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Abstract The limited nature of robot sensors make many importantticb@rob-
lems partially observable. These problems may requireytsies to perform com-
plex information-gathering operations. One approach teirsp these problems is
to create plans ibelief-spacethe space of probability distributions over the under-
lying state of the system. The belief-space plan encodeastegy for performing a
task while gaining information as necessary. Most appresth belief-space plan-
ning rely upon representing belief state in a particular \{tspically as a Gaus-
sian). Unfortunately, this can lead to large errors betwdgenassumed density
representation of belief state and the true belief statées paper proposes a new
sample-based approach to belief-space planning that lesdomputational com-
plexity while allowing arbitrary implementations of Bay#ékering to be used to
track belief state. The approach is illustrated in the cdrdgéa simple example and
compared to a prior approach. Then, we propose an applicafithe technique
to an instance of the grasp synthesis problem where a robst simaultaneously
localize and grasp an object given initially uncertain abjgarameters by planning
information-gathering behavior. Experimental resulesresented that demonstrate
the approach to be capable of actively localizing and graspbxes that are pre-
sented to the robot in uncertain and hard-to-localize carditgpns.

1 Introduction

A fundamental objective of robotics is to develop systenad ttan perform tasks
robustly even in unstructured environments. One way toesehthis is to create a
planner capable of simultaneously localizing the statbefklystem and of reaching
a particular goal state. It is common to model control protdeuch as these as par-
tially observable Markov decision processes (POMDPS). ¢l@w in general, find-
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ing optimal solutions to POMDPs has been shown to be PSPAGIplete [1]. Even
many approximate approaches are computationally comiiiexime complexity of
standard point-based algorithms, such as HSVI and SARS@Rponential in the
planning horizon [2, 3, 4]. These algorithms calculate gie8 inbelief-spacethe
space of probability distributions over the underlyingstspace. Very few of these
algorithms can handle continuous state and action spacék [5

In an effort to avoid the computational complexity of cragtpolicies, a new set
of approaches have recently been proposed which create péesed on expected
information content. In one class of approaches, large rusntf candidate trajec-
tories in the underlying state space are evaluated in tefrtteednformation that
is likely to be gained during execution [7, 8, 9]. Trajectésriare selected that opti-
mize information content or minimize the likelihood of dslbns. These approaches
work well in scenarios where the likelihood of generatinipimation-gathering tra-
jectories by sampling the underlying space is high. A difgrclass of approaches
create plans in a parametrization of belief-space [10, 2]L, These approaches are
potentially better positioned to generate complex infdiomagathering plans, but
since they plan directly in the belief-space, the dimeralignof the planning prob-
lem is potentially very large. With the exception of [12]ethlanning approaches
listed above assume that Bayes filtering will be performédgia Gaussian density
function [10, 11, 7, 8, 9]. However, the popularity of the e filter relative to
the extended Kalman filter or unscented Kalman filter suggtbstt in many robot
problems, belief state is not well-represented as a Gaussiathermore, simply
extending an approach such as in [10, 11] to non-Gaussiarbditons quickly
results in an intractable planning problem because of tgh Himensionality of
typical non-Gaussian parametrizations.

This paper proposes an approach to planning in high-diraeakbelief-spaces
that tracks belief state using an accurate, high-dimeasidter, but creates plans
using a fixed-dimensional sampled representation of béli&f leave the imple-
mentation of the high-dimensional filter as a design chdice expect that it will
be a histogram filter or a particle filter. In order to createesvrplan, the high-
dimensional belief state is projected onto a hypothesiserunderlying state space
and a set of sampled competing states. Plans are createdethatate observa-
tions that differentiate the hypothesis from the other damwhile also reaching
a goal state. During execution, we monitor KL divergenceveen the actual (high-
dimensional) belief-space trajectory and a belief-spagedtory associated with
the plan. If divergence exceeds a threshold, we halt exacatid create a new plan
starting from the current belief (this re-planning appto& similar to that taken
in [10, 11]). In a technical report that expands upon thisspawe have shown that
if each new plan found has a below-threshold cost, then therithm eventually
localizes the true state of the system and reaches a goahregih probability
one [13]. We illustrate the approach in the context of a oineedsional manipula-
tion problem and compare it to the approach proposed in [i®dn, we show that
the approach can be used to solve a version of the grasp sigifiteblem where
the robot must simultaneously localize and grasp an obj&etalgorithm generates
robot arm trajectories that gain information by “scannitigé boxes using a laser
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scanner and pushing one of the boxes as necessary in ordgntofgrmation. The
algorithm terminates in a pre-grasp configuration thakiyi to lead to a successful
grasp. The approach is tested over a range of randomly edlbok configurations.

