
Non-Gaussian Belief Space Planning: Correctness and Complexity

Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez, Russ Tedrake

Abstract— We consider the partially observable control prob-
lem where it is potentially necessary to perform complex
information-gathering operations in order to localize state.
One approach to solving these problems is to create plans
in belief-space, the space of probability distributions over the
underlying state of the system. The belief-space plan encodes
a strategy for performing a task while gaining information as
necessary. Unlike most approaches in the literature which rely
upon representing belief state as a Gaussian distribution, we
have recently proposed an approach to non-Gaussian belief
space planning based on solving a non-linear optimization
problem defined in terms of a set of state samples [1]. In
this paper, we show that even though our approach makes
optimistic assumptions about the content of future observations
for planning purposes, all low-cost plans are guaranteed to gain
information in a specific way under certain conditions. We
show that eventually, the algorithm is guaranteed to localize
the true state of the system and to reach a goal region with
high probability. Although the computational complexity of the
algorithm is dominated by the number of samples used to define
the optimization problem, our convergence guarantee holds
with as few as two samples. Moreover, we show empirically
that it is unnecessary to use large numbers of samples in order
to obtain good performance.

I. INTRODUCTION

A fundamental objective of robotics is to develop sys-

tems that can function robustly in unstructured environments

where the state of the world is only partially observed and

measurements are noisy. For example, robust robot manipu-

lation is well modeled as partially observable problem. It is

common to model control problems such as these as partially

observable Markov decision processes (POMDPs). However,

in general, finding optimal solutions to POMDPs has been

shown to be PSPACE complete [2]. Even many approximate

approaches are computationally complex: the time complex-

ity of standard point-based algorithms, such as HSVI and

SARSOP, is exponential in the planning horizon [3], [4],

[5].

A growing body of work is focused on planning in

belief space, the space of probability distributions over the

underlying state space. Most of this work assumes that belief

state can be accurately described by a Gaussian distribution.

For example, in prior work, we and others have explored

approaches to planning in belief space based on assuming

that belief state can always be described accurately as a

Gaussian distribution [6], [7], [8]. Another recent class of

approaches avoids the complexity of belief space planning

by evaluating a large number of candidate trajectories in

This work was performed in the Computer Science and Artificial
Intelligence Laboratory at MIT. Robert Platt is now with the Com-
puter Science and Engineering Department at SUNY Buffalo. Email:
{rplatt,lpk,tlp,russt}@csail.mit.edu

the underlying state space in terms of the information that

is likely to be gained during execution and the chances

of colliding with problem constraints [9], [10], [11]. In

domains with relatively simple observation dynamics, such

as navigation domains with range beacons, the Gaussian as-

sumption can be reasonable and the approach can work well.

However, when the observation function is complex, such

as in robot manipulation domains [1], this assumption can

easily become arbitrarily inaccurate. In these contexts, belief

space planning methods that assume Gaussian distributions

can make arbitrarily poor belief state estimates.

Recently, we proposed an approach to belief space plan-

ning with non-Gaussian belief state distributions that was

applied to a robust robot grasping problem [1]. The approach

creates belief space plans by solving a non-linear optimiza-

tion problem that is defined in terms of a hypothesis state

and a set of additional samples. This paper analyzes the cor-

rectness and computational complexity of the algorithm. We

show that, under certain conditions, the algorithm terminates

with probability one in a belief state where the probability

that the system has achieved task objectives is greater than a

user-specified threshold. Moreover, we provide an analysis

of how quickly belief state changes as a function of the

quality of the intermediate information-gathering plans. The

computational complexity of the algorithm is dominated by

the number of samples that are used to define the optimiza-

tion problem. It turns out that our convergence guarantee

holds with as few as two samples. Moreover, our experiments

indicate that, for relatively simple problems at least, it is

unnecessary to use large numbers of samples in order to

obtain good plans.

II. PROBLEM STATEMENT

We are concerned with the class of control problems where

it is desired to reach a specified goal state even though state

may only be estimated based on partial or noisy observations.

