; as long
as actions in the environment are ultimately reversible, then
any goal can be achieved, at the expense of sub-optimality
in the behavior.

In complex, high-dimensional geometric spaces, it is
crucial to avoid indiscriminate discretization. We handle
the integration of continuous geometric planning with task
planning by using geometric ‘suggesters’, which are fast, ap-
proximate geometric computations that construct appropriate
choices for the parameters of an operator.

Handling uncertainty This paper describes an approach
to hierarchical planning under uncertainty about the out-
comes of actions as well as about the present state.

It manages uncertainty in the outcome of actions by plan-
ning in a determinized approximation of the original domain
and replanning when execution does not have the expected
results. The hierarchical structure of plans allows localized
execution monitoring and replanning, in many cases handling
an execution failure by replanning just the current subtask
rather than the whole hierarchical plan.

It manages uncertainty about the current state of the
world by planning in the space of beliefs. Planning in



Replan
AlarmCleared = T

Plan 3
AlarmCleared = T

MoveTo(c, d) CheckRm(d) Clear

Plan 4
RobotRm = d

Replan
RobotRm = d

Plan 5
RobotRm = d ClearPrim

CL(cd, 0.5, 0.5) FL(cd, 0.35, 0.1) FL(cd, 0.5, 0.1) MoveTo(c, d)

CoarseLook(cd) FineLook(cd, 1.04) GoThru(0.88) Antecedent Fail
PNMDoorLoc(cd, 0.5, 0.1)

CL(cd, 0.5, 0.1) MoveTo(c, d)

CoarseLook(cd) GoThru(0.73) Replan
RobotRm = d GoThru(0.94)

Plan 1
AlarmCleared = T

MoveTo(b, bc, c) CheckRm(c) Clear

Plan 2
RobotRm = c

Expected obs
AlarmIn(c) = T

CL(bc, 0.5, 0.5) FL(bc, 0.35, 0.1) FL(bc, 0.5, 0.1) MoveTo(b, c)

CoarseLook(bc) FineLook(bc, 7.46) GoThru(6.97)

Fig. 1. Process of planning and execution while searching for and silencing an alarm.

belief space is generally quite complex, because it seems
to require representing and searching for trajectories in
a very high-dimensional continuous space of probability
distributions. This is analogous to the problem of finding
plans in very high-dimensional continuous space of con-
figurations of a robot and many objects. We take direct
advantage of this analogy and use symbolic fluents to specify
limited properties of belief states, as our previous work [4]
does for properties of geometric configurations. Regression-
based planning allows the construction of high-level plans to
achieve goals articulated in terms of those fluents, without
explicitly formalizing the complete dynamics on the under-
lying continuous space.

II. EXAMPLE

Consider a mobile robot whose task is to find an alarm
that is going off and silence it. The robot is in a house and
knows the connectivity of the rooms, and is able to stay
well localized with respect to the objects in the house, but
is uncertain, a priori, about the location of the doors within
the walls of the house. The belief space involves continuous
aspects (locations of doors) and discrete aspects (which room
contains the alarm). The robot needs to explicitly sense in
order to locate the doors. We assume it has two sensors: one
with low accuracy and a wide field of view, and one with
high accuracy but a narrower field of view. These (idealized)
sensors each deliver an estimated location of the center of
the door; the sensed location is a random variable with the
true location as the mean and Gaussian noise.

Figure 1 shows the process of planning and execution in
order to achieve the goal of silencing the alarm. Blue nodes
represent planning problems, pink nodes represent subtasks,
and green nodes represent primitive actions. Orange and
yellow nodes indicate replanning in response to execution
failures or violations of expected observations.

There are four rooms in the house. The robot is initially
in room B. It initially believes that the alarm is most likely
to be in room C, so it plans (Plan 1) to move to room C,
search for the alarm, and silence it. To move from room B

to room C, it needs to locate the door precisely enough to go
through it. So, it plans (Plan 2) to first look with the coarse
(wide field-of-view) sensor, then refine the estimate with the
more accurate sensor, and finally move through the door.

The robot executes the first step and obtains an observation
which is used to update an estimate of the position of the
door, and the next subtask, which is to aim the narrow FOV
sensor at the most likely location of the door is considered.
The sensor is positioned and an observation received. This
observation decreases the uncertainty sufficiently that the
next planned observation is not necessary and the robot
moves through the door from room B to room C.