2 Problem Statement

This paper is concerned with the problem of reaching a digjoal state when the
initial state is uncertain and may only be estimated basquhaotial or noisy obser-
vations. Consider a discrete-time system with continuauslimear deterministié
process dynamics,

X1 = (%, W), 1)

where statex € R", and actionu € R, are column vectors. At each time step, the
system makes an observatiang R™, that is a non-linear stochastic function of
state:

z =h(%)+ v, (2)

wherev; ~ N(0,Q) is zero-mean Gaussian noise with variaqce

Bayesian filtering can be used to estimate state based ansdtiken and ob-
servation perceived. The state estimate is representedobgbability distribution
function, ri(x; b), that is a function of the parameter vectox 2. We will refer to
b, (and sometimes the probability distributiam(x; b)) as thebelief state Suppose
that at timet, the system starts in belief stat®, takes actiony, and perceives ob-
servationz. 1. Then, belief state can be updated to incorporate the nesniation
using the Bayesian filter update equation. For determmisticess dynamics, it is:

11X, bt )P(z41]X, W)
P(z41)

where we implicitly assume th&(z1) # 0. Although, in general, it is impossi-
ble to implement Equation 3 exactly using a finite-dimenalqgrarametrization of
belief-space, a variety of approximations exist in pracfic4].

The objective of belief-space planning is to achieve tagkalves with a given
minimum probability. Specifically, we want to reach a befitdte b, such that

m(f (X w);bya) = @)

O(b,r,xg) = / T(X+ Xg; b) > w, 4)

XEBn(r)

whereBn(r) = {x € R" x"x < r?} denotes the-ball in R", for somer > 0, xg € R"
denotes the goal state, ana denotes the minimum probability of success. It is
important to notice the similarities between this problem the more general par-
tially observable Markov decision process (POMDP) framdgwBoth problems are

1 Although we have formally limited ourselves to the case of zeoz@ss noise, we find in Sec-
tion 4 that empirically, our algorithm performs well in enviiments with bounded process noise.
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concerned with controlling partially observable systehiewever, whereas in the
POMDP formulation, the objective is to minimize the expéatest, in our problem,
the objective is to reach a desired region of state spaceangtiaranteed minimum
probability of success.

3 Algorithm

This paper extends the approach proposed in [10] to nongBaubelief spaces.
Our algorithm iteratively creates and executes a serieldfkspace plans. A re-
planning step is triggered when, during plan executiontrilne belief state diverges
too far from the nominal trajectory.

3.1 Creating plans

The key to our approach is a mechanism for creating horizdrelief-space plans
that guarantees that new information is incorporated imobtelief distribution on
each planning cycle. The basic idea is as follows. Given ar relief state b,
define a “hypothesis” state to be at the maximum of the digiob,

1 .
X- = argmaxi(x; by).
gxe]R” ( l)

Then, samplé — 1 states from the prior distribution,
X ~ m(x;by),i € [2,K], (5)

such that the pdf at each sample is greater than a specifkahtﬂd,n(xi; b1)>¢ >
0, and there are at least two unique states (includthg/Ve search for a sequence of
actions,us-t—1 = (ug,...,ur_1), that result in as wide a margin as possible between
the observations that would be expected if the system wetteeilmypothesis state
and the observations that would be expected in any otherledrmsfate. As a result,
a good plan enables the system to “confirm” that the hypathstate is in fact the
true state or to “disprove” the hypothesis state. If the hlypsis state is disproved,
then the algorithm selects a new hypothesis on the nexamapig cycle, ultimately
causing the system to converge to the true state.