Consider a discrete-time system with continuous non-linear

deterministic process dynamics, xt+1 = f (xt ,ut), where state,

x, is a column vector in Rn, and action, u ∈ Rl . Although

state is not directly observed, an observation, zt = h(xt)+vt ,

is made at each time t, where z∈Rm is a column vector and

vt is zero-mean Gaussian noise with covariance Q.

Bayes filtering can be used to estimate state based on

the previous actions taken and observations perceived. The

estimate is a probability distribution over state represented by

a probability density function (pdf), π(x;b) : Rn→ R+ with

parameter vector, b ∈B. The parameter vector is called the

belief state and the parameter space, B, is called the belief-

space. For deterministic process dynamics, the Bayes filter



update can be written:

π( f (x,ut);bt+1) =
π(x;bt)P(zt+1|x,ut)

P(zt+1)
. (1)

The Bayes update calculates a new belief state, bt+1, given

bt , ut , and zt+1. It will sometimes be written, bt+1 =
G(bt ,ut ,zt+1). In general, it is impossible to implement

Equation 1 exactly using a finite-dimensional parametrization

of belief-space. However, a variety of approximations exist

in practice [12].

Starting from an initial belief state, b1, the control objec-

tive is to achieve a task objective with a specified minimum

probability of success, ω ∈ [0,1). Specifically, we want to

reach a belief state, b, such that

Θ(b,r,xg) =
∫

x∈Bn(r)
π(x+ xg;b)≥ ω, (2)

where Bn(r) = {x ∈ Rn,xT x ≤ r2} denotes the r-ball in Rn

for some r > 0, and ω denotes the minimum probability of

success.

III. ALGORITHM

The algorithm that we proposed in [1] can be viewed as a

receding horizon control approach that creates and executes

nominal belief space plans. During execution, it tracks a

belief distribution over underlying state based on actions

and observations. If the true belief state diverges from the

nominal trajectory, our algorithm re-plans and the process

repeats.

A. Creating plans

The key to the approach is a mechanism for creating

horizon-T belief-space plans that guarantee that new in-

formation is incorporated into the belief distribution on

each planning cycle. Given a prior belief state, b1, define

a “hypothesis” state at the maximum of the pdf, x1 =
argmaxx∈Rn π(x;b1). Then, sample k−1 states from the prior

distribution, xi ∼ π(x;b1), i ∈ [2,k], such that the pdf at each

sample is greater than a specified threshold, π(xi;b1)≥ ϕ >
0, and there are at least two unique states among the k−1.

We search for a sequence of actions, uT−1 = (u1, . . . ,uT−1),
that result in as wide a margin as possible between the

observations that would be expected if the system were in the

hypothesis state and the observations that would be expected

in any other sampled state. As a result, a good plan enables

the system to “confirm” that the hypothesis state is in fact

the true state or to “disprove” the hypothesis state. If the

hypothesis state is disproved, then the algorithm selects a

new hypothesis on the next re-planning cycle, ultimately

causing the system to converge to the true state.

To be more specific, let Ft(x,ut−1) be the state reached at

time t if the system begins in state x and takes actions ut−1.

Recall that the expected observation upon arriving in state

xt is h(xt). Therefore, the expected sequence of observations

is:

h(x,ut−1) =
(

h(F1(x,u1))
T , . . . ,h(Ft−1(x,ut−1))

T
)T

.

We are interested in finding a sequence of actions that

minimizes the probability of seeing the observation sequence

expected in the sampled states when the system is actually

in the hypothesis state. In other words, we want to find a

sequence of actions, uT−1, that minimizes

J̃(x1, . . . ,xk,u1:T−1) =
k

∑
i=2

N
(

h(xi,uT−1)|h(x1,uT−1),Q
)

where N(·|µ ,Σ) denotes the Gaussian distribution with mean

µ and covariance Σ and Q = diag(Q, . . . ,Q) is the block

diagonal of measurement noise covariance matrices of the

appropriate size. When this sum is small, Bayes filtering will

more accurately be able to determine whether or not the

true state is near the hypothesis in comparison to the other

sampled states.