At this point, the robot expected to hear the alarm. It does
not hear it (indicated by the orange node), so the remaining
plan is invalidated, and a new plan (Plan 3) is made, taking
into account the knowledge that the alarm is not in room
C. It plans to move to room D: this isn’t the most likely
location, but it is cheapest, because moving to A would
take an extra step. The robot does not know the location
of the door between C and D, so again it plans to gain
information. This goes much as before, except that when
the robot attempts to go through the door, it fails (because
its estimate of the door’s location was too far wrong), as
indicated by the yellow node. Information gained from the
failure is used to update its estimate of the position of the
door, and it decides that it does not have enough information
to attempt to go through again (indicated by the orange
node), so it replans (Plan 5) to look before attempting to
go through the door. The attempt to go through the door
fails again, but it is repeated with success. Once in room
D, the robot hears the alarm and successfully clears it. This
example illustrates: the use of the plan hierarchy to monitor
for important changes, localized replanning, planning to gain
information, and robust execution. We examine some of the
details of this example in subsequent sections.

III. PROBABILISTIC DYNAMICS

The traditional approach to planning in domains with prob-
abilistic dynamics is to make a conditional plan, supplying



an action to take in response to any possible outcome of
a preceding action [9]. For efficiency and robustness, our
approach to stochastic dynamics is to construct a determin-
istic approximation of the dynamics, use the approximate
dynamics to build a plan, execute the plan while perceptu-
ally monitoring the world for deviations from the expected
outcomes of the actions and replan when deviations occur.
This method has worked well in control applications [1], [2],
[3] as well as symbolic planning domains [10].

Determinization There are several potential strategies for
constructing a determinized model. A popular approach is to
assume, for the purposes of planning, that the most likely
outcome is the one that will actually occur. An alternative
method is to consider all possible outcomes, but rather than
modeling them as a randomized choice that is made by
nature, instead modeling them as a choice that can be made
by the agent. We integrate the desire to have a plan with
a high success probability with the desire to have a plan
with low action cost by adopting a model where, when
an undesirable outcome happens, the state of the world is
assumed to stay the same, allowing the robot to repeat that
action until it has the desired result. If the desired outcome
has probability p and the cost of taking the action is c, then
in this model the expected cost to make the transition to the
desired state is c/p. We will search for the plan that has the
least cost under this model.

Interleaved planning and execution The planning and
execution process can be thought of as a depth-first tree
traversal, implemented as follows:

HPN(belief , goal , abs,world):
p = PLAN(belief , goal , abs)
for (ai, gi) in p

while HOLDS(gi-1 , belief ) and not HOLDS(gi , belief )
if ISPRIM(ai)

obs = world .EXECUTE(ai)
belief .UPDATE(ai, obs)

else
HPN(belief , gi, NEXTLEVEL(abs , ai), world )

if not HOLDS(gi , belief ) return

It is invoked by HPN(belief , goal , abs,world), where
belief is a description of the robot’s belief about the current
state of world; goal is a conjunction of fluents (symbolic
predicates with time-varying values) describing a set of goal
states; abs is a structure that specifies, for any fluent, the
number of times it has served as a plan step in the HPN
call stack above it; and world is an actual robot or a
simulator in which primitive actions can be executed. In the
prototype system described in this paper, world is actually
a geometric motion planner coupled with a simulated or
physical robot. The PLAN procedure depends on a set of
operator descriptions that describe the domain dynamics and
returns a list ((−, g0), (a1, g1), ..., (an, gn)) where the ai are
operator instances, gn = goal , gi is the weakest precondition
of gi+1 under ai, and belief ∈ g0. PLAN works by goal
regression; it computes, for each plan step, ai, the weakest
conjunctive subgoal for that step, gi−1; these subgoals serve
as the goals for the planning problems at the next level down

in the hierarchy.
HPN starts by making a plan p to achieve the top-level goal.

Then, it executes the plan steps, starting with action, a1. Each
plan step is executed repeatedly, until either its desired post-
condition, gi, holds in the environment, which means that
the execution has been successful, or until its pre-condition,
gi−1 ceases to hold in the environment, which means that
the suffix of the plan starting with this step can no longer be
expected to achieve the goal. If the pre-condition becomes
false, then execution of the plan at this level is terminated
and control is returned to the level of abstraction above.

After each primitive action is executed, an observation is
made in the world and the belief state is updated to reflect
both the predicted transition and the information contained in
the observation obs . Hierarchical planning and information
gain fit together nicely: the system can make a high-level
plan to gather information and then use it, and the interleaved
hierarchical planning and execution architecture ensures that
detailed planning for how to use the information naturally
takes place after the information has been gathered.