To be more specific, consider that if the system starts ire stabnd takes a
sequence of actions 11, then the most likely sequence of observations is:

he(x uze_1) = (h)T, h(F(x,un) T, h(F3(x,uz2)) T, ..., h(R(x uze1)T) ",

whereR(x,u;1—1) denotes the state at tintewhen the system begins in state
and takes actionsi; 1. We are interested in finding a sequence of actions over a
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planning horizon, u;.t_1, that maximizes the squared observation distance,
Ihr (X, uzr—1) — hr (<", uzT-1) |13,

summed over ali € [2,k], where||a|a = vaT A-la denotes the Mahalanobis dis-
tance andQ = diag(Q,...,Q) denotes a block diagonal matrix of the appropriate
size composed of observation covariance matrices. Therwhéeobservation dis-
tance, the more accurately Bayes filtering will be able t@eine whether or not
the true state is near the hypothesis in comparison to thex eimpled states.

Notice that the expression for observation distance is defined with respect
to the sampled points. Ideally, we would like a large obstmwadistance between a
region of states about the hypothesis state and regions tiigoother samples. Such
a plan would “confirm” or “disprove” regions about the sangpp®ints - not just the
zero-measure points themselves. We incorporate this tlgdo the first order by
minimizing the Frobenius norm of the gradient of the meanams,

ﬁht (X Uqt— 1)
X
These dual objectives, maximizing measurement distarctenarimizing the Frobe-

nius norm of the measurement gradient, can simultaneoesbpbimized by mini-
mizing the following cost function:

Hi (X, U1t—1) =

IO, X g 1) =0 ZZ O uyT-1) (6)

where

@ (X, ur-1) = [|h (X, ur-1) — hr (X, U1:T71)||,2—(Xi7ulspl)-

The weighting matrixi(e. the covariance matrix) in the metric above is defined

I (X,U1t-1) = 2Q +H1 (X, Up1_1)VHT (X, Up.7-1)"
+Hr (< upr )VHT (A urro1)T, (7)

whereV € R™" is a diagonal weighting matrix.

In order to find plans that minimize Equation 6, it is convenito restate the
problem in terms of finding paths through a parameter spaotic@that for any
positive semi-definite matrixd, and vectorx, we havex' Ax > xT Ax, whereA is
equal toA with all the off-diagonal terms set to zero. Therefore, wedihe follow-
ing lower-bound,

(X u1e 1) > S @(R(X, Uz 1), R(x UL 1)),

t

M\/]—|

where

1
oY) = 51— hy) |20y



6 Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez, and Redsake

V(x%y) =2Q+HHX)" +HYHY)",
andH (x) = dh(x)/0dx. As a result, we can upper-bound the cdgEquation 6), by

I X ugTog) < e 21 0RO U 1), RO U1 1))

XWX

T )
< r!e*(P(H(X'7U1:t71),H(X1-,U1:t71))_ (8)
t—

As a result, the planning problem can be written in terms dafifig a path through

a parameter spacéq™, wi*) € R%, wherex! denotes the state associated with the
ith sample at time and the weightw{, denotes the “partial cost” associated with
sample. This form of the optimization problem is stated as follows.

Problem 1.
Minimi lk(VVI)Z T712 (9)
inimize - +a ) y

e,

subjectto X, = f(x,uw),i € [1,K (10)
Wi g =wie %) i e (1K (11)
X =x,w =1ie1K (12)
Xt = Xg (13)