The above expression for observation distance is only

defined with respect to the sampled points. However, we

would like to “confirm” or “disprove” states in regions about

the hypothesis and samples – not just the zero-measure points

themselves. This can be incorporated to the first order by

defining small Gaussian distributions in state space with unit

covariance and taking an expectation:

J(x1, . . . ,xk,u1:T−1)

=
k

∑
i=2

Eyi∼N(·|xi,I),y1∼N(·|x1,I)N
(

h(yi,uT−1)|h(y1,uT−1),Q
)

=
k

∑
i=2

N
(

h(yi,uT−1)|h(y1,uT−1),Γ(x,uT−1)
)

, (3)

where

Γ(x,uT−1) = 2Q+H(x,uT−1)H(x,uT−1)
T

+H(x1,uT−1)H(x1,uT−1)
T ,

H(x,u1:t−1) = ∂h(x,u1:t−1)/∂x denotes the Jacobian ma-

trix of h(x,u1:t−1) at x. Rather than optimizing for

J(x1, . . . ,xk,u1:T−1) (Equation 3) directly, we simplify the

planning problem by dropping the normalization factor in

the Gaussian and optimizing the exponential factor only. Let

Φ(xi,uT−1) = ‖h(xi,uT−1)−h(x1,uT−1)‖2
Γ(xi,uT−1)

.

The modified cost function is:

J̄(x1, . . . ,xk,u1:T−1) =
1

k

k

∑
i=1

e−Φ(xi,uT−1). (4)

The optimization problem becomes:

Problem 1:

Minimize J̄(x1, . . . ,xk,uT−1)+αuT
T−1uT−1 (5)

subject to xi
t+1 = f (xi

t ,ut), i ∈ [1,k] (6)

x1
T = xg,x

i
1 = xi, i ∈ [1,k]. (7)

Equation 5 adds an additional quadratic cost on action that

adds a small preference for short trajectories. The associated

weighting parameter should be set to a small value (α≪ 1).



Problem 1 can be solved using a number of planning tech-

niques such as rapidly exploring random trees [13], differen-

tial dynamic programming [14], or sequential quadratic pro-

gramming [15]. We use sequential quadratic programming

to solve the direct transcription [15] of Problem 1. Although

direct transcription is only guaranteed to find locally optimal

solutions, we have found that it works well for many of the

problems we have explored. The direct transcription solution

will be denoted

uT−1 = DIRTRAN(x1, . . . ,xk,xg,T ), (8)

for samples, x1, . . . ,xk, goal state constraint, xg, and time

horizon, T . Note that the dimensionality of Problem 1 is nk –

linear in the dimensionality of the underlying state space with

a constant equal to the number of samples. This compares

favorably with the approaches in [6], [7], [8] that must

solve planning problems in n2-dimensional spaces (number

of entries in the covariance matrix).

B. Re-planning

After creating a plan, our algorithm executes it while track-

ing the belief state using the user-supplied belief-state update,

G. If the actual belief state diverges too far from a nominal

trajectory derived from the plan, then execution stops and

a new plan is created. The overall algorithm is outlined in

Algorithm 1. The outer while loop iteratively creates and

executes plans until the planning objective (Equation 2) is

satisfied. Step 2 sets the hypothesis state to the maximum

of the prior distribution. Step 3 samples k− 1 additional

states. Step 4 finds a nominal belief-space trajectory, b̄1:T

that optimizes Problem 1. Steps 6 through 12 execute the

plan. Step 9 updates the belief state given the new action and

observation using the user-specified Bayes filter implemen-

tation. Step 10 breaks plan execution when the actual belief

state departs too far from the nominal trajectory, as measured

by the KL divergence, D1

[

π(·;bt+1),π(·; b̄t+1)
]

> θ . The

second condition, J̄(x1, . . . ,xk,ut−1)< 1−ρ , guarantees that

the while loop does not terminate before a (partial) trajectory

with cost J̄ < 1−ρ executes. We show in the next section

that the second condition guarantees that the algorithm makes

“progress” on each iteration of the while loop.

IV. ANALYSIS

We are interested in the correctness of Algorithm 1. Can

we guarantee that Algorithm 1 eventually reaches a belief

state where it is very likely that the system has achieved

its goal? We show that if G is an exact implementation

of Equation 1, and if DIRTRAN in Algorithm 1 (step 4)

always finds plans with a cost strictly less than one, then

the algorithm terminates with probability one in a belief

state where the probability that the system has achieved

task objectives is greater than the user-specified threshold,

ω . Moreover, we find a specific bound on how quickly the

system localizes true state as a function of the quality of the

intermediate plans.

