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Series Foreword

Artificial intelligence is the study of intelligence using the ideas and
methods of computation. Unfortunately a definition of intelligence seems
impossible at the moment because intelligence appears to be an amal-
gam of so many information-processing and information-representation
abilities.

Of course psychology, philosophy, linguistics, and related disciplines
offer various perspectives and methodologies for studying intelligence.
For the most part, however, the theories proposed in these fields are too
incomplete and too vaguely stated to be realized in computational terms.
Something more is needed, even though valuable ideas, relationships,
and constraints can be gleaned from traditional studies of what are,
after all, impressive existence proofs that intelligence is in fact possible.

Artificial intelligence offers a new perspective and a new methodology.
Its central goal is to make computers intelligent, both to make them more
useful and to understand the principles that make intelligence possible.
That intelligent computers will be extremely useful is obvious. The
more profound point is that artificial intelligence aims to understand
intelligence using the ideas and methods of computation, thus offering
a radically new and different basis for theory formation. Most of the
people doing work in artificial intelligence believe that these theories
will apply to any intelligent information processor, whether biological or
solid state.

There are side effects that deserve attention, too. Any program that
will successfully model even a small part of intelligence will be inher-
ently massive and complex. Consequently artificial intelligence continu-
ally confronts the limits of computer-science technology. The problems
encountered have been hard enough and interesting enough to seduce
artificial intelligence people into working on them with enthusiasm. It is
natural, then, that there has been a steady flow of ideas from artificial
intelligence to computer science, and the flow shows no signs of abating.

The purpose of this series in artificial intelligence is to provide people
in many areas, both professionals and students, with timely, detailed
information about what is happening on the frontiers in research centers
all over the world.

J. Michael Brady
Daniel G. Bobrow
Randall Davis






Preface

Research in robotics and artificial intelligence tends to go through cycles.
For a few years the emphasis seems to be exclusively on methods targeted
at narrow problems followed by a few years of attempts at integrating
these methods into systems targeted at realistic tasks. It’s easy to see
why this pattern of development is useful. Building a system serves
as a trial-by-fire for existing methods and points out holes in accepted
problem definitions. On the other hand, the difficulties of building a
system limit the type of innovations in approach that are practical in
the component methodologies.

This book reports the results from the system-building part of our
personal research cycle. In HANDEY we have tried to bring together
several state-of-the-art technologies for developing model-based robot
planning systems. Needless to say, we could not address all, or even
most, of the problems in building a general-purpose task-level robot
system. Nevertheless, we feel that our attempts shed some light on the
state of the art in robot planning and may give some hints for where
future work should be directed.

This book is meant to be read profitably by experts in robotics, but we
have also attempted to make the book self-contained so that it remains
accessible to students and robot users. This book, however, was not
designed as a text or as a comprehensive review and evaluation of a field.
Although we have included a brief review of some of the most relevant
literature, we have relied heavily on referring the reader to other sources
for more thorough reviews.

This book is organized as 8 chapters, as follows:

Chapter 1 presents an introduction to the HANDEY system and to
task-level robot programming systems in general. It includes an
example that aims to elucidate some of the reasons for the diffi-
culty of robot programming.

Chapter 2 addresses the problem of planning pick-and-place tasks,
which is HANDEY’s target domain. It briefly outlines the struc-
ture of HANDEY and discusses some of the relevant literature.

Chapter 3 reviews some material in the areas of geometric modeling
and kinematics required by the subsequent chapters. It also intro-
duces the concept of configuration space, which plays a prominent
role in HANDEY.
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Chapter 4 presents the HANDEY gross-motion planner, which is re-
sponsible for planning motions for the robot arm between specified
configurations. It presents two related approaches to gross-motion
planning, one suitable for sequential computers and the other suit-
able for massively-parallel SIMD computers.

Chapter 5 takes up the problem of planning grasps in cluttered en-
vironments. It also presents two approaches to the problem, one
based on a configuration-space representation and the other based
on a potential-field model.

Chapter 6 considers the problem of planning regrasping operations.

Chapter 7 addresses the problem of coordinating two robots working
in close proximity.

Chapter 8 reports some of our conclusions based on our experience in
the development of the HANDEY system.

We want to thank the many people who at different times helped make
the HANDEY system and this book possible. We would like to single out
three people who contributed substantially to the initial development of
HANDEY: Alain Lanusse, who developed the YASM geometric model-
ing system on which HANDEY is based, Pierre Tournassoud, who helped
shape our approach to regrasping, and Eric Grimson, who helped de-
velop our approach to object localization. In addition the following col-
leagues contributed through criticism, encouragement, and assistance:
Mike Caine, Bruce Donald, Mike Erdmann, Matt Mason, Barb Moore,
Sundar Narasimhan, Nancy Pollard, Jose Robles, and David Siegel.

The work reported in this book was funded primarily by the Office
of Naval Research under contracts N00014-85-K-0214 and N00014-86-
K-0685. We would like to indicate our sincere appreciation to the Office
of Naval Research for nearly a decade of stable support which brought
this line of work from its infancy to its current state. We also owe our
thanks to the ISTO office of DARPA, whose continued support of the
Artificial Intelligence Laboratory at MIT has made it such a productive
and exciting place to work. Additional support for the development
of HANDEY was provided by an NSF Presidential Young Investigator
Award to Lozano-Pérez, by the French CNRS, who partially supported
Mazer’s visits to MIT, and by the Digital Equipment Corporation whose
support in the form of funds and robot hardware was very timely. We
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Xv

also owe a debt of gratitude to the Systems Development Foundation
whose support in the early eighties enabled the creation of the robotics
group at the MIT Artificial Intelligence Laboratory.

Finally, we would like to thank our wives and our daughters who had
to do without us far too often during the development of HANDEY and
the completion of this book. Without their patience and support this
book would never have seen the light of day.

Tomaés Lozano-Pérez
Joseph L. Jones
Emmanuel Mazer
Patrick A. O’Donnell



On the Margin

The margins of this book contain five movies that show operations
planned by HANDEY. These movies can be animated by flipping the
pages of the book. For the movies on the right margin, time moves
along with increasing page number; for the movies on the left margin,
time moves along with decreasing page number (starting at page 200).

The movies help document some of the performance of the planners as
well as illustrate some of the basic ideas in more detail than is possible
with a few static snapshots. Furthermore, we thought they would be
fun.

The left margin (on the even-numbered pages) has two movies. Rang-
ing from top to bottom of the page, they are as follows:

1. The parallel motion-planner movie shows a path planned by the
parallel motion planner described in Section 4.5. The robot on the right
is moving around the stationary robot on the left. The motion moves
only the first three joints of the robot on the right.

2. The potential-field movie shows the motion of a gripper in the
grasp plane reaching into a box to grasp a part using the method de-
scribed in Section 5.4.2. The target point (marked by an ‘x’) which
attracts the gripper moves along the path indicated by a thin filament.
This enables the planner to avoid local minima in the potential field.
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The right margin (on the odd-numbered pages) has three movies.
Ranging from top to bottom of the page, they are as follows:

1. The configuration space movie shows a visual interpretation of
the meaning of the configuration-space of the first three joints of a sim-
ple robot arm, with no joint limits. The location of the cross in the
top diagram corresponds to the joint values of the robot in the three-
dimensional model. The hatched regions indicate locations where there
are collisions between the robot arm and its workspace. The three di-
mensional joint space of the arm is represented as a set of slices each
representing the range of motions for the second and third joints; each
slice is defined by a value of the first joint. This representation of the
motion constraints on the arm underlies the implementation of the gross-
motion planner.

2. The regrasp movie shows a pick-and-place operation that requires
regrasping. The block on the far left needs to be grasped, rotated 90
degrees, and placed against the block on the right. To do this, HANDEY
plans a grasp, a placement on the table (at a point further to the left),
a new grasp, and then places the block at the destination.

3. The multi-arm coordination movie shows two robots performing
a sequence of operations in close proximity. The task is described in
detail in Section 7.4.5. The task completion diagram for these tasks
is also shown; the location on this diagram corresponding to each robot
configuration is indicated. You can notice how each robot must wait for
the other when it is about to enter a portion of the workspace which the
other is occupying. (At a few points in the movie, the robots appear to
pass through one another. In fact, one is passing behind the other, from
the viewpoint of the “camera.”)
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]_ Introduction

We are all aware that the science fiction depiction of robots as intelligent
autonomous entities is far from the reality of today’s industrial robots.
Nevertheless, seeing an industrial robot in operation welding a car body
or assembling a typewriter, it is difficult to resist the temptation of
thinking of the particular operations being done as reflections of some
more general competence in manipulation. We would like to think that
a robot that could assemble part of a typewriter could readily assemble
part of a bicycle or, even simpler, pick up a pen from a table. But, this is
far from true. Each individual move of the robot during the typewriter
assembly had to be carefully thought out by a programmer and carefully
debugged over a period of months. Even small changes in the shape of
the parts or their position could lead to disastrous results.