Problem 1 should be viewed as a planning problegxti, w'¥) € R% where Equa-
tions 12 and 13 set the initial and final value constraintsigfigns 10 and 11 define
the “belief space dynamics”, and Equation 9 defines the datice that we have
incorporated a quadratic cost into the objective in ordeaigse the system to favor
short paths. Problem 1 can be solved using a number of plgreahniques such
as rapidly exploring random trees [15], differential dyneqrogramming [16], or
sequential quadratic programming [17]. We use sequentiatiigatic programming
to solve the direct transcription of Problem 1. The direahscription solution will
be denoted
upT_1 = DIRTRAN(XY xg, T), (14)

for the sample sek', goal state constraintg, and time horizonT . Sometimes, we
will call D IRTRAN without the final value goal constraint (Equation 13). Thif w
be written,u;-7_1 = DIRTRAN(Xle,T). It is important to recognize that the com-
putational complexity of planning depends only on the nunafsamples used (the
size ofk in step 3 of Algorithm 1) and not strictly on the dimensiohabf the un-
derlying space. This suggests that the algorithm can beegftim high-dimensional
belief spaces. In fact, we report results in [13] from sintiolas that indicate that the
algorithm can work well when very few samples (as few as thrdeur) are used.
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3.2 Re-planning

After creating a plan, our algorithm executes it while tiagkbelief state using
an accurate, high-dimensional filter chosen by the systesigudler. We denote this
Bayesian filter update as

b1 =G(b,u,z41).

If the true belief state diverges too far from a nominal ttigey derived from the
plan, then execution stops and a new plan is created. Thalbakgorithm is out-
lined in Algorithm 1. Steps 2 and 3 sampdstates from the distribution with the hy-
pothesis statex! = argmaxcgn 71(x; b), located at the maximum of the prior distri-
bution. The prior likelihood of each sample is required tghesater than a minimum
threshold, 1> ¢ > 0. In step 4, REATEPLAN creates a horizoii- plan, uy.1_1,
that solves Problem 1 and generates a nominal belief-spajeetory,b;.t. Steps
6 through 12 execute the plan. Step 8 updates the beliefgitatie the new action
and observation using the Bayes filter implementation anbyehe designer. Step
9 breaks plan execution when the actual belief state defuartfr from the nom-
inal trajectory, as measured by the KL divergeridg[7t(x; b, 1), 71(X; by1)] > 6.
The second condition](xl,...,xk,ul;t,l) < 1—p, guarantees that thehile loop
does not terminate before a (partial) trajectory with cbst1 executes. The outer
while loop terminates when there is a greater thaprobability that the true state
is located withinr of the goal state@(b,r,xg) > w (Equation 4). In the technical
report that expands upon this paper [13], we show that ifefarh iteration of the
while loop, the two conditions in step 9 are met on some time s$teprl, then it is
possible to guarantee that Algorithm 1 will eventually llaoathe true state of the
system and thevhile loop will terminate.

Input :initial belief stateb, goal statexg, planning horizonT, and belief-state updat&,

1 while ©(b,r,xg) < wdo
x! = arg maxegn 71(X; b);
Vi € [2,K],X ~ 1i(x;b) : (X ;b) > ¢;
by1,upt_1 = Creat ePl an( b,Xl7 . 7Xk,Xg,T) )
b1 =bh;
fort<-1toT—1do

execute actiomy, perceive observation. 1;

bri1 = G(b, U, z41); 3

if D [11(X; br11), (X brs1)] > 6 and I(xL, .. X u1e1) < 1—pthen

| break

end
end
b=bt1;

o
P O © 0~NO OB~ WN

-
N

[y
w

end

N
~

Algorithm 1: Belief-space re-planning algorithm

Algorithm 2 shows the EEATEPLAN procedure called in step 4 of Algorithm 1.
Step 1 calls IRTRAN parametrized by the final value constraixf, If DIRTRAN



8 Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez, and Redsake

fails to satisfy the goal state constraint, then the entgeréghm terminates in fail-
ure. Step 2 creates a nominal belief-space trajectory bgiating the user-specified
Bayes filter update over the planned actions, assuming bs&treations are gener-
ated by the hypothesis state. If this nominal trajectorysdo® terminate in a belief
state that is sufficiently confident that the true state iated withinr of the hypoth-
esis, then a new plan is created in steps 4 and 5 that is idémithe first except
that it does not enforce the goal state constraints. Thisvalthe algorithm to gain
information incrementally in situations where a singlemptioes not lead to a suf-
ficiently “peaked” belief state. When the system gains swfficinformation, this
branch is no longer executed and instead plans are createchéet the goal state
constraint.