IV. SYMBOLIC PLANNING IN BELIEF SPACE

Traditional belief-space planning approaches either at-
tempt to find entire policies, mapping all possible belief
states to actions [11], [12], [13] or perform forward search
from a current belief state, using the Bayesian belief-update
equation to compute a new belief state from a previous one,
an action and an observation [14]. In order to take advantage
of the approach outlined above to hierarchical planning and
execution, however, we will take a regression-based approach
to planning in belief space.

Fluents and regression In symbolic planning, fluents are
logical assertions used to represent aspects of the state of
the external physical world; conjunctions of fluents are used
to describe sets of world states, to specify goals, and to
represent regression conditions. A symbolic world state can
be represented in complete detail by an assignment of values
to all possible fluents in a domain.

Real world states in robotics problems, however, are
highly complex geometric arrangements of objects and robot
configurations which cannot be completely captured in terms
of logical fluents. However, logical fluents can be used to
characterize the domain at an abstract level for use in the
upper levels of hierarchical planning.

In this paper, we use fluents to characterize aspects of the
robot’s belief state, for specifying goals and regression condi-
tions. For example, the condition Pr(In(cup, cupboard)) >
0.95, which describes a set of belief states, can be written
using a fluent such as PrIn(cup, cupboard , 0.95), and might
serve as a goal for planning. For any fluent, we need to be
able to test whether or not it holds in the current belief state,
and we must be able to compute the regression of a set of
belief states described by a conjunction of fluents through
each of the robot’s actions. Thus, our description of operators
will not be in terms of their effect on the state of the external
world but in terms of their effect on the fluents that char-
acterize the robot’s belief. Our work is informed by related



work in partially observed or probabilistic regression [15],
[16], [17]. In the rest of this section, we provide examples
of representations of beliefs using logical fluents, for both
discrete and continuous domains, and illustrate them on the
example from section II.

Knowledge and lack of knowledge Consider a situation
in which there is initial uncertainty about the state of the
world, but where some actions can generate observations that
will completely resolve uncertainty about a particular fluent.
Aspects of many real-world domains have this character: a
robot may not know the location of a particular object in
the house, but when it looks inside a cupboard, it will either
know that the object is in that cupboard or know that it is
not. We use explicit logical representation of knowledge and
lack of knowledge [18] to model such situations.

The knowledge of an agent with respect to a property φ
of the external world can be characterized in two different
ways. It may be that the agent knows the value of φ,
defined as K(φ = v) ≡ Pr(φ = v) > 1 − ε, for some
fixed small ε. Alternatively, we might characterize an agent’s
future knowledge state by saying that it knows a value of φ:
KV (φ) ≡ ∃v.K(φ = v). This formula characterizes the set
of belief states in which the agent is relatively sure about
the value of φ, without committing to which value it will be.
Knowing a value can be particularly useful as a precondition
to a more concrete action that will make use of the fluent
value: knowing the location of an object in order to pick it
up, or knowing a phone number in order to call it. We use K
and KV as shorthand for describing fluents that make these
knowledge assertions about the belief state.

Consider an operator with the knowledge result KV (φ).
Such an operator is not sufficient to establish a result K(φ =
V ) during planning: because it cannot know in advance what
observation will result, it cannot promise what the resulting
value of φ will be. We apply the determinization strategy of
allowing the planner to choose any of the possible outcomes,
with a cost inversely proportional to their probability. Thus,
we can treat a single operator with a KV (φ) effect as
multiple operators, each of which achieves the condition
K(φ = V ) with a cost c/Pr(φ = V ). We also add the
precondition that the value of φ is not yet known.

Example Now we re-examine process shown at the top
level of figure 1 in more detail. The operator descriptions are:

MOVETO(Q, R): K(RobotRoom = R)
pre: K(RobotRoom = Q),K(adjacent(Q,R) = T)

CHECKROOM(R): K(AlarmIn(R) = T)
pre: K(RobotRoom = R),KV (AlarmIn(R)) = F
cost: 1/Pr(AlarmIn(R) = T)

CLEAR(R): K(AlarmClear = T)

pre: K(RobotRoom = R),K(AlarmIn(R) = T)

The first line of each one gives the name of the operator
and its arguments, followed by the fluent that is the main
effect of the operator. Following is a list of fluents describing
the preconditions, and a cost (omitted if the cost is 1).