We start by providing a lower bound on the expected

probability of states in a neighborhood of the true state. On

Input : initial belief state, b, goal state, xg, planning

horizon, T , and belief-state update, G.

while Θ(b,r,xg)< ω do1

x1 = argmaxx∈Rn π(x;b);2

∀i ∈ [2,k],xi ∼ π(x;b) : π(xi;b)≥ ϕ;3

b̄1:T ,uT−1 = DirTran(b,x1, . . . ,xk,xg,T);4

b1 = b;5

for t← 1 to T −1 do6

execute action ut , perceive observation zt+1;7

bt+1 = G(bt ,ut ,zt+1);8

if D1

[

π(x;bt+1),π(x; b̄t+1)
]

> θ and9

J̄(G ,ut−1)< 1−ρ then

break10

end11

end12

b = bt+1;13

end14

Algorithm 1: Belief-space re-planning algorithm

a particular iteration of the outer while loop in Algorithm 1,

suppose that the system begins in belief state, b1, while the

true state is κ , and executes a sequence of actions, u =
(u1, . . . ,uT−1) (subscript dropped for conciseness). During

execution, the system perceives observations z = (z2, . . . ,zT )
and ultimately arrives in belief state bT . The probability

of a state, y = FT (x,u), estimated by recursively evaluating

Equation 1 is:

π(y;bT ) = π(x;b1)
qx(z,u)

p(z,u)
, (9)

where

qx(z,u) = N(z|h(x,u),Q) (10)

is the probability of the observations given that the system

starts in state x and takes actions, u, and

p(z,u) =

∫

x∈Rn
π(x;b1)N(z|h(x,u),Q) (11)

is the marginal probability of the observations given u. The

following Lemma shows that π(y;bT ) can be lower-bounded

in terms of the proximity of x to the true state, κ .

Lemma 1: Suppose we are given an arbitrary sequence

of actions, u, and an arbitrary initial state, x ∈ Rn. Then,

the expected probability of y = FT (x,u) found by recursively

evaluating the deterministic Bayes filter update (Equation 1)

is

Ez

{

π(y;bT )

π(x;b1)

}

≥ exp(D1(qκ , p)−D1(qκ ,qx)) ,

where qκ , qx, and p are defined in Equations 10 and 11 and

D1 denotes the KL divergence between the arguments.

Proof: The log of the expected change in the probability



of x is:

logEz

{

π(y;bT )

π(x;b1)

}

= logEz

{

qx(z,u)

p(z,u)

}

= log

∫

z∈Rm

qκ(z,u)qx(z,u)

p(z,u)

≥
∫

z∈Rm
qκ(z)(logqx(z,u)− log p(z,u))

= D1(qκ , p)−D1(qκ ,qx),

where the third line was obtained using Jensen’s inequality

and the last line follows from algebra. Taking the exponential

gives us the claim.

Lemma 1 expresses the bound in terms of the divergence,

D1(qκ , p), with respect to the true state, κ . However, since

κ is unknown ahead of time, we must find a lower bound

on the divergence D1(qy, p) for arbitrary values of y. The

following lemma establishes a bound on this quantity. We use

the notation that ‖a‖A =
√

aT A−1a denotes the Mahalanobis

distance with respect to A.

Lemma 2: Given an arbitrary u and a distribution, π , sup-

pose ∃Λ1,Λ2 ⊆ Rn such that ∀x1,x2 ∈ Λ1×Λ2,‖h(x1,u)−
h(x2,u)‖2

Q ≥ ζ 2 and
∫

x∈Λ1
π(x)≥ γ ,

∫

x∈Λ2
π(x)≥ γ . Then

min
y∈Rn

D1(qy, p)≥ 2η2γ2
(

1− e−
1
2 ζ 2

)2

,

where η = 1/
√

(2π)n|Q| is the Gaussian normalization

constant.