Input : initial belief stateb, sample set!,...,x%, goal statexg, and time horizonT .
Output: nominal trajectoryby.t andugt_1
upr-1=DirTran(xt,... . xx,T);
by =b; vt e [1:T—1], b1 =G(b,u,h(x));
if ©(b,r,x5) < wthen
upr-1=Di rTran(x!,....xXT);_
bi=b;vte[1:T—1], b1 =G(by,u,h(x));
end

o g A WN P

Algorithm 2: CREATEPLAN procedure

3.3 Illustration

Figures 1 and 2 illustrate the process of creating and exgratplan in a robot
manipulation scenario. Figure 1 shows a horizontal-pogntaser mounted to the
end-effector of a two-link robot arm. The end-effector isswained to move only
vertically along the dotted line. The laser points horiatlgtand measures the range
from the end-effector to whatever object it “sees”. There taro boxes and a gap
between them. Box size, shape, and relative position argressto be perfectly
known along with the distance of the end-effector to the boXée only uncertain
variable in this problem is the vertical position of the eftector measured with
respect to the gap position. This defines the one-dimensitate of the system and

Fig. 1 Localization scenario. arm
The robot must simultane-

ously localize the gap and

move the end-effector in front

of the gap.

gap

hhbblormbwuesnan
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Fig. 2 lllustration of CREATEPLAN. (a) An information-gathering trajectory (state as a functio
of time) found using direct transcription. Blue denotes thgettary that would be obtained if the
system started in the hypothesis state. Red denotes the trgjebtamed starting in the true state.
(b) The planned belief-space trajectory illustrated by pbdkig distributions superimposed over
time. Distributions early in the trajectory are light gray Vehdistributions late in the trajectory
are dark. The seven “X” symbols on the horizontal axis denotgtsiions of the samples (red
denotes the true state while cyan denotes the hypothesis)hépadtual belief-space trajectory
found during execution. (d-f) Comparison with the EKF-basedhoetproposed in [10]. (d) The
planned trajectory. (e) The corresponding nominal belietspeajectory. (f) Actual belief-space
trajectory.

is illustrated by the vertical number line in Figure 1. Thgeaive is to localize
the vertical end-effector with respect to the center of thp (state) and move the
end-effector to the center of the gap. The control input éosystem is the vertical
velocity of the end-effector.

Figure 2(a) illustrates an information-gathering trapegtfound by DRTRAN
that is expected to enable the Bayes filter to determine wehéttle hypothesis state
is indeed the true state while simultaneously moving theothygsis to the goal state
(end-effector at the center of the gap). The sample set usealculate the trajec-
tory wasx!,..., XX =52 3,4,6,7,8, with the hypothesis sample located<it= 5.
The action cost used while solving Problem 1 was- 0.0085. DRTRAN was ini-
tialized with a random trajectory. The additional smalli@etcost smooths the tra-
jectory by pulling it toward shortest paths without chamginformation gathering
or goal directed behavior much. The trajectory can be utaedsntuitively. Given
the problem setup, there are two possible observationgerareasurements that
“see” one of the two boxes and range measurements that ‘tseeigh the gap. The
planillustrated in Figure 2(a) moves the end effector shahdifferent sequences of
measurements would be observed depending upon whethgsteeswvere actually
in the hypothesis state or in another sampled state.
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Figures 2(b) and (c) show the nominal belief-space trajg@ad the actual tra-
jectory, respectively, in terms of a sequence of probabdistributions superim-
posed on each other over time. Each distribution descrheedikelihood that the
system started out in a particular state given the actidentand the observations
perceived. The nominal belief-space trajectory in Figui® & found by simulat-
ing the belief-space dynamics forward assuming that futdogervations will be
generated by the hypothesis state. Ultimately, the plamrageictory reaches a be-
lief state distribution that is peaked about the hypothssite x* (the red “X”). In
contrast, Figure 2(c) illustrates the actual belief-spaajectory found during exe-
cution. This trajectory reaches a belief state distribupeaked about the true state
(the cyan “X”). Whereas the hypothesis state becomes thermuamiof the nominal
distribution in Figure 2(b), notice that it becomes a minimaf the actual distribu-
tion in Figure 2(c). This illustrates the main idea of theaithm. Figure 2(b) can be
viewed as a trajectory that “trusts” that the hypothesisoisert and takes actions
that confirm this hypothesis. Figure 2(c) illustrates thagrewhen the hypothesis
is wrong, the distribution necessarily gains informati@tduse it “disproves” the
hypothesis state (notice the likelihood of the region alibethypothesis is very
low).