cost=0
 K(AlarmCleared = T)

cost=1
 K(AlarmIn(a) = T)
 K(RobotRoom = a)

A0:Clear(a)

cost=1
 K(AlarmIn(c) = T)
 K(RobotRoom = c)

A0:Clear(c)

cost=1
 K(AlarmIn(b) = T)
K(RobotRoom = b)

A0:Clear(b)

cost=6
 K(RobotRoom = a)

A0:CheckRoom[a]

cost=2.25
 K(RobotRoom = c)

A0:CheckRoom[c]

cost=100001
K(RobotRoom = b)

A0:CheckRoom[b]

cost=4.25
K(RobotRoom = b)

A0:MoveTo[b, c]

Fig. 2. Part of the regression search to find the room with the alarm.

We’ll consider a simpler case in which there is a prior
probability of 0.2 that the alarm is in room A and a
probability of 0.8 that it is in room C; the planner generates
the regression search tree in figure 2. Each node contains a
list of fluents specifying conditions under which that partial
plan will achieve the goal condition; green nodes represent
the solution path.

The final operator must be to clear the alarm: this can
happen only if the robot and the alarm are in the same
room, so there are three ways in which this operator can be
executed. The green successor node requires that the robot
know that the alarm is in room C. The only way for it to
come to know that is to perform the CHECKROOM operator
in room C; that operator has the precondition that the robot
be in room C, and that is achieved by an initial step of
moving from room B to room C. The search also considered
solutions that involved finding the alarm in rooms A and B.
Compare the costs on the paths that check those rooms to
the path for checking room C. Each primitive action has a
cost of 1; but because the outcome of checking a room is
probabilistic, the cost for selecting the outcome in which we
find the alarm is 1/Pr(AlarmIn(R) = T ). So, the cost of
finding the alarm in room A is 1/0.2 = 5, the cost of finding
it in room B is effectively infinite, and the cost of finding
it in room C is 1/0.8 = 1.25. For this reason, it searches
in room C. It will not always go to the most likely room,
however: the costs of other action and uncertainties along
the way will be combined to find the least cost path.

When this plan is executed, the robot moves to room
C, checks, and finds that the alarm is not there. It does
a belief-state update based on this information. This plan
is terminated and a new plan is constructed, which causes
the robot to move to room A, find the alarm, and clear it.
This example illustrates the strength and simplicity of the
approach of planning in belief space with a determinized
dynamics model: it forces the robot to perform information-
gathering actions and robustly handles cases where the
information is ’surprising’ by replanning.

Characterizing belief of a continuous variable We
might wish to describe conditions on continuous belief



distributions, by requiring, for instance, that the mean of
the distribution be within some value of the target and the
variance be below some threshold. Generally, we would
like to derive requirements on beliefs from requirements for
action in the physical world. So, in order for a robot to move
through a door, the estimated position of the door needs to
be within a tolerance equal to the difference between the
width of the robot and the width of the door. The variance
of the robot’s estimate of the door position is not the best
measure of how likely the robot is to succeed: instead we
will use the concept of the probability near mode (PNM) of
the distribution. It measures the amount of probability mass
within some δ of the mode of the distribution. So, the robot’s
prediction of its success in going through the door would be
the PNM with δ equal to half of the robot width minus the
door width.

For a planning goal of PNM (X, δ) > θ, we need to
know expressions for the regression of that condition under
the a and o in our domain. In the following, we determine
such expressions for the case where the underlying belief
distribution on state variable X is Gaussian, the dynamics
of X are stationary, a is to make an observation, and the
observation o is drawn from a Gaussian distribution with
mean X and variance σ2

o .
To guarantee that PNM (Xt+1, δ) > θt+1 holds after

taking action a and observing o, we must guarantee that
PNM (Xt, δ) > PNMregress(θt+1, δ, σ

2
o) holds on the pre-

vious time step, where

θt = PNMregress(θt+1, δ, σ
2
o) = erf

(√
erf−1(θt+1)2 −

δ2

2σ2
o

)
.