Surprisingly, the robot program to assemble a typewriter is not likely
to have any subroutines that would be useful in assembling a bicycle
or even a different model of typewriter. We will explore this point in
more detail below, but the key observation is simple. The sequence of
motions required to achieve a manipulation goal depends strongly on
the detailed shape and arrangement of the parts and the dependence is
more complex than can economically be encoded in simple subroutines.
As a result, each new robot application is programmed starting from
very primitive motion commands, such as “move to 1.2, 2.3, 3.4”. This
is analogous to programming a computer in machine code without even
an assembler, and just as tedious and error prone.

If robots are to fulfill their scientific and economic potential, this pro-
gramming bottleneck must be eliminated. This book describes a step in
that direction. We set out to endow an industrial robot with the simplest
competence one would naturally expect of a device built to manipulate
objects. Namely, the ability to pick up user-specified objects and place
them at user-specified positions. These manipulation problems are called
pick-and-place problems. Note that pick-and-place is only a small
subset of the manipulation problems we would ultimately expect a robot
to perform. In particular, it does not include precise assembly, welding
or grinding. But, almost every manipulation problem has some aspect
of pick-and-place in it; they almost always involve grasping an object
and taking it to a constrained position.

A robot system with pick-and-place competence could be commanded
to move a part to a given position without describing in detail how this
operation is to be done. In particular, the controlling computer would

J1

J3

J2




Chapter 1  Introduction

Steps in a pick-and-place operation planned by HANDEY.



1.1 HANDEY

select how the part is to be grasped and what path the robot arm should
follow so as to reach the grasp while avoiding collisions with nearby
objects. In other words, the controlling computer would compute all
the detailed robot motions needed to achieve the goal. In this scenario,
the user would not describe how to approach the part with the arm,
how to grasp it or how to move it to its final destination. The user
would provide a geometric description of the relevant parts and their
positions relative to the robot. (This description may ultimately come
from sensors but in the near term is likely to come from a graphics-
based CAD system.) It would then be the job of the robot planner to
determine the detailed operations necessary to perform the task.

Of course, programming a pick-and-place task for a specific object, in
a specific environment, with a specific robot, and to a specific destination
is not that difficult. The difficulty resides in achieving some degree of
generality. We want to have a system that can pick up any object, in any
environment, with any robot, and take it to any destination. Of course,
this level of complete generality is even beyond humans. We would settle
for systems that can manipulate a wide class of objects in a wide class of
environments using a wide class of robots. We designed our robot task
planner, which we called HANDEY, with this level of capability in mind.

1.1 HANDEY

HANDEY is a robot programming system with a substantial level of pick-
and-place competence. We call HANDEY a task-level robot system
because it only requires a description of the task rather than a specifi-
cation of the robot motions required to carry out the task. Given a goal
to achieve and a polyhedral description of the environment and of the
robot, HANDEY computes an appropriate sequence of robot commands
to carry out the task. It can plan pick-and-place motions for objects
modeled as general polyhedra, in accurately modeled environments, for
robots with up to six joints, equipped with parallel-jaw grippers. For
example, Figure 1.1 shows the key steps in a pick-and-place operation
planned completely by HANDEY. The robot must pick up a part from
below an overhanging box, flip it over and place it in its pallet location.
Between Step 1 and Step 2, HANDEY plans a collision-free path from
the initial position of the arm to a grasp. Both the choice of path and

J
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Chapter 1 Introduction

the choice of grasp is carried out by HANDEY. No grasp was found to
be both compatible with nearby objects and with the final position of
the part and so HANDEY plans a regrasp. Step 3 shows the part being
placed on the table on one of its stable states, chosen by HHANDEY so as
enable the next step, which is another grasp and another placement on
the table, shown in Step 4. The net result of these steps is to flip the
part over 180 degrees. At this point, with a feasible grasp available, a
collision-free path is planned to take the part to its destination, shown
in Steps 5 and 6.

The key property of a task-level system is that, as long as the task
remains possible, one can make changes to the environment and one
can expect that the system will generate new motions so as to achieve
the task. For example, if one introduces new obstacles, HANDEY will
automatically generate a new grasp and new motions compatible with
the new environment. One can even change robots and expect the task
to be performed without changing the specification.

HANDEY has been tested on numerous pick-and-place tasks, including
parts ranging from wooden cubes to electric motors. The margin movies
show that HANDEY has been been used to generate commands for differ-
ent types of industrial robots; HANDEY has also been used to coordinate
two arms working in the same workspace. HANDEY has also been tested
with a module that locates the position of a specific part in a jumble
of other parts. The system first builds a depth map of the jumble us-
ing structured light, locates edges in the depth map, and matches those
edges to the model edges. HANDEY then plans how to grasp the part
while avoiding the blocked areas in the depth map (see Section 5.3).

1.2 Robot programming

Task-level robot systems represent a substantial advance over traditional
robot programming systems. In this section we review briefly some of
these programming methods so as to motivate the need for task-level
programming. For more detailed reviews, see [10, 45].

Robot programming today commonly uses three basic methods:

1. Record/Playback — The robot is led manually through a series of
motions while recording key positions. This recorded sequence is then
“played back” to repeat the motions.



1.3 Why is robot programming difficult?

2. Textual programming — The task is specified by writing a com-
puter program that issues a sequence of position commands to the
robot’s control system.

3. Off-line (graphical) programming — A combination of textual
programming and record/playback carried out on a simulated robot via
an interactive graphical interface.

It is increasingly common to use combinations of these methods. Typ-
ically, a program is written embodying the sequence of operations to be
performed and encoding any desired tests. Then, the robot is led man-
ually (or graphically) to each of the positions specified in the textual
program. The reasons for this mixture reflect the strengths and weak-
nesses of the methods.

The major weaknesses of record/playback are its inability to deal with
variations in the task—such as picking up a part from a conveyor belt
when the part position has been determined on-line by a vision sys-
tem, and the difficulty of specifying tasks that are repetitive, but not
completely identical on each repetition—such as picking parts from a
rectangular pallet. Another limitation of record/playback is the diffi-
culty of modifying an existing program to accommodate a modification
to the task, for example, for a new automobile style.

On the other hand, while textual programming can readily provide the
flexibility missing from record/playback, it places the programmer in the
impossible situation of trying to imagine what the motion generated by
a set of numbers is going to be.

The combination of methods, as in off-line graphical systems, can re-
duce some of the weaknesses of the component methods. But, ultimately,
all the traditional robot programming methods, individually and in con-
cert, are limited by the difficulty of constructing higher-level procedures
that can be used in more than one task. Let us explore this crucial issue
in more detail.

1.3 Why is robot programming difficult?

The difficulty of programming a robot with current software tools only
becomes apparent when one tackles a real problem. Therefore, we will
consider a simple example that illustrates some of these difficulties.

Ji
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Figure 1.2
Simple robot and setup

1.3.1 A simple pick-and-place program

Consider the simple task of stacking two parts, called A and B (see
Figure 1.2). We assume that the robot is capable of moving in the z
and y directions and that it can open and close its gripper.

Of course, if parts A and B are always in the same place, we could use
record /playback to program a sequence. But, if the actual positions are
at all different from what they were during “recording” a catastrophic
failure would ensue. Let us assume instead that part B is always fixed,
it is a fixture, but part A is located by a vision sensor. We now want
to write a program to pick up A and place it on B. This is a typical
pick-and-place task.

The simple program in Figure 1.3 hides many of the actual details
required in practice. For example, the position of part A would be repre-
sented by the coordinate transformation between the robot’s coordinate
frame and some standard frame attached to part A. The “grasp point on
right of part A” denotes the composition of two coordinate transforms,
one denoting a grasp position, relative to the standard frame for part A,
composed with the transform denoting the actual position of part A.
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begin 53
locate part A

move to the grasp point on right of part A

close gripper 7
move to the assembly position

end

J2

Figure 1.3
Program 1 — A simple pick and place program.

Figure 1.4
Grasp leading to a collision

The “assembly position” is also a coordinate expression denoting the
position of the gripper when part A is at the final position. We will
ignore these details in the rest of this example and simply ask you to
keep in mind that these are barely outlines of the actual programs.

1.3.2 Grasping

What happens if part A is too close to part B, as in Figure 1.47 If we
execute our simple program, a collision is possible during the robot’s
approach to the grasp point on A. We can avoid this problem by in-
troducing a test into our program that results in choosing a grasp as
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begin
locate part A
if part A is to the right of part B
then set chosen grasp to grasp point on right of part A
else set chosen grasp to grasp point on left of part A
move to chosen grasp of part A
close gripper
move to assembly position
end

Figure 1.5
Program 2 —~ The grasp is chosen based on the relative positions of parts A and B.

a function of the relative positions of A and B (see Figure 1.5). This
example illustrates the main advantage of textual programming over the
record/playback technique: it is possible to take actions based on the
results of sensor measurements or other external data and computations.
Note that our simple strategy for choosing grasps can fail miserably,
as shown in Figure 1.6. The problem is that when choosing a grasp
we have to consider the environment at the destination as well as the
environment around the current position of the grasped part.