Figure 2 (d-f) compares the performance of our approach thighextended
Kalman filter-based (EKF-based) approach proposed in [Ld¢ problem setup
is the same in every way except that cost function optimiregtiis scenario is:

J(Ul;T_l) = 1*10 (O’%)T 0'12 + O.OOSHJI:T_j_Ul;T_L
wherea? denotes covariance. There are several differences inrpeafce. Notice
that the two approaches generate different trajectoriesare Figures 2(a) and
(d)). Essentially, the EKF-based approach maximizes thie Eelduction in variance
by moving the maximum likelihood state toward the edge ofgéye where the gra-
dient of the measurement function is large. In contrastapproach moves around
the state space in order to differentiate the hypothesis fitee other samples in
regions with a small gradient. Moreover, notice that sileeEKF-based approach
is constrained to track actual belief state using an EKF Bdyter, the tracking
performance shown in Figure 2(f) is very bad. The EKF inniovaterm actually
makes corrections in the wrong direction. However, in spitéhe large error, the
EKF covariance grows small indicating high confidence ingbktimate.

4 Simultaneous localization and grasping

In real-world grasping problems, it is just as importantdodlize an object to be
grasped as it is to plan the reach and grasp motions. We maposnstance of
the grasp synthesis problem that we athultaneous localization and grasping
(SLAG) where the localization and grasp planning objestaee combined in a sin-
gle planning problem. In most robot implementations, tHeotas able to affect the
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type or quality of information that it perceives. For examphany robots have the
ability to move objects of interest in the environment or ma@vcamera or LIDAR
through the environment. As a result, SLAG becomes an instaiithe planning
under uncertainty problem. The general SLAG problem is irtgod because good
solutions imply an ability to grasp objects robustly everewkheir position or shape
is uncertain.

4.1 Problem setup

Fig. 3 lllustration of the grasping problem, (a). The robot must loeattze pose and dimensions
of the boxes using the laser scanner mounted on the left wrist.ighé&datively easy when the
boxes are separated as in (b) but hard when the boxes are pregsttbt as in (c).

Our robot,Paddles has two arms with one paddle at the end of each arm (see
Figure 3(a)). Paddles may grasp a box by squeezing the bwebetthe two pad-
dles and lifting. We assume that the robot is equipped witfeggpogrammed “lift”
function that can be activated once the robot has placed/@paddles in opposi-
tion around the target box. Paddles may localize objectsenatorld using a laser
scanner mounted to the wrist of its left arm. The laser scaprugluces range data
in a plane parallel to the tabletop over a 60 degree field af.vie

We use Algorithm 1 to localize the planar pose of the two bgpa@smetrized
by a six-dimensional underlying metric space. The boxesisseamed to have been
placed at a known height. We reduce the dimensionality ofpthaning problem
by introducing an initial perception step that localizes tfepth and orientation of
the right box using RANSAC [18]. From a practical perspeztihis is a reasonable
simplification because RANSAC is well-suited to finding thepth and orientation
of a box that is assumed to be found in a known region of the &sa. The remain-
ing (four) dimensions that are not localized using RANSAGalibe the horizontal
dimension of the right box location and the three-dimersi@ose of the left box.
These dimensions are localized using a Bayes filter thattap@ahistogram distri-
bution over the four-dimensional state space based onitasasurements and arm
motions measured relative to the robot. The histogram fdteomprised of 20000
bins: 20 bins (12 cm each) describing right box horizontal position timesirGs
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Fig. 4 Example of a box localization task. In (a) and (d), the roboielvek the gap between the
boxes is large and plans to localize the boxes by scanningépsin (b) and (e), the robot has
recognized that the boxes abut each other and creates aplare¢ase gap width by pushing the
right box. In (c) and (f), the robot localizes the boxes by si@agthe newly created gap.