Proof: By Pinsker’s inequality, we know that KL

divergence can be bounded by total variation: D1(qy, p) ≥
2supz (qy(z,u)− p(z,u))2

. We lower bound the total vari-

ation by considering only those parts of the distributions

where ∃x ∈ Λ1∪Λ2 such that z = h(x,u):

D1(qy, p)≥ 2sup
z

(

∫

x∈Λ1

π(x)qy(z)−π(x)p(z)

+

∫

x∈Λ2

π(x)qy(z)−π(x)p(z)

)2

.

The right hand side above is minimized when y ∈ Λ1 or

y ∈ Λ2. Without loss of generality, assume that y ∈ Λ1:

min
y∈Rn

D1(qy, p)≥ 2sup
z

(

∫

x∈Λ2

π(x)qy(z)−π(x)p(z)

)2

≥ 2
(

γη(1− e−
1
2 ζ 2

)
)2

.

As a result of Lemmas 1 and 2, we know that we can lower

bound the expected increase in probability of a region about

the true state by finding regions, Λ1 and Λ2, that satisfy

the conditions of Lemma 2 for a given u. The following

lemma shows that these regions exist for any u with a cost

(Equation 3) J < 1. For the proof of this Lemma, we refer

to reader to [16].

Lemma 3: Suppose that u is a plan with cost J =
J(x1, . . . ,xk,u) defined over the samples, xi, i ∈ [1,k]. If the

maximum eigenvalue of the Hessian of h is λ , then ∃i∈ [1,k]
such that ∀r ∈ R+,∀δ1,δ2 ∈ Bn(r):

‖h(xi +δ1,u)−h(x1 +δ2,u)‖2
Γ(xi,u)

≥
[

√

− logJ−2(r+ cr2)
]

,

where c = λ‖1‖Q/2 and Bn(r) = {x ∈ Rn;xT x≤ r2}.
We now state our main theoretical result regarding Al-

gorithm 1 correctness. Two conditions must be met. First,

the planner in step 4 of Algorithm 1 must always find

low-cost plans successfully. Essentially, this guarantees that

each plan will acquire useful information. Second, step 8 of

Algorithm 1 must use an exact implementation of the Bayes

filter. In practice, we expect that this second condition will

rarely be met. However, our experiments indicate that good

results can be obtained using practical filter implementations

(Section V).

Theorem 1: Suppose we have:

1) a prior distribution, π(x;b1);
2) k ≥ 2 samples, x1, . . . ,xk, from π(x;b1) such that

∃r,ϕ ∈ R+ where ∀δBn(r), i ∈ [1,k] we have π(xi +
δ ;b1)≥ ϕ;

3) a trajectory, uT−1, with cost J = J̄(x1, . . . ,xk,uT−1).

If an exact implementation of Bayesian filtering were to track

state while executing u1:T−1 resulting in a distribution at time

T of π(x;bT ), then the probability of all states within a ball

of radius r about the true state at time T is expected to

increase by a factor of

exp

[

2η2γ2

(

1− e−
1
2 (
√− logJ−2(r+cr2))

2
)]

(12)

relative to its value at time 1, where η = 1/
√

(2π)n|Q| is the

Gaussian normalization constant, γ = εVoln(r), Voln(r) is the

volume of the r-ball in n dimensions, c = 1
2
λ‖1‖Q, and λ

is the maximum eigenvalue of the Hessian of h(Ft(x,uT−1))
over all t, x, and uT−1.

Proof: Lemma 3 gives us two samples, xi and x1 such

that ∀δ1,δ2 ∈ Bn(r),

‖h(xi +δ1,u)−h(x1 +δ2,u)‖2
Γ(xi,u)

≥ ‖h(xi +δ1,u)−h(x1 +δ2,u)‖2
Q

≥
[

√

− logJ−2(r+ cr2)
]2

.

Lemma 2 gives us a lower bound of D1(qy, p) by setting

ζ =
√− logJ−2(r+cr2). Lemma 1 gives us the conclusion

of the Theorem by noting that D1(qκ ,qx) = 0 when x = κ .

The above theorem enables us to conclude that Algo-

rithm 1 is guaranteed to terminate in the goal region of belief

space.