1.3.3 Path planning

As a minimum, a robot program must guarantee that the robot moves
without colliding with nearby objects. In the example in Figure 1.5, we
saw the impact that this requirement has on the choice of grasp point.
But, in general, any motion could cause a collision. For example, assume
that our simple robot moves in a straight line from its starting position
to the specified target position. Then the previous program will produce
a collision as it is moving part A to the assembly position. To correct
the program, we must specify intermediate points so as to avoid part B
on the way to the destination. We should also consider the possibility
of collision when approaching the chosen grasp point.

The path planning strategy embodied in the program in Figure 1.7
is very simple: the robot is first commanded to move “above” its des-
tination and then commanded to move to the destination. While this
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Figure 1.6
Grasp not suitable for the assembly

begin
locate part A
if part A is to the right of part B
then set chosen grasp to grasp point on right of part A
else set chosen grasp to grasp point on left of part A
move to point 4 inches above chosen grasp of part A
move to chosen grasp of part A

close gripper
move to point 4 inches above assembly position
move to assembly position

end

Figure 1.7
Program 3 — Each position is approached from above.
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Figure 1.8
Collision with obstacles.
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s

Figure 1.9
Exceeding the limits of travel.
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11

Figure 1.10
Collision due to uncertainty in position of part B relative to part A.

program will work in the situation shown in Figure 1.2, it will fail sim-
ply by changing the initial position of the robot, even without adding
new obstacles (see Figure 1.8). Or, we can choose a position for part A
which will make the grasp motion impossible due to limits in the legal
motions (see Figure 1.9). Note that in these examples, the task is still
achievable, either by introducing more intermediate points in the paths
or by changing the chosen grasp.

1.3.4 Uncertainty

In the previous examples, we have assumed that the position and shape
of all the objects in the world, including the robot, are known perfectly
and that the robot moves exactly as commanded. Neither of these as-
sumptions is exactly true. Robots will deviate from their commanded
positions by amounts that depend, at least, on the quality of the robot,
the load being carried, and the speed of the motion. Furthermore, the
knowledge of the positions and shapes of objects in the environment will
not be exact, even if the position has been determined using some sen-
sor. There will also be errors due to, at least, manufacturing tolerances
and imperfections in the parts feeding and alignment mechanisms.
Ignoring these potential errors and uncertainties may lead to failures;
Figure 1.10 shows a simple example. Ideally, we would like to construct
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procedure Search
begin
index = 0
start y = current y
while index * resolution < mazimum error
begin
move in y to farget y — 1 inch until touch
if current y < target y
then return success
else begin
move in y to start y
index = index + 1
move in x to current ¢ + (index * resolution)
end
end
return failure
end

Figure 1.11
Search subroutine

a program that achieves its goal in spite of the presence of uncertain-
ties. Sometimes this simply means exploiting the inherent physical and
geometrical constraints of the task. For example, grasping a part tends
to align it with the fingers; this can make up for a certain amount of
uncertainty in the original position of the part. In other cases, sensors
can be used to implement a strategy that overcomes some of the uncer-
tainties. As a simple example, assume that our robot is equipped with
a touch sensor that can detect contact between A and B and that the
robot can stop quickly when the contact is detected. In that case, we can
replace the last instruction in Program 3: “move to assembly position”
by a call to the subroutine in Figure 1.11, which performs an exhaustive
right-to-left search at a fixed resolution until it detects a successful as-
sembly (by testing that the y coordinate of the position is close to the
expected value). If the robot were equipped with a force-control capa-
bility, this simple search would better be implemented by a compliant
motion [49, 52, 79)].



1.3 Why is robot programming difficult?

TT

Figure 1.12
Same assembly - Different strategy

1.8.5 Error detection and recovery

In our small programs, we have made no provisions to detect abnormal
situations. In the Search subroutine, for example, the presence of part
B is not verified and part A is assumed to have been grasped properly.
Checking for possible errors can account for the bulk of a real robot
program. Unfortunately, trying to recover from these errors is very
difficult since many possible causes could have been responsible for these
errors. Even detecting success can be a challenging task [13, 15, 49].

1.3.6 Discussion

The examples we have been considering are meant to show two important
properties of robot programs:

e The motions required to achieve a task depend crucially on such fac-
tors as the shape of the parts, their relative position, and their positions
relative to the robot. Relatively small changes in geometry can cause
drastic changes in the strategy required for successful operation.

e The choice of motions cannot be made on purely local considerations.
For example, the choice of initial grasp is influenced by the environment
at the assembly position.

J
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One example of a conceptually simple change with dramatic conse-
quences on the structure of a robot program can be seen in Figure 1.12.
The final assembly is the same one we have been considering, but ro-
tated ninety degrees. The operations necessary to perform this rotated
assembly, however, are radically different. It is not sufficient simply to
rotate all the motions since the interactions of the parts with the table
have changed. In particular, only one grasp is possible (and that is only
possible if we allow the gripper to rotate 90 degrees) and the choice
between alternative grasps is not relevant any more. Furthermore, the
assembly of part A onto part B must now take into account the pres-
ence of the table, requiring a different strategy than that encoded in the
Search subroutine.

The interdependence of decisions is best illustrated by the example in
Figure 1.6. The presence of an obstacle at the assembly site affects the
choice of initial grasp. Other interdependencies exist, as we will see in
Chapter 2.

In our example, involving only two simple planar parts, it may
be possible to write a complex procedure that tests for all relevant
cases involving those two parts. But, in general, having to do that
for each operation and any number of parts is out of the question.
As a result, actual robot programs operate by sacrificing generality.
The program is written to operate in a fixed environment with very
few variations allowed. These programs have many “hidden assump-
tions,” such as the expected initial position of the robot or the rel-
ative positions of the parts, that make them susceptible to failure in
response to small changes in the environment and make them useless for
other tasks.

Our goal in building HANDEY has been to develop a planning system
that can take a description of a situation and generate a robot program
that works for that particular situation. If the situation changes, a new
robot program can be easily generated.

1.4 What HanDEY is and is not

To understand HANDEY, it is important to clarify both what it does and
what it does not do. Earlier in this chapter we described what HAN-
DEY can do and most of this book is devoted to examining in detail
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how HANDEY operates. In this section, we try to place HANDEY in the
context of broad goals of robotics and, therefore, we will dwell primarily
on what HANDEY does not do.

HANDEY is not intended to be a practical system used to program
commercial robots. It is a research system, intended to help us evalu-
ate the current state of the art in the technology for building task-level
systems. Therefore, we emphasized ease of development over speed of
execution. The system has not been subjected to the careful optimiza-
tion and bug-fixing required for routine use. Nevertheless, HANDEY is
reasonably fast. The planning time is usually less than 20 seconds® per
pick-and-place step, counting each regrasping operation as a separate
step.

HANDEY takes as input a complete geometric and kinematic descrip-
tion of a robot and its environment and produces a program to achieve
a user-specified pick-and-place operation in that environment. The pro-
grams produced by HANDEY are composed of explicit motion commands
for the robot and its gripper. These commands specify the desired value
for each of the robot’s joints and desired gripper displacements. The
assumption is that the robot controller will perform linear interpolation
between successive commanded configurations of the robot and com-
mand the robot’s position to follow that path. This is the most common
mode of control for existing industrial robots.

The fact that HANDEY currently requires a complete environment
model is not, in our view, a fundamental limitation. In fact, as we
pointed out above, HANDEY has been tested in situations where range-
sensing is used to locate some of the objects in the environment that is
given as input to HANDEY. This could be done for the rest of the en-
vironment model. A more significant limitation is that HANDEY has no
direct way of coping with variations in its environment during execution
of its task. HANDEY does not generate robot programs that can sense
the environment during execution of the pick-and-place operation and
make decisions based on the sensing. HANDEY does not generate com-
pliant motions [52] or guarded moves [45] to achieve robust operation
or to detect failure. HANDEY does not even generate open-loop motions
that can exploit task mechanics to produce the desired result in spite of
initial uncertainty |7, 53].

IRunning in Lucid Lisp on a Sun Sparc 2 workstation.
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The fact that the current HANDEY does not use uncertainty-reduction
techniques in its output programs does not mean that we are philo-
sophically opposed to them. On the contrary! Neither does it re-
flect, we believe, an inherent limitation in approach. What it does
reflect is a focus on the problem of deciding what to do in geometri-
cally complex situations after one has determined the general structure
of the world. Our key point is that deciding such apparently simple
things as where to grasp a part involves rather complex interactions
between task, environment and robot kinematics. Making these deci-
sions is what HANDEY does. But, having made these decisions, HAN-
DEY should proceed (but currently does not) to refine each step in the
plan, such as grasping a part or placing it on a table, by further plan-
ning that takes into account the uncertainties in modeling and control
(7, 13, 15, 49, 53, 79].