(2.4 cm each) describing left box horizontal position times Ifsl{24 cm each)
describing left box vertical position times 10 bins86 radians each) describing
left box orientation. While it is relatively easy for the ldgram filter to localize the
remaining four dimensions when the two boxes are separgtadjap (Figure 3(b)),
notice that this is more difficult when the boxes are pressgdther (Figure 3(c)).
In this configuration, the laser scans lie on the surfacelseofiwo boxes such that it
is difficult to determine where one box ends and the next Ise@inte that it is diffi-
cult to locate the edge between abutting boxes reliablygugision or other sensor
modalities — in general this is a hard problem.

Our implementation of Algorithm 1 used a set of 15-sampletutiing the hy-
pothesis sample. The algorithm controlled the left padgisgecifying Cartesian
end-effector velocities in the horizontal plane. These&an velocity commands
were projected into the joint space using standard JacdPésudoinverse tech-
niques [19]. The algorithm was parametrized by process myocgthat modeled
arms motions resulting from velocity commands and box nmstiproduced by
pushes from the arm. Box motions were modeled by assumingstiprwhile push-
ing the box and assuming the center of friction was locatedeatenter of the area
of the box “footprint”. The observation dynamics descrilibe set of range mea-
surements expected in a given paddle-box configuratiomplganing purposes, the
observation dynamics were simplified by modeling only a leirigrward-pointing
scan rather than the full 60 degree scan range. Howevecenibiat since this is a
conservative estimate of future perception, low cost plarder the simplified ob-
servation dynamics are also low cost under the true dynamgertheless, the ob-
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servation model used faracking(step 8 of Algorithm 1) accurately described mea-
surements from all (100) scans over the 60 degree rangeefinegation threshold
in Algorithm 1 was set to 50% rather than a higher threshothbse we found our
observation noise model to overstate the true observatisen

Our hardware implementation of the algorithm included s@amall variations
relative to Algorithm 1. Rather than monitoring divergemsglicitly in step 9, we
instead monitored the ratio between the likelihood of thpdiljesis state and the
next most probable bin in the histogram filter. When this rélbbelow 0.8, plan
execution was terminated and thwile loop continued. Since the hypothesis state
must always have a maximal likelihood over the planned dtejg, a ratio of less
than one implies a positive divergence. Second, ratherfihding a non-goal di-
rected plan in steps 3-5 of Algorithm 2, we always found giedcted plans.

Figure 4 illustrates an example of an information-gattetimjectory. The al-
gorithm begins with a hypothesis state that indicates thetwo boxes are 10 cm
apart (the solid blue boxes in Figure 4(a)). As a result, theradhm creates a plan
that scans the laser in front of the two boxes under the agsomihat this will
enable the robot to perceive the (supposed) large gap. intfectwo boxes abut
each other as indicated by the black dotted lines in Figuage After beginning the
scan, the histogram filter in Algorithm 1 recognizes this terchinates execution of
the initial plan. At this point, the algorithm creates thesping trajectory illustrated
in Figure 4(b). During execution of the push, the left box ®®in an unpredicted
way due to uncertainty in box friction parameters (this fe&fvely process noise).
This eventually triggers termination of the second trajectThe third plan is cre-
ated based on a new estimate of box locations and executesairsg motion in
front of the boxes is expected to enable the algorithm tdilbethe boxes with high
confidence.