Theorem 2: Suppose that Algorithm 1 executes with k≥ 2

samples. Suppose that DIRTRAN (step 4) always finds a

plan with a maximum cost, ε < 1: J̄(x1, . . . ,xk,u1:T−1) <
ε < 1. Suppose that G (step 8) is implemented using an

exact implementation of Bayes filtering. Then Algorithm 1



laser
arm

(a)

−2 0 2 4 6

−2

−1

0

1

2

3

4

5

(b)

Fig. 1. (a) the experimental scenario. (b) a path found by Algorithm 1
with a nine-sample planner. It starts in the upper right and ends at a point
directly in front of the right-most box. The red circles denote where re-
planning occurred.

0 100 200 300 400 500 600 700
4

5

6

7

8

9

10

11

12

Time step

E
n
tr

o
p
y

Fig. 2. Belief state entropy as a function of time step. The solid black line
corresponds to the trajectory shown in (b). The dashed blue lines correspond
to five additional nine-sample runs.

terminates with probability one in a belief state, b, where

Θ(b,r,xg)≥ ω .

Proof: Notice that if J̄(x1, . . . ,xk,u1:T−1) < ε , then

there exists some strictly positive radius, r > 0, such that

the expression in Equation 12 strictly greater than a lower

bound, ϖ > 1. Let κT denote the location of the true state

at time T . Using the result of Theorem 1, we know that

Θ(b,r,κT ) grows arbitrarily close to one, and we know that

Algorithm 1 must ultimately terminate for any ω < 1.

At the end of Section III-A, we noted that the planning

problem solved in step 4 of Algorithm 1 was linear in the

dimensionality of the underlying space. Theorem 2 asserts

that the algorithm is correct with as few as two samples. As

a result, we know that the linear constant can be as small as

two.

V. EXPERIMENTS

From a practical perspective, the preceding analysis is

useful because it tells us that if we execute the while loop in

Algorithm 1 a sufficient number of times, we can expect to

localize the state of the system with arbitrary accuracy (we

can drive Θ(b,r,xg) arbitrarily low). However, for this result

to hold, we require the planner to find low cost paths each

time it is called and for the tracking Bayes filter to be an

exact realization of Equation 1 (the premise of Theorem 2).

Since these conditions are difficult to meet in practice, an

important question is how well the approach works for

approximately accurate Bayes filter implementations and for

planners that only succeed some of the time. Furthermore,

we are interested in knowing how the performance of the

algorithm changes with the number of samples used to

parametrized the planner. Figure 1(a) illustrates the exper-

imental scenario. A two-link robot arm moves a hand in the

plane. A single range-finding laser is mounted at the center

of the hand. The laser measures the range from the end-

effector to whatever object it “sees”. The hand and laser are

constrained to remain horizontal. The position of the hand is

assumed to be measured perfectly. There are two boxes of

known size but unknown position to the left of the robot (four

dimensions of unobserved state). The boxes are constrained

to be aligned with the coordinate frame (they cannot rotate).

The control input to the system is the planar velocity of the

end-effector. The objective is for the robot to localize the

two boxes using its laser and move the end-effector to a

point directly in front of the right-most box (the box with

the largest x-coordinate) so that it can grasp by extending

and closing the gripper. On each time step, the algorithm

specified the real-valued two-dimensional hand velocity and

perceived the laser range measurement. If the laser missed

both boxes, a zero measurement was perceived. The (scalar)

measurements were corrupted by zero-mean Gaussian noise

with 0.31 standard deviation.

Figure 1(b) illustrates the path of the hand (a point directly

between the two jaws of the gripper) found by running our

algorithm parametrized by nine samples. The state space

was four dimensional and comprised of two box locations

ranging between [−1,1] on the x-axis and [−2,2] on the

y-axis. The hand starts in the upper right corner at (5,5)
and ends at a point directly in front of the lower right box.