Having implemented the current HANDEY (several times now), it has
become clear that one relatively simple type of uncertainty-reduction
operation could fit readily within the existing HANDEY framework. In
particular, approach, grasping and putdown motions could be generated
as guarded moves. This would primarily require identifying the intended
contacts for the motion during planning time and generating force tests
to identify the first occurrence of these contacts and stop the motion.
Our resources, however, have not been able to stretch to implement and
test this approach.

Another limitation of the current HANDEY is that it does not plan the
sequence of operations required to, for example, assemble or disassemble
parts. The input to HANDEY is a sequence of task-level commands which
may be generated by a human user or such as might be generated by one
of the Artificial Intelligence assembly planners [60]. One key difficulty
is that traditional Al planners assumed that one could succinctly char-
acterize the conditions on the input world that would guarantee that a
task-level operation would be successful. This is essentially impossible
in any practical case and HANDEY can fail to find a plan for apparently
reasonable inputs; sometimes because there is no answer but also be-
cause HANDEY’s algorithms are not complete. More recent Al planning
systems can more readily cope with operators that can fail, for exam-
ple [81]. HANDEY could be a component of such planning system, as
suggested in [14].
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A pick-and-place operation is one where a user-specified object must
be grasped at its current pose', called the pickup pose, and taken to
a new user-specified position, called the putdown pose. The robot
programming examples in Chapter 1 have illustrated many of the con-
straints that must be satisfied for a valid pick-and-place operation. The
following list summarizes these constraints.

1. A collision-free, kinematically feasible? path exists from the robot’s
starting configuration® to the grasp at the object’s pickup pose.

2. The grasp is stable—the grasped object is not free to twist or slip
relative to the gripper.

3. This grasp is such that no part of the robot is in collision with any
obstacle at either the object’s pickup or putdown pose.

4. The grasp is kinematically feasible at both the object’s pickup and
putdown poses.

5. A collision-free, kinematically feasible path exists from the object’s
pickup to its putdown pose for the robot holding the object with the
chosen grasp.

6. A collision-free, kinematically feasible path exists from the object’s
putdown pose to the robot’s final configuration (the initial configuration
for the next operation).

The key difficulty in satisfying all of these constraints on a pick-and-place
operation arises from the interaction among the steps. In particular, the
choice of a grasp brings together all the constraints; the grasp must be
chosen so that no collisions arise and all the required paths are feasi-
ble. HANDEY attempts to deal in detail with most of these interacting
constraints when choosing a grasp, for example, avoiding collisions and
guaranteeing kinematic feasibility at both pickup and putdown poses.
But, some other constraints are only handled approximately, for ex-
ample, guaranteeing that the choice of a grasp does not interfere with
finding collision-free paths for the remainder of the operation.

1A pose refers to the position and orientation of an object usually specified by a
4 X 4 homogeneous transformation matrix that relates a coordinate frame fixed on
the object to a reference coordinate frame.

2A path is kinematically feasible if it is reachable by the robot.

3A manipulator configuration is most commonly specified by a vector of the
manipulator’s joint angles (see Chapter 3).
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Figure 2.1
Interaction between stability of a grasp and collisions with obstacles

2.1 Examples of constraint interactions

A few examples will illustrate how a pick-and-place operation may fail
if some constraint on the operation is satisfied without regard to the
consequences for other parts of the operation.

Figure 2.1 demonstrates a simple interaction between the choice of a
stable grasp and collisions with obstacles. In Figure 2.1(a) the goal is to
move the highlighted object to the pose indicated in dashed lines. The
grasp shown is one of the more stable possibilities. However, as shown
in Figure 2.1(b), the grasp choice based only on stability of the grasp
will cause the operation to fail — a less stable grasp must be used.

Another grasp choice that can lead to failure is one which is kinemat-
ically incompatible with the commanded putdown pose (see Figure 2.2).
The goal in this case is simply to rotate the wedge shaped object about
its lower left edge. However, it is impossible for the robot to carry out
this motion if one makes the most obvious choice of initial grasp. People
can solve both preceding problems by making the obvious grasp then
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Figure 2.2
Interaction between grasp choice and kinematic limits
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Figure 2.3
Interaction between grasp choice and pickup departure path

repositioning the part in their hands on the way to its putdown pose. A
two fingered robot can achieve the same result only by planning a series
of relatively slow and complicated regrasping operations (see Chapter 6).

Some more subtle interactions among the constraints are depicted
in Figures 2.3, 2.4, and 2.5. Suppose that in Figure 2.3 the block is
to be rotated about its lower left edge. The grasp shown satisfies the
stability requirement, it produces no collisions with any obstacles, there
is a kinematic solution at both the pickup an putdown poses, there is a
viable path from the robot’s starting location to the grasp, and a viable
path departing the putdown location exists. However, as can readily be
seen, for this grasp there is no collision-free path for the robot holding
the object to reach the goal.

Figure 2.4 shows a T-shaped block which the robot has just placed
in its putdown pose on the table. Even at this point the grasp choice
can cause problems. In this example it is impossible for the robot to
extricate itself without colliding either with the object it has just placed
or the block behind the gripper.

It may appear in Figure 2.5 that the plan to place the T-shaped object
on the large block has succeeded. In fact, once again the combination of
grasp choice and kinematic solution at the putdown pose has caused a
failure. In this case the shoulder (which connects the horizontal cylinder
and the larger wedge shaped link) and the elbow joint (which connects
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Figure 2.4
Interaction between grasp choice and putdown departure path collisions

Figure 2.5
Interaction between grasp choice and putdown departure path kinematic constraints




22

Chapter 2 Planning Pick-and-Place Operations

the two wedge shaped links) are both so close to their kinematic limits
that it is not possible for the gripper to back away from the grasp without
disturbing the T-shaped part.

In each of the examples just given the following are true:

e The part to be moved is small and geometrically simple,
e The world is simple and sparsely populated, and
e The specified task is simple and does not require high precision.

However, even in these straightforward situations a pick-and-place plan
which ignores constraint interaction can readily fail.

2.2 A brief overview of HANDEY

The key design objective for HANDEY has been to deal directly with
as many of the constraint interactions illustrated above as possible, but
within the context of a relatively modular design. This proved a bit
tricky (see Chapter 8) but in the resulting design, the kernel of HANDEY
is composed of four nearly independent planners:

the gross-motion planner,
the grasp planner,
the regrasp planner, and

the multi-arm coordinator.

HANDEY breaks down the planning of a pick-and-place operation into
a number of steps. Each planner’s responsibility is limited to a subset of
these steps. At the start of a pick-and-place operation the robot will be
in some initial configuration, Figure 2.6(a). The gross motion planner
plans a motion that will take the robot from its initial configuration to
an approach configuration chosen by the grasp planner Figure 2.6(b). A
grasp configuration that is reachable by the robot at both pickup and
putdown is chosen by the grasp planner, Figure 2.6(c) and Figure 2.6(d).
The grasp planner also computes a path between the approach and grasp
configurations. The gross motion planner then moves the grasped ob-
ject to the putdown pose, Figure 2.6(d). The grasp planner chooses a
departure configuration, Figure 2.6(e) and computes a path between the
putdown grasp configuration and the departure configuration.
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Figure 2.6

Steps in planning a simple pick-and-place task: (a) initial robot configuration, (b)
approach configuration, (c¢) grasp at pickup pose, (d) grasp at putdown pose and
(e) departure configuration.
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Figure 2.7
Objects are modeled as polyhedra.

If a grasp cannot be found that is consistent with both the part’s
pickup and putdown poses, the regrasp planner is called to generate a
sequence of grasps and placements (at a fixed spot on the table) that
will permit the robot to place the part at its intended destination. Each
grasp and placement chosen by the regrasp planner will also require
planning gross-motions, approach motions, and departure motions.

2.3 The HaANDEY planners

The HANDEY planners operate on five main data-structures:

e Part: A part is a three-dimensional geometric model of an object
placed in a particular pose. The shape of the part is represented as a
polyhedron. HANDEY is able to manipulate smooth objects, non-convex
objects, and even make use (for grasping) of holes in objects. The only
requirement is that a good polyhedral approximation, as illustrated in
Figure 2.7, be available for each object to be manipulated (see Chap-
ter 3).

e World: A world is a three-dimensional geometric model of a scene,
containing one or more robots and multiple parts, at a given instant in
time. Many of the figures in this book are displays of HANDEY worlds.
To be legal, a world should not include a model of a robot colliding with
any part or any other robot in the world.

e Robot: A robot describes the kinematic structure of an arm and
contains the geometric model of its links. It also includes information
about its gripper and an inverse kinematics function, that is, a func-
tion that can solve for the robot’s joint angles given a coordinate frame
specifying the pose of the gripper (see Chapter 3).
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o Goal: A goal can either specify a set of joint angles for a given
robot arm or the desired final pose of a part. The current version of
HANDEY requires that at the goal pose there should not be any contact
between the moved part and other objects in the world. This restriction
is imposed because the current HANDEY places the part at the final pose
using position control without contact sensing. If the final pose is too
close to other objects, control and modeling errors will almost guarantee
a collision.

e Plan: A plan describes the elementary robot and gripper motions
produced by a planner to achieve the goal. It also contains the nominal
world produced as the result of each operation. The initial world
of a plan describes the nominal world when the plan is started. The
final world of a plan describes the nominal world when the plan is
completed. This final world will serve as the initial world of the next
operation.