Example Now we can understand the process shown at
the lower level of figure 1 in more detail in terms of the
operator descriptions:

MOVETO(Q,D,R, θ) : K(RobotRoom = R):
pre: K(RobotRoom = Q),K(adjacent(Q,D,R) = T),

PNMDoorLoc(D, θ, doorMargin) = T
prim: GOTHRU
cost: 1/θ

COARSELOOK(D, θ, δ) : PNMDoorLoc(D, θ, δ) = T:
pre: PNMDoorLoc(D,PNMRegress(θ, δ, σ2

coarse), δ) = T

FINELOOK(D, θ, δ, θfov ) : PNMDoorLoc(D, θ, δ) = T:
pre: PNMDoorLoc(D,PNMRegress(θ, δ, σ2

fine), δ) = T,
PNMDoorLoc(D, θfov , fov/2) = T

cost: 1/θfov

The MOVETO operator is elaborated with argument D for
door, and a precondition that the location of the door be
known to within the margin between the robot and the door
with probability θ. When the primitive is executed, it will
drive the robot as if the door were located at the mode of
the belief distribution. The θ value is a free parameter; the
planner tries a small number of samples of that value. The
higher θ, the lower the cost of the operator, because the
more likely it is to succeed. We have two operators that
can achieve a condition on PNMDoorLoc. The first uses

cost=0
 RobotRoom() = c

cost=2.0
 PNMDoorLoc(bc, 0.5, margin) = T

RobotRoom() = b

A1:MoveTo[b, bc, c]

cost=4.0
 PNMDoorLoc(bc, 0.35, margin) = T

 PNMDoorLoc(bc, 0.5, fov) = T
RobotRoom() = b

A0:FineLook[bc, 0.5, margin]

cost=6.0
PNMDoorLoc(bc, 0, margin) = T
 PNMDoorLoc(bc, 0.5, fov) = T

RobotRoom() = b

A0:FineLook[bc, 0.5, fov]

cost=7.0
PNMDoorLoc(bc, 0, margin) = T

PNMDoorLoc(bc, 0, fov) = T
RobotRoom() = b

A0:CoarseLook[bc, 0.5, fov]

Fig. 3. Planned action sequence for going through door

the coarse sensor, and simply uses the PNM regression
condition to determine the precondition on the knowledge
about the door’s location. The σcoarse is fairly high. The
FINELOOK operator requires aiming a sensor; it will aim it at
the mode of the belief distribution, and will only see the door
if its center is within the sensor’s field of view. This sensor’s
observations have a much smaller standard deviation. This
operator has a free parameter θfov , which governs both the
cost of the operator based on its likelihood of success and the
stringency of the condition on how well the door’s location
is already known.

If the robot attempts to move through the door and fails,
or if it tries to look with the fine sensor and fails to see the
door, information is gained, and the belief-state update will
reflect that. Given this particular formalization of the domain,
however, the planner cannot explicitly decide to use these
operators to gain information. If it were important, those
information-gain aspects could be formalized.

Figure 3 shows the regression plan for going through the
door. The goal is for the robot to be in room C. It selects a
version of the MOVETO operator that requires the door be
localized to within an appropriate margin with probability
0.5 (which means that half of the attempts to go through the
door will fail, on average). If attempts to go through the door
had higher cost, it would select a version of this operator
that was less likely to fail. Now, we have to find a way
to gain information. The FINELOOK operator is used twice,
until there is no a priori requirement on the knowledge of the
door’s location, under the assumption of getting observations
from the fine sensor. However, using the fine sensor requires
enough information to aim it, which introduces the require-



ment of knowing the location to within its field of view with
probability at least 0.5. The COARSELOOK operator is used
to establish this condition.

Although the computation of the regression conditions on
information gain from the door sensors assumes the belief
state is Gaussian, the state estimator need not use that repre-
sentation. Our implementation uses a particle filter, which is
able to represent the multi-modality of the belief distribution
that arises, e.g., when the fine sensor looks and fails to see
the door. The process of searching for the location of the door
can be shown to converge in a finite number of replanning
steps if the state estimation is exact: on each step, the robot
either looks at or tries to move through the location that is the
mode of its belief distribution. In so doing, it either receives
negative information, which will rule out this location and
increase the probability assigned to other locations, or it
receives positive information, increasing the likelihood of the
mode. In both cases, it non-trivially increases the probability
mass associated with the true location, so that eventually
the distribution will be as concentrated as we require. This
argument is a version of Wald’s sequential analysis [19].

V. ONGOING WORK

To support general-purpose operations in complex do-
mains, we need to represent distributions over geometric and
non-geometric properties of and relations among objects in
the environment. Exact belief-state estimation in these large
models very difficult. We consider highly factored models,
and assume that the basic perceptual mechanism, given
models of individual objects or object classes and a prior on
whether and where they might appear in images, can deliver
detections of objects, including labels, 3D pose estimations,
and degree of confidence. The state of the estimator consists
of a set of objects and a distribution over their properties and
relations. Poses of objects may be represented in a single
global frame with correlated error (as in many simultaneous
localization and mapping methods [20], [21]; or they may
be represented as a collection of pairwise marginals.