The blue line shows the path and the red circles identify

the points along the path at which re-planning occurred

(there are 14 re-plan events in this example). The tracking

Bayes filter was implemented using a gridded histogram filter

comprised of 62500 bins over the four-dimensional space

(the position of each of the two boxes was denoted by a

point in a 10× 25 grid). At the start of planning, the prior

histogram distribution was assumed to be uniform. The cost

function optimized by the DIRTRAN planner (Equation 5)

was parametrized by α = 0.01 and V = diag(0.5) (Equa-

tion 3). The planning horizon was T = 50. The algorithm

did not terminate until the histogram Bayes filter was 90%

confident that it had localized the right-most box to within

±0.3 of its true location (ω = 0.9 in step 1 of Algorithm 1).

Figure 3(a)-(d) show snapshots of the histogram distribution

at time steps 10, 100, 200, and 300. (This is actually a two-

dimensional projection of the four dimensional distribution

illustrating the distribution over the location of one box only.)

Figure 3(e)-(h) show the nine samples used to parametrize

the planning algorithm at the four snapshots. Initially, (in

Figures 3 (a) and (e), the distribution is high-entropy and the

samples are scattered through the space. As time increases,

the distribution becomes more peaked and the sample sets

become more focused. The solid black line in Figure 1(b)

shows the entropy of the histogram distribution as a function

of time step. As expected, entropy decreases significantly

over the trajectory. For comparison, the five additional blue

dotted lines in Figure 2 show entropy results from five

additional identical experiments. Note the relatively small



−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X axis

Y
 a

x
is

(a)

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X axis

Y
 a

x
is

(b)

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X axis

Y
 a

x
is

(c)

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X axis

Y
 a

x
is

(d)

−4 −3 −2 −1 0 1 2

−2

−1

0

1

2

3

X axis

Y
 a

x
is

(e)

−4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

X axis

Y
 a

x
is

(f)

−4 −3 −2 −1 0 1 2

−2

−1

0

1

2

3

X axis

Y
 a

x
is

(g)

−4 −3 −2 −1 0 1 2

−2

−1

0

1

2

3

X axis

Y
 a

x
is

(h)

Fig. 3. Histogram probability distributions (a-d) and planner sample sets (e-h) at time steps 10, 100, 200, and 300 during the path shown in Figure 1(b).

0 200 400 600 800 1000
4

5

6

7

8

9

10

11

12

Time step

E
n

tr
o

p
y

(a)

0 200 400 600 800 1000
4

5

6

7

8

9

10

11

12

Time step

E
n
tr

o
p
y

(b)

Fig. 4. (a) comparison of entropy averaged over six runs for four different
planner sample set sizes (36 samples, solid black line; 9 samples, dashed
blue line; 4 samples, dotted magenta line; 2 samples, dash-dot green line).
(b) comparison of the six thirty-six-sample runs (solid black) with the six
two-sample runs (dashed blue).

variance amongst trajectories. Even though the algorithm

finds a very different trajectory on each of these runs,

performance is similar. These results help answer two of the

questions identified at the beginning of the section. First,

Figure 3 suggests that in at least one case, the histogram

filter was adequate to represent the belief state in the context

of this algorithm even though it is a coarsely discretized

approximation to the true distribution. The black line in

Figure 2 suggests that DIRTRAN was an effective tool for

planning in this scenario. The six additional runs illustrated

in Figure 2 indicate that these results are typical.

The other question to be answered concerns the effect

of the number of samples on algorithm performance. To

find an answer, we have run the algorithm in the scenario

described above for four contingencies where the planner

was parametrized by two, four, nine, and thirty-six samples.

Figure 4(a) compares the average (over six runs each)

information-gathering performance for the four contingen-

cies. Although increasing the number of samples improves

algorithm performance, the gains diminish as the number

of samples increases. Figure 4(b) compares the two-sample

runs with the thirty-six-sample runs and demonstrates that the

improvement is statistically significant. The comparison of

Figure 4(c) with Figure 1(b) suggests that (in this experiment,

at least) the trajectories produced by the high-sample planner

are better than those produced by the low-sample planner

because the high-sample planner does a better job covering

the space in front of the boxes. These results show that

it is valuable to expend computational effort planning an

information-gathering trajectory, even in this simple exam-

ple. The results also show that the performance of our

algorithm smoothly degrades or improves with fewer or more

samples used during planning. Even with the minimum of

two samples, the algorithm is capable of making progress.