HANDEY planners are invoked using these data structures as argu-
ments. In case of a success they return a plan data structure that can
be used to simulate the plan or execute it on a real robot. When a
planner fails to plan the desired operation a failure data structure is re-
turned. This data structure contains a reason for failure and, optionally,
a list of parts in the world which may prevent the planner from achieving
its goal. Other planners can use this data-structure to construct new
goals that may help achieve the original task.

2.3.1 The gross motion planner
The gross motion planner is invoked as follows:
Move(goal, robot, world)

The gross-motion planner will generate a plan describing a collision-free
path from the configuration of the robot in the specified world model
to the configuration specified in the goal. A failure report is produced
either when the goal is not kinematically feasible, when there is a colli-
sion at the goal, or when no path can be found between the initial and
goal configurations of the robot. Chapter 4 describes the gross-motion
planner.
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2.3.2 The grasp planner

The grasp planner is invoked as follows:
Grasp(goal, robot, world, depart?)

If the depart? flag is true, the grasp planner will generate two plans.
The first one is to approach and grasp the part referred to in the goal at
its pickup pose in the specified world. The second is to release the part
at its putdown pose (the goal) and to back away slightly from the grasp.
The grasp is chosen so that there are no static collisions at pickup or
putdown and so that the approach and departure paths exist. A failure
report will be issued if such a grasp does not exist. If the depart? flag is
false, only the approach and grasp plan is computed. Chapter 5 describes
the grasp planner.

2.3.3 The regrasp planner

The regrasp planner is invoked as follows:
Regrasp(goal, robot, world)

When this planner is called the robot must be holding the part which is
specified by the goal. The planner will generate an appropriate sequence
of pairs of robot operations consisting of placing the part on the table
and regrasping it with another grasp until a grasp compatible with the
putdown pose in the goal is found. Chapter 6 describes the regrasp
planner.

2.3.4 The multi-arm coordinator

The multi-arm coordinator is invoked as follows:
Coordinate(plani, plans, world)

plan, and plan, are plans for two different arms. The multi-robot plan-
ner produces a combined plan for the two robot arms that will move the
arms through the same paths but allows them to move at the same time
whenever possible. Chapter 7 describes the multi-arm coordinator

2.4 Combining the planners

The planners described above are the bulk of the HANDEY system. The
pick-and-place competence of the system arises from simple combina-
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tions of these planners. For example, the simplest pick-and-place plan-
ner could be constructed as follows:

e

procedure Simple-Pick-And-Place(goal,robot,init-world)

J2

begin T
if (app,dep=Grasp(goal,robot,init-world,true)) then
if (gm-1=Move(first-world(app),robot,init-world)) then
if (gm-2=Move(first-world(dep),robot,final-world(app))) then
return (merge-plans (gm-1,app,gm-2,dep))
else return (failure(“can’t move to putdown pose”))
else return (failure(“can’t move to pickup pose”))
if (app) then
return (failure(“can’t find a pickup grasp/approach”))
else return (failure(“can’t find a putdown grasp/departure”))
end

Here we have assumed that a failure is interpreted as a boolean false
by if. Note that the order in which the motions are planned is not the
order in which they are executed. In particular, the grasp is planned first
since it is the most constraining operation. The grasp planner computes
both an approach (app) and a departure plan (dep). The approach
motion moves from a point near the part’s pickup pose (Figure 2.6(b),
page 23) to the grasp (Figure 2.6{(c)). The departure motion moves from
the grasp at the putdown pose (Figure 2.6(d)) to a point a little away
from the part (Figure 2.6(e)). The first gross motion (gm-1) moves
from the initial configuration of the robot (Figure 2.6(a)) to the first
configuration in the approach path (Figure 2.6(b)). The second gross
motion (gm-2) moves from the last configuration in the approach path,
that is, the pickup grasp (Figure 2.6(c)), to the first configuration in the
departure path, that is, the putdown grasp (Figure 2.6(d)). The merged
paths are then returned.

The actual program in the HANDEY system is not substantially dif-
ferent from this. In practice, this simple pick-and-place planner will fail
for most combinations of pickup and putdown poses, primarily because

of limitations in the range of joint motions of most robot manipulators.
The grasps compatible with the pickup pose will typically not be com-
patible with the putdown pose. We can construct a much more robust
pick-and-place planner by using the regrasp planner described above.
The new planner is constructed as follows:
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procedure Pick-And-Place(goal,robot,init-world) begin
if (simple=Simple-Pick-And-Place(goal,robot,init-world))
then return (simple)
if (app=Grasp(null,robot,init-world,false)) then
if (regrasp=Regrasp(goal,robot,final-world(app))) then
if (gm-1=Move(first-world(app),robot,init-world)) then
if (gm-2=Move(first-world(dep),robot final-world(regrasp)))
then return (merge-plans(gm-1,app,regrasp,gm-2))
else return (failure(“can’t move to putdown pose”))
else return (failure(“can’t move to pickup pose”))
else return (failure(“can’t find a regrasp plan”))
else return (failure(“can’t find a pickup grasp/approach”}))
end

First, one tries to plan the motion using the simple planner above.
If that plan (simple) fails, a new attempt is made using the regrasp
planner. First, the grasp planner is used to plan an approach to a grasp
(app), ignoring the putdown pose. Then the regrasp planner plans a
sequence of grasps and placements (regrasp) that leave the part in a
grasp suitable for the putdown. Then the remaining gross motions are
planned, the first (gm-1) to approach the initial grasp (app) and the
second (gm-2) to place the part at the putdown pose.

In practice, the reason for the failure of the simple planner would
be checked to make sure that the failure is one that can be overcome
by a regrasping operation. The Right-Margin Movie 2 shows the robot
motions produced by this pick-and-place planner, including a regrasping
operation.

Many variations and extensions of these pick-and-place planners are
possible. For example, the initial world may be constructed by first
sensing the position of the target part. Or, more or less sophisticated
attempts may be used to cope with failures. For example, if a gross
motion or grasp plan fails, one may attempt to move parts so as to make
more room. These particular extensions have in fact been implemented
within the HANDEY framework. Our emphasis in the remainder of the
book, however, will be on the design and implementation of the four
basic planners that form the core of HANDEY. Before we do that, we
first review some of the relevant literature.
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Task-level robot systems have long been a goal of robotics research. As
early as 1961, Ernst’s Ph.D. thesis at MIT [18, 74] attempted to de-
velop such a system. During the 1970’s, a variety of task-level robot
systems were proposed and saw various levels of implementation. The
Stanford Hand-Eye system [19] was very influential in the development
of modern-day robot control systems and programming languages, no-
tably through the work of Paul [62]. Taylor’s work in the context of
the AL system, also at Stanford, explored the problem of synthesizing
sensor-based assembly strategies from models, one of the central prob-
lems in task-level robot systems. The LAMA system developed at MIT
by Lozano-Pérez [43] proposed a design bridging path planning, grasp
planning and synthesis of sensor-based strategies, but the system was
only partially implemented, with the main focus on grasp planning. The
AUTOPASS system at IBM [42, 77] was even more ambitious in scope,
but implementation work focused only on the path-planning compo-
nent [51]. The RAPT system of Ambler and Popplestone at Edinburgh
[67, 68] provided the programmer with facilities for specifying robot po-
sitions by indicating symbolic relationships between geometric entities in
a model of the task. RAPT, however, did not attempt to plan robot mo-
tions. The LM-GEO system of Mazer at LIFIA (Grenoble) [54] followed
an approach similar to that of RAPT.

None of these projects produced a task-level robot system that could
perform reasonably complex pick-and-place or assembly operations with-
out substantial human programming. In retrospect, the problems were
partly the result of lack of good algorithms for basic problems, such as
motion planning and grasping, and partly the result of the inadequacy
of available computers. Nevertheless, these systems helped define many
of the key problems in task-level planning systems and motivated a great
deal of subsequent work on algorithms during the 1980’s.