4.2 Localization Performance

At a high level, the objective of SLAG is to robustly localiaed grasp objects even
when the pose or shape of those objects is uncertain. Werpeatba series of ex-
periments to evaluate how well this approach performs wiseu to localize boxes
that are placed in initially uncertain locations. On eachisgrtrial, the boxes were
placed in a uniformly random configuration (visualized igiiies 5(a) and (c)).
There were two experimental contingencies: “easy” anddhdn the easy contin-
gency, both boxes were placed randomly such that they weenially separated
by a gap. The right box was randomly placed in ax1B6 cm region over a range
of 15 degrees. The left box was placed uniformly randomly 20& 20 cm region
over 20 degrees measured with respect to the right box @&i§(&)). In the hard
contingency, the two boxes were pressed against each otti¢he pair was placed
randomly in a 13« 16 cm region over a range of 15 degrees (Figure 5(b)).
Figures 5(c) and (d) show right box localization error asracfion of the num-
ber of updates to the histogram filter since the trial statttrials were performed
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Fig. 5 “Easy” and “hard” experimental contingencies. (a) shows imadéken12 randomly se-
lected “easy” configurations (both box configurations chosemomly) superimposed on each
other. (b) shows images of the 12 randomly selected “hard” comdfigums (boxes abutting each
other). (c) and (d) are plots of error between the maximum a postcalization estimate and
the true box pose. Each line denotes a single trial. The red “Xksndenote localization error at
algorithm termination.

in each contingency. Each blue line denotes the progressioigée trial. The ter-
mination of each trial is indicated by the red “X” marks. Eaatnor trajectory is
referenced to the ground truth error by measuring the disthetween the final po-
sition of the paddle tip and its goal position in the left carof the right box using
a ruler. There are two results of which to take note. Firstirills terminate with
less than 2 cm of error. Some of this error is a result of thesepdiscretization
of possible right box positions in the histogram filter (natso the discreteness of
the error plots). Since the right box position bin size in liigtogram filter is 12
cm, we would expect a maximum error of at leasz ¢m. The remaining error is
assumed to be caused by errors in the range sensor or theatimemodel. Sec-
ond, notice that localization occurs much more quickly @yafly in less than 100
filter updates) and accurately in the easy contingency, wihetoxes are initially
separated by a gap that the filter may used to localize. Irrasttaccurate local-
ization takes longer (generally between 100 and 200 filtelatgs) during the hard
contingency experiments. Also error prior to accurate llgaion is much larger
reflecting the significant possibility of error when the bsage initially placed in
the abutting configuration. The key result to notice is tvanethough localization
may be difficult and errors large during a “hard” contingerady/trials ended with
a small localization error. This suggests that our algoritiermination condition
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in step 1 of Algorithm 1 was sufficiently conservative. Alsotice that the algo-
rithm was capable of robustly generating information gattggtrajectories in all of
the randomly generated configurations during the “hardtiogencies. Without the
box pushing trajectories found by the algorithm, it is likéhat some of the hard
contingency trials would have ended with larger local@atrrors.

5 Conclusions

Creating robots that can function robustly in unstructiegedironments is a central
objective of robotics. We argue that it is not enough to liatfention to developing
better perception algorithms. Robust localization ofvafd state in real-world sce-
narios is not always possible unless the robot is capableeatiog and executing
information-gathering behaviors. One avenue toward &ifgethis is the develop-
ment of algorithms for planning under uncertainty. Our pgpeposes a new ap-
proach to the planning under uncertainty problem that islkgpof reasoning about
trajectories through a non-Gaussian belief-space. Thissential because in many
robot problems it is not possible to track belief state aatly by projecting onto
an assumed density function (Gaussian or otherwise).

The approach is illustrated in the context of a grasping. t#k propose a new
setting of the grasp synthesis problem that we call simatias localization and
grasping (SLAG). We test our algorithm using a particulasstamce of a SLAG
problem where a robot must localize two boxes that are plac&ont of it in un-
known configurations. The algorithm generates informagathering trajectories
that move the arm in such a way that a laser scanner mountézk@mtl-effector is
able to localize the two boxes. The algorithm potentiallghms the boxes as nec-
essary in order to gain information. Several interestingsjons remain. First, our
algorithm focuses primarily on creating information gathe plans. However, this
ignores the need for “caution” while gathering the inforioat One way to incor-
porate this into the process is to includeance constrainténto Problem 1 [20].
One approximation that suggests itself is to place comgrain the sample set used
for planning. However, since we use a relatively small sansgt, this may not be
sufficiently conservative. Alternatives should be a subdfiecfuture work.
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