VI. CONCLUSIONS

Creating robots that can function robustly in unstructured

environments has always been a central objective of robotics.

In order to achieve this, it is necessary to develop algorithms

capable of actively localizing the state of the world while

also reaching task objectives. Recently, we proposed a belief

space planning algorithm that is capable of planning in non-

Gaussian belief spaces [1]. The non-Gaussian aspect of this

algorithm is essential because in many robot problems it is

not possible to track belief state accurately by projecting

onto an assumed Gaussian density function (this is the

case, for example, in many robot manipulation problems).

However, since non-Gaussian belief space is potentially very

high dimensional, it is important to know how effective the

algorithm is and what its computational complexity is. This

paper provides a novel sufficient condition for guaranteeing

that the probability of the true state found by the Bayes

filter increases (Lemma 1) and we show that this condition

is met each time a low-cost plan executes. As a result, we

can guarantee that the probability of the true state increases

by a bounded amount on each re-planning iteration (Theo-

rem 2). The algorithm is eventually guaranteed to converge

to a goal region in belief space. We also characterize the

expected computational complexity of the algorithm, which



is dominated by the number of samples used to define the

optimization problem. It turns out that our theoretical results

hold with as few as two samples. In addition, we find that, for

some problems, algorithm performance is nearly optimized

using very few (between two and nine) samples.

ACKNOWLEDGMENTS

This work was supported in part by in part by the NSF

under Grant No. 0712012, in part by ONR MURI under grant

N00014-09-1-1051 and in part by AFOSR grant AOARD-

104135

REFERENCES

[1] R. Platt, L. Kaelbling, T. Lozano-Perez, and R. Tedrake, “Efficient
planning in non-gaussian belief spaces and its application to robot
grasping,” in Int’l Symposium on Robotics Research, 2011.

[2] C. Papadimitriou and J. Tsitsiklis, “The complexity of Markov deci-
sion processes,” Mathematics of Operations Research, vol. 12, no. 3,
pp. 441–450, 1987.

[3] T. Smith and R. Simmons, “Point-based POMDP algorithms: Im-
proved analysis and implementation,” in Proc. Uncertainty in Artificial

Intelligence, 2005.
[4] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-

based POMDP planning by approximating optimally reachable belief
spaces,” in Proceedings of Robotics: Science and Systems (RSS), 2008.

[5] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online planning
algorithms for POMDPs,” The Journal of Machine Learning Research,
vol. 32, pp. 663–704, 2008.

[6] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space
planning assuming maximum likelihood observations,” in Proceedings

of Robotics: Science and Systems (RSS), 2010.
[7] T. Erez and W. Smart, “A scalable method for solving high-

dimensional continuous POMDPs using local approximation,” in Pro-

ceedings of the International Conference on Uncertainty in Artificial

Intelligence, 2010.
[8] S. Miller, A. Harris, and E. Chong, “Coordinated guidance of au-

tonomous uavs via nominal belief-state optimization,” in American

Control Conference, 2009, pp. 2811–2818.
[9] J. Van der Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized

path planning for robots with motion uncertainty and imperfect state
information,” in Proceedings of Robotics: Science and Systems (RSS),
2010.

[10] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in
linear POMDPs by factoring the covariance,” in 12th International

Symposium of Robotics Research, 2008.
[11] N. Du Toit and J. Burdick, “Robotic motion planning in dynamic,

cluttered, uncertain environments,” in IEEE Int’l Conf. on Robotics

and Automation (ICRA), 2010.
[12] A. Doucet, N. Freitas, and N. Gordon, Eds., Sequential monte carlo

methods in practice. Springer, 2001.
[13] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,”

International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[14] D. Jacobson and D. Mayne, Differential dynamic programming. El-
sevier, 1970.

[15] J. Betts, Practical methods for optimal control using nonlinear pro-

gramming. Siam, 2001.
[16] R. Platt, L. Kaelbling, T. Lozano-Perez, and R. Tedrake, “A

hypothesis-based algorithm for planning and control in non-gaussian
belief spaces,” Massachusetts Institute of Technology, Tech. Rep.
CSAIL-TR-2011-039, 2011.