Only recently, after nearly a decade devoted to the development of al-
gorithms for motion-planning, grasping and error propagation, and after
a twenty-fold increase in computer speed, have there been new attempts
at constructing complete task-level systems. The SHARP system [39)
under development at LIFTIA (Grenoble) incorporates a motion planner,
a grasp planner and an assembly planner based on uncertainty model-
ing. The SPAR system [32] under development at Purdue is an assembly
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planner that focuses on the simultaneous satisfaction of uncertainty re-
duction and geometric constraints expressed symbolically. The system of
Violero et al. [76] under development at LAAS (Toulouse) is the closest
to HANDEY. They report a system that satisfies most of the constraints
on the pick-and-place operation. They select grasps on the basis of local
object geometry, nearby objects at the pickup point, the kinematic fea-
sibility, and the relative gripper/object uncertainty. Furthermore, their
grasp planner plans a kinematically feasible approach motion and a de-
parture motion. Here departure means the gripper carries the object
away from the pickup point. They use a configuration space method
for computing the motion of the gripper both approaching the part and
moving away with it. Finally, they check the path computed for colli-
sions between the robot arm and environmental objects.

For more detailed surveys of previous work in task-level systems, see
[45, 50].

2.5.1 Motion planning

Work in developing task-level robot systems builds upon the very large
body of work in motion planning. It is impossible to provide a compre-
hensive review of this work in a short monograph. Fortunately, there are
several excellent reviews of work in motion planning. The most complete
review of the motion planning literature is the book Motion Planning
by J. C. Latombe [36]. There are several other shorter and, therefore,
less comprehensive reviews, such as [55, 72, 78, 85]. Some representative
gross-motion planning papers that are directly relevant to the approach
taken in HANDEY are [5, 20, 47].

The vast majority of work in the motion planning literature addresses
the planning of single types of motions, such as gross motions, fine mo-
tions, and stable grasping. The key problem in constructing a practical
task-level system is considering the interactions between the different
types of motions. The approach taken by HANDEY and all other pro-
posed task-level robot systems is based on decomposing the planning of
robot operations into nearly independent phases, e.g. gross-motion and
grasping, and using different planners in each phase. This division gives
rise to the interaction problems we have seen earlier in this chapter.
There is work in the algorithmic motion planning literature that ad-
dresses complete pick-and-place problems in an integrated framework.
This work has addressed a simple version of choosing a grasp as an
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integrated part of planning a motion from an initial state to a final state
in which the grasped object is placed at a destination [2, 40, 41, 80).
Existing implementations of these algorithms are for planar objects that
can only translate. Nevertheless, they provide considerable insight into
the computational complexity of the problem of planning pick-and-place
motions.

One crucial area of motion planning where HANDEY has not ventured
is the area of producing plans that are robust to uncertainty. There has
been a great deal of work in this area, most of which is reviewed in [36].
The interested reader is referred to [7, 12, 15, 16, 49, 53] for a sample of
some of this work.

2.5.2 Grasp planning

A substantial body of research has been done on grasp planning. Pertin-
Troccaz [65] has published a very comprehensive annotated bibliography
of this literature. Most of this work has focused on grasping a part in a
particular environment without considering all the constraints required
to ensure the success of a pick-and-place operation.

The work most relevant to HANDEY involves the planning of grasps
for parallel-jaw grippers. Some representative early work on grasp plan-
ning for parallel-jaw grippers is: [8, 37, 38, 43, 44, 62, 73, 82]. Most
of this work focused on geometric interactions, although some consider-
ation has been given to kinematic constraints [62, 73]. Wolter, et al.,
[83] considered stability as well as local reachability in choosing grasps.
Pertin-Troccaz [64] considers on-line planning based on sensory data.
Sets of feasible grasps (based only on the geometry of the object) are
computed, then a laser-camera system is used to find local obstacles near
the plane of the grasp (defined by the grasp features). A configuration
space method is employed to plan the motion of the gripper to the grasp
point. Finally, as we mentioned earlier, Violero et al., [76] report on
a method that satisfies most of the constraints required for successful
pick-and-place operations.

One crucial problem in grasp planning that HANDEY neglects is the
problem of grasp stability, specially in the context of multi-finger grasp-
ing. There is a large body of published work on this problem, some
examples are: [1, 3, 4, 11, 21, 27, 29, 33, 57, 58, 59].
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2.5.3 Regrasp planning

If the robot is equipped with a multi-finger hand, it may be possible
to change a grasp entirely within the hand [6, 21, 61]. If the robot
is equipped only with a parallel-jaw gripper, however, an alternative
strategy must be used that temporarily places the part on the table
or in another gripper. The HANDEY regrasp planner is limited to this
second strategy. As far as we are aware, however, the only previous
systematic exploration of regrasping with parallel-jaw grippers was by
Paul [62] in the context of the Stanford Hand-Eye system. Paul’s method
assumed that the regrasping could be done in a single step and did not
deal completely with the kinematic or collision-avoidance constraints.
Many of the ideas in HANDEY’s approach to regrasping, however, can
be traced to Paul’s work.

2.5.4 Multi-robot coordination

HANDEY can coordinate multiple robots operating in a common work-
space. Existing approaches to multi-robot coordination can be classified
as either global or local. The global methods construct complete trajec-
tories for all the robots that guarantee, or attempt to guarantee, that
all the robots reach their goals safely. (The multi-robot planner uses
a global method.) Erdmann and Lozano-Pefez [17] describe how to
construct the configuration space-time for several planar manipulators,
each with two revolute joints. The trajectories of the manipulators are
planned one at a time, using the swept volume, in space-time, of the
previous trajectories as obstacles. Fortune, Wilfong, and Yap [22] de-
scribe an algorithm for finding collision-free trajectories for two planar
manipulators, with one prismatic and one revolute joint, by character-
izing the combinatorial structure of the configuration space of the two
robots.

One problem with these global methods is that they depend on care-
fully controlled trajectories. There are many applications where this
lock-step coordination is not practical or efficient (such as where the
robots are controlled by hardware that cannot be tightly synchronized).
Also, the methods are computationally intensive since they have to con-
sider, either explicitly or implicitly, both space and time.

There has also been work [30, 70, 71] on the closely related problem
of planning trajectories for multiple moving objects, not manipulators.
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These studies have shown that this problem is PSPACE-hard, that is,
one expects the time to achieve coordination to grow exponentially with
the number of moving objects. This is not surprising; it has been shown
repeatedly that the complexity of motion planning grows exponentially
with the number of degrees of freedom of the task. There has also
been work in the less directly relevant area of planning the motions of a
single object in the presence of other moving objects whose trajectories
are known [34].

Local methods for collision-avoidance and coordination make decisions
at each instant of time as to what the trajectory for each robot should be.
These methods are related to local methods for avoiding collisions with
fixed obstacles, notably the potential field methods originally developed
in [35]. Freund and Hoyer [23] develop a controller that coordinates mul-
tiple planar manipulators, with one prismatic and one revolute joint, by
incorporating collision constraints into the control system of the robots.
Tournassoud [75] describes a technique for coordinating multiple moving
objects, including manipulators, by defining separating planes at each
moment and ensuring that the objects stay on opposite sides of them.

These local algorithms are based on actual measurements of the po-
sitions of the robots and thus can accomodate unexpected variations
in trajectories or unexpected obstacles. But, in the general case, local
methods cannot guarantee that each robot will reach its goal. They may
reach a deadlock, where one robot is blocking the other. Furthermore,
because these local methods rely on changing paths to avoid collisions
they are not suited to situations where the paths are tightly constrained.

All the methods described above plan the paths of the robots as well
as the trajectories. (Section 7.1.2 discusses the distinction between a
path and a trajectory.) The multi-robot planner only schedules paths
that have been planned by a different planner. In fact, in HANDEY, the
paths that the multi-robot planner is given to synchronize are generated
by at least two other HANDEY planners (the path planner and the grasp
planner).
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3 Basics

The basic problem that HANDEY faces is that of planning the motions
of robots in the presence of obstacles—usually rigid objects, but some-
times other kinematic chains. HANDEY solves this problem by main-
taining an explicit geometric model of its environment, computing an
explicit representation of the constraints on the motion of the robot,
and then searching for a path that satisfies these constraints. A vari-
ety of specialized representations are needed at various stages in this
process, such as grasping and regrasping, and they will be discussed in
subsequent chapters. There are a few basic representations, however,
that permeate all the computations, and these are the subject of this
chapter.
The representations that we will discuss in this chapter are:

the representation of polyhedral models,

the representation of robot models,

the representation of world models, and

the representation of motion constraints in configuration space.

Although each of these could be (and each has been) the subject of
its own book, we will only provide a few basic concepts necessary for
understanding the operation of HANDEY.

3.1 Polyhedral models

HANDEY operates in the domain of polyhedral solids. In this section,
we briefly introduce the representation of polyhedra.

A polyhedron is a solid bounded by planar faces. In particular, a
convex polyhedron is simply the common intersection of a set of half-
spaces bounded by oriented planes. Each such plane is characterized by
an outward-pointing normal vector and an offset that describes the
perpendicular distance from the coordinate system origin to the plane. If
the outward normal is the unit vector n and the perpendicular distance
to the origin is —d, then n-x+d is the (signed) perpendicular distance of
the point x from the plane. Points with positive distance are “outside”
of the half-space defined by the plane and points with negative distance
are “inside” the half space. Points with distance equal to zero are on
the plane. Points in the interior of a convex polyhedron are inside all
the half-spaces of the bounding planes.
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The representation of a polyhedral model.