The state estimator would have the following steps: (1)
Apply world dynamics to previous belief; (2) Add newly
perceived objects; (3) Reason about identity; merge new
detections with existing objects; and (4) Perform belief
propagation to determine the marginals on the fluents. One
important technical problem is how to represent probability
distributions on 6-DOF relative poses. We need to represent
relative poses among objects, between object and robot,
between robot base and its hand, etc. Most work in state
estimation is concerned only with translations between point
features, but for application involving manipulation of ob-
jects, rotations are crucially important.

A pose consists of a rotation (a unit quaternion) and
a translation (a vector in 3 space). We are developing a
novel distribution on poses, consisting of a joint Bingham
distribution on the rotation [22] and a Gaussian on the
translation. To use this distribution in the state estimator, we
must be able to condition on observations, and to compute
the distribution on the composition of two transforms from

the distributions on the individual transforms. Unfortunately,
the distribution is not closed under these operations, but we
believe that good approximations can be achieved through
moment matching.

Crucial to efficient and effective state estimation is the
control of attention and ’priming’ by the planning and control
module. At the physical level, the planning and control
module must ensure that the robot takes actions to gather
information, such as ensuring that the robot is in a position
and its cameras are at an angle that puts the objects of interest
in the field of view. The state estimator can also feed its
predictions about what it expects to see into the perception
module: estimating the poses of objects already detected or
the types of objects likely to be encountered for the first time
allows the perception to be more efficient.

REFERENCES

[1] T. Erez and W. Smart, “A scalable method for solving high-
dimensional continuous POMDPs using local approximation,” in UAI,
2010.

[2] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space
planning assuming maximum likelihood observations,” in RSS, 2010.

[3] N. E. D. Toit and J. W. Burdick, “Robotic motion planning in dynamic,
cluttered, uncertain environments,” in ICRA, 2010.

[4] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in ICRA, 2011.

[5] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” International Journal of
Robotics Research, vol. 28, 2009.

[6] E. Plaku and G. Hager, “Sampling-based motion planning with sym-
bolic, geometric, and differential constraints,” in ICRA, 2010.

[7] B. Marthi, S. Russell, and J. Wolfe, “Combined task and motion
planning for mobile manipulation.” in ICAPS, 2010.

[8] ——, “Angelic semantics for high-level actions,” in ICAPS, 2007.
[9] D. S. Weld, “Recent advances in AI planning,” AI Magazine, vol. 20,

no. 2, pp. 93–123, 1999.
[10] S. W. Yoon, A. Fern, and R. Givan, “FF-replan: A baseline for

probabilistic planning,” in ICAPS, 2007.
[11] R. D. Smallwood and E. J. Sondik, “The optimal control of partially

observable Markov processes over a finite horizon,” Operations Re-
search, vol. 21, pp. 1071–1088, 1973.

[12] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, 1998.

[13] S. Sanner and K. Kersting, “Symbolic dynamic programming for first-
order POMDPs,” in AAAI, 2010.

[14] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online planning
algorithms for pomdps,” Journal of Artificial Intelligence Research,
2008.

[15] C. Boutilier, “Correlated action effects in decision theoretic regres-
sion,” in UAI, 1997.

[16] C. Fritz and S. A. McIlraith, “Generating optimal plans in highly-
dynamic domains,” in UAI, 2009.

[17] R. B. Scherl, T. C. Son, and C. Baral, “State-based regression
with sensing and knowledge,” International Journal of Software and
Informatics, vol. 3, 2009.

[18] R. P. A. Petrick and F. Bacchus, “Extending the knowledge-based
approach to planning with incomplete information and sensing,” in
ICAPS, 2004.

[19] A. Wald, “Sequential tests of statistical hypotheses,” The Annals of
Mathematical Statistics, vol. 16, no. 2, 1945.

[20] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial re-
lationships in robotics,” in Proceedings of the Uncertainty in Artificial
Intelligence (UAI) Conference, 1986, pp. 435–461.

[21] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and
mapping (SLAM): Part I the essential algorithms,” Robotics and
Automation Magazine, 2006.

[22] K. V. Mardia and P. E. Jupp, Directional Statistics. John Wiley and
Sons, 2000.