Although the representation of convex polyhedra as a set of bounding
planes is convenient for many purposes, such as detecting whether a
point is inside or outside a body, it is not convenient for many other
purposes, notably for graphics. For these other purposes a representation
that explicitely characterizes the boundary of the polyhedron is required.
Such a boundary representation is typically structured as a graph
showing membership and adjacency relationships between the vertices,
edges, and faces of the polyhedron. One notable advantage of this type
of representation is that it readily extends to non-convex polyhedra.

The fundamental elements in the boundary representation of a poly-
hedral model are:

e Vertices are the points where three or more faces of the polyhedron
meet. Vertices are represented by their z,y, z coordinates.

e Edges are the line segments where two faces meet. The edge repre-
sentation stores pointers to the pair of vertices at the endpoints of the
line segment and pointers to the two faces adjacent to the edge.

e Faces are planar polygons, bounded by the edges of the polyhedron.
A polyhedral face is represented by the equation of the plane that con-
tains the face, that is, by n and d, and by a set of nested loops of oriented
edges; the nesting and consistent orientation of the edges are necessary
to enable the representation of objects with holes.

The representations of vertices and edges are intuitive; faces are more
difficult and, therefore, we will describe them in more detail.

A simple polygonal face is represented by a loop of oriented edges.
The edges are oriented so that as we traverse the edge from its tail to
its head, the interior of the face is on the left (see Figure 3.1). For
the outermost loop of a face, this orientation defines a counterclockwise
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traversal of the face boundary (as seen looking from the exterior of the
polyhedron). Note that since an edge is shared by two faces, it appears
in two different face loops but in opposite orientations. Because the edge
loops are consistently oriented, they can also be used to bound holes in
the face. A hole in a face is bounded by another oriented loop. We still
retain the condition that traversing the edges of the loop should keep
the interior of the loop on the left. The result is that a hole boundary
defines a clockwise traversal of the loop.

A polyhedral model, therefore, is composed of a set of faces, edges,
and vertices as described above. Each face is described as a set of loops
depicting the polygonal shape of the face. Each loop is described as a list
of edges (and orientation) each of which is described as a pair vertices.
In addition, there are several cross-references within the model: vertices
point to the edges and faces incident on them and edges point to the
faces that meet there. The resulting graph is the polyhedral model.

3.2 Robot models

The description of a robot has a number of detailed components but they
fall into two principal categories: kinematic and geometric. The kine-
matic description focuses on the motions of the robot and the geometric
description focuses on the shape of the robot.

3.2.1 Kinematics

Robot manipulators are composed of a sequence of solid links connected
by joints. The joints are of two principal types:

e Revolute joints permit the relative rotation of two adjacent links
about a common axis. The relative orientation of the links is character-
ized by a joint angle.

e Prismatic joints permit the relative displacement of two adjacent
links along a fixed axis. The relative displacement between the links is
characterized by a joint displacement.

In this book, we focus on manipulators composed of revolute joints and
we use the term “joint angle” to refer to the parameters that describe
the position of a robot. The extension to prismatic joints is, in most
cases, straightforward.
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The kinematic description of the robot includes a description of the
spatial relationships between the links of the robot, a means for selecting
the joint angles of the robot given a desired end-effector location, and
the specification of mechanical limits on the motion of the joints.

For the purpose of describing the motions of the robot, we do not need
to know the shape of the links; all that is required is to know the rel-
ative positions and orientations of the joint axes. This is a kinematic
description of the robot. The details of the kinematic description of
robots is beyond the scope of this book; the interested reader may refer
to [10, 63]. For our purposes, it is sufficient to understand that the robot
kinematics can be described by a sequence of coordinate transforma-
tions. These transformations are typically represented by homogeneous
coordinate transformation matrices [63], traditionally called A matri-
ces. Fach link has attached to it a coordinate frame whose origin lies
on the joint axis closer to the base of the robot. The z axis of the link
coordinate frame is aligned with the joint axis; therefore, the rotation
of the joint amounts to a rotation about the z axis of the link frame.
When all the joint angles are zero, the link frames have fixed relation-
ships to each other. The i** A matrix, A;, describes how to map the
coordinate representation of points expressed in the frame of link ¢ to the
corresponding coordinate representation in the frame of link ¢ — 1. By
composing subsequences of these transformations one can map points
between any pair of link frames, including the frame of the fixed base of
the robot.

When the robot is positioned by setting the joint angles, the rela-
tionships between adjacent links is no longer defined by the constant A
matrices described above. We must take into account the rotation about
the joint axes. This is done by composing the constant A matrices we
have discussed with a rotation about the link frame’s z axis to obtain a
new A matrix that depends on the joint angle:

Al(ﬁl) = AiROt(/Z\, 91)

This matrix maps points from the link 7 frame to the link 7 — 1 frame for
any value of the joint angle. Composing these matrices for particular
values of the joint angles enables us to position the robot model as
desired.

A key aspect of the robot kinematics that remains to be addressed
is the problem of choosing the set of joint angles that will place the



3.2  Robot models 39

NE
Y

J2

J1

Figure 3.2

A two-link revolute manipulator can reach typical points in its workspace with two
solutions. A general six-degree-of-freedom robot can have up to 16 distinct
solutions to its inverse kinematics.

robot end effector at a desired pose, specified by a coordinate frame
relative to the base of the robot. This is known as the inverse kine-
matics problem. There is no closed-form solution to this problem for
arbitrary robots [10, 63]. We assume that a procedure is available to
solve this problem; this procedure is part of the robot’s kinematic de-
scription. It is crucial to note that there are, in general, multiple solu-
tions for any gripper pose. For example, the planar two-link revolute
manipulator in Figure 3.2 typically has two solutions for each gripper
frame in its workspace. A six-degree-of-freedom Unimation Puma can
reach a specified gripper frame in 8 different configurations. A general
six-degree-of-freedom robot can have up to 16 distinct solutions to its
inverse kinematics. Which solution should be chosen will depend on the
environment.

Another crucial component of the kinematic description of a robot is
its joint angle limits. This is simply a description of the ranges of
joint angles that are legal. These joint limits have a tremendous impact
on what operations are possible and must be taken into consideration
during all the planning operations.

3.2.2 Link shapes

The description of the motion of the robot and the position of the end-
effector depends only on the kinematic description of the robot. The
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shape of the links of the robot is immaterial. Nevertheless, when at-
tempting to plan a path for the robot that avoids obstacles in the world,
the shape of the links becomes very important. Therefore, along with the
kinematic description, the robot model includes a geometric description
of the shape of the robot.

In the geometric description of the robot, each link is represented by
a polyhedral model (Section 3.1). The model describes the shape of the
link. The model is defined in the coordinate frame of the link, as defined
in the previous section. For link 4, we can then compute the link model
in the coordinate frame of link i — 1 simply by applying the A matrix,
A;(6;). By this method, we can compute a model of the robot in the
coordinate frame of the robot base for any specified joint vector.

3.3 World models

In order to plan the motions of a robot amid obstacles, HANDEY requires
an explicit model of the robot’s workspace (or “world”). This includes
a robot model for each robot in the world, and a polyhedral model for
every obstacle in the world. The parts being moved by the robots also
need to be modeled. The collection of these robot and polyhedral models
is a world model.

Specifying a world model to HANDEY merely requires the listing of
a part model for each obstacle in the world. For each model, it is also
necessary to specify the location in the world of that part. This is
done by providing a coordinate transform that specifies the position and
orientation of the coordinate system used to define the polyhedral model
with respect to the world coordinate system. In other words, when the
polyhedral model is defined, a reference coordinate system is assumed
by the definition of the model; when the world model is defined, the
relationship of this reference coordinate system to the world coordinate
system is specified.

In HANDEY, the location and orientation of the robot is encoded
within the robot model, specifically, within the description of the link
numbered zero (the base). The actual location of any of the links of the
robot in the world can be computed from the robot model, using the
specific values of the joint angles, according to the method described in
the previous section.
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It is not necessary to define a detailed polyhedral model for every
object in the robot’s workspace. The detail that is necessary depends on
the use to which the object is put. For example, the world may contain
a group of small parts that are not expected to be manipulated and the
robot is not expected to navigate among them—it is only expected to
avoid the whole collection. In that case, it is convenient to represent
the whole collection as a single obstacle, using a single polyhedral model
whose interior contains the whole group.

At the other end of the spectrum, any object that the robot is expected
to grasp, to mate to other objects, or to move very close to, must be
modeled very accurately. The grasp planner, for example, must have
an accurate list of the planar faces of the object in order to decide on
possible grasps.

In the middle of the spectrum are objects near to which the robot is
expected to move, but that are not expected to be manipulated. These
objects may be modeled with as much accuracy as is reasonable in or-
der to allow motion around them, but details of their shape may be
ignored. (Of course, the polyhedron approximating the obstacle must
be conservative—the actual object must be contained within the interior
of the approximation.)

The accuracy of the models of the objects in the world directly affects
the performance of many of the modules of HANDEY. The running
time of these modules depends on the number of faces and edges in the
entire world model. The more detail included in the world model, the
longer these modules will run. Nearly all of them take steps to reduce
the impact of detailed models, through caching of previous results or
conversion of the information in the world model into other formats.

3.4 Configuration space

Many of the planning modules in HANDEY operate by computing the
constraints on the motion of the robot due to the presence of obstacles in
the world. These constraints are represented in a configuration space
map (C-space map). The C-space map specifies which combinations of
joint values (or z,y, ) cause collisions with obstacles and which do not.
The gross motion planner, for example, searches for a piecewise-straight
path through the robot’s C-space map that avoids all collisions.
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If the robot were a point, then the obstacles in the C-space map
would simply be the obstacles in the world but, for an actual robot, the
relationship between the obstacles in the C-space map and the obsta-
cle descriptions in the world model is complex. C-space maps play a
prominent role in HANDEY. Therefore, in this chapter, we will present a
detailed exposition of the concept of configuration space (C-space).
We illustrate the concept by outlining algorithms for circles, polygons
and polyhedra. The detailed algorithms used in HANDEY will be de-
scribed in subsequent chapters.

3.4.1 Definition of configuration space

The position of all points on a rigid body or robot manipulator can be
specified by a small set of numbers. This collection of numbers is the
configuration of the body. (For rigid bodies, this is also known as the
pose of the body.) For example, the z,y position of a known point on
a rigid planar body and an angle 6 indicating the rotation of a line on
the body about a fixed orientation are sufficient to specify the position
of every point on the body. In this case, we can write the configuration
as (z,7,0). Of course, we can parameterize configurations in different
ways, for example, using polar coordinates r,¢ instead of z,y. Each
choice of parameters for the configurations of an object defines a space,
called the configuration space (C-space) of the object, where a point
corresponds to a configuration of the object.

For jointed manipulators, the natural choice of configuration parame-
ters is the set of joint parameters. Another obvious choice is the position
and orientation of the gripper frame, but this choice is not always suit-
able since it does not uniquely identify the positions of the links for
general manipulators. As we saw, the planar two-link revolute manipu-
lator in Figure 3.2 (page 39) typically has two solutions for each gripper
frame in its workspace.

If the moving object is a polygon A, there is no unique choice of con-
figuration parameters, so we must adopt some arbitrary convention for
representing its configuration. Such a convention amounts to choosing a
coordinate frame attached to the moving object, that is, we must choose
a reference point, p4, to determine position and a reference line,
L4, to determine orientation (see Figure 3.3). The choice of point and
line is arbitrary; in particular, they need not be inside of A. It is only
necessary that the reference point and line bear a fixed relationship to A.
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Figure 3.3
Conventions for assigning configurations to a polygon

A’s configuration, c, is (z,y, §) where z,y are the components of p 4 and
0 is the angle that £ 4 makes with the world z-axis. The zero position
of a polygon has p 4 = 0 and the reference line parallel to the z-axis.

In the C-space of a moving object A, there will be some configurations
that would place some point of A inside some Cartesian obstacle B;.
We call the collection of these configurations, the configuration space
obstacle due to Bj, written as CO 4(B;). The definition is:

COA(B;) = {c|(A)e N B; # 0} (3.4.1)

where (A)¢ denotes A in configuration c. We can think of CO 4(B;) ob-
stacle as a new object obtained by mapping B; into the C-space. Clearly,
the space available for motions is that part of the C-space outside all
the configuration space obstacles; we call this the free space.

HANDEY must compute the C-space obstacles of realistic objects, in-
cluding manipulators. But, we will first illustrate these concepts with
very simple objects, such as circles and convex polygons.

3.4.2 The CO for a circle

If Ais a point in the plane, the C-space is simply the plane itself and the
configuration space obstacles (CO’s) are the Cartesian obstacles them-
selves.
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Figure 3.4
The configuration space obstacles (CO’s) for a circle A amid circular obstacles B;
are the input obstacles grown by the radius of A.

If A is a circle, we can choose to represent its configuration by the
position of its center point. Given this choice, then the circle’s orienta-
tion is irrelevant and the C-space is the Cartesian plane. But, the CO’s
for the circle are not simply the Cartesian obstacles; any position of the
circle that is within the circle radius from a Cartesian obstacle must
be within a C-space obstacle. Therefore, the COs for the circle are the
Cartesian obstacles grown by the circle radius.

If the obstacles are circles, the CO’s are also circles whose radius has
been increased by 7 4, the radius of A; dually, the circle A shrinks to its
center point in the C-space. (See Figure 3.4 for an example.) The circle
is safely outside the Cartesian obstacles if and only if the position of its
center point, that is, its configuration, is outside all the C'Os.

Let us look at the COs for a circle amid circular obstacles more care-
fully. Imagine tracing the path of A’s center, p 4, as A travels around a
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a*

Figure 3.5
Computing the CO as a difference of vectors from the center to points with equal
and opposite normals.

circular obstacle B while keeping contact with its boundary. The point
of contact between the two circles occurs at point a on the boundary
of A and point b on the boundary of B. A key observation is that the
outward pointing normals at a and b must be equal and opposite for
the points to touch (see Figure 3.5).

The positions of p4 can be characterized in another useful way. Let
a* = a — py, that is, the position of contact point a relative to the
reference point of A. Then, we know that if a and b are in contact (that
is, a = b), then

*

ps=b-a’ (3.4.2)

This gives the position of A in terms of the positions of the contact
points. (3.4.2) holds for any pair of points on the boundary of A and B,
a* and b, that have opposing outward normals (see Figure 3.5). This
relationship can be used to compute the CO boundary. Note that for
any convex object, the angle defined by the outward normal (relative
to the z-axis) increases monotonically as we navigate counterclockwise
around the boundary. So, we could compute the CO boundary—the
locus of positions of p 4 for which A and B touch, in a single traversal
of the boundaries of the objects, by using (3.4.2) where the normals are
opposite. For circles the result is obvious, a grown circle, but this is a
general characterization of the CO boundary for arbitrary objects.
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Figure 3.6
CO for a moving circle A and a polygonal obstacle B.

Consider the CO’s for the circle A and a polygonal obstacle B, as
shown in Figure 3.6. Examining the figure one can see that the boundary
of the CO is composed from edges parallel to the edges of B and from
arcs of A. Visualize the path of A’s center as its boundary slides along
the boundary of B while maintaining contact. Part of the time, the
circle is in contact with an edge of the polygon, part of the time it is
in contact with a vertex of the polygon. When touching an edge, the
circle’s center point traces an edge parallel to the polygon’s edge but
displaced by radius r4. When touching a vertex, the circle’s center
point traces an arc of a circle of radius r 4 centered on the vertex. This
satisfies our intuitive expectations of what should be the boundary of
the set of positions of p 4 that could collide with B.

These conclusions about the shape of the boundary also follow from
considering the normals at the points of contact. First, consider the
edges of B. All the points b on an edge of B have a common normal,
but only one point on A has that particular normal; hence the point
of contact a* is uniquely defined and remains constant as A translates
along the edge. All the values of p 4 obtained from (3.4.2) are on the
CO boundary. These values define an edge parallel to B’s edge, offset
from it by the vector a* which, because A is a circle, is perpendicular
to the edge of B and of length r 4.
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Figure 3.7

The boundary of the CO corresponding to positions of A for which A’s boundary is
in contact with a vertex of B is a displaced and negated copy of an arc from A’s
boundary. The range of normals of the arc is determined by the range of normals
between the edges neighboring the contact vertex

Now, consider the vertices of B. A vertex can be seen as the limiting
case of a circle as the radius goes to zero. In this view, a vertex has the
whole circular range of normals, but contact is only possible in the range
between the normals of the edges connected to it (see Figure 3.7). The
vertex has a constant position b; hence, the path of p 4, while in contact
with the vertex is obtained by subtracting from b the range of vectors a*
for points on A with opposing normals. This is simply a displaced (and
negated) copy of an arc from A’s boundary, as illustrated in Figure 3.7.
Because of A’s symmetry, the negative sign in (3.4.2) has no discernible
effect but, in general, it is quite important, as we will see below.

Note that the circle and convex polygon (using the convention about
vertex normals used above), have a normal corresponding to each angle
in the interval [0,27). Hence, we can place the objects in contact so
that the contact point has any normal from this range. Also, for each
angle, there is a single point on the boundary of each obstacle whose
normal makes that angle with the world z-axis. By the reasoning in the
preceding paragraph, we can expect that an edge equal in length and
parallel to each edge on B’s boundary will appear on the boundary of
the CO. Similarly, the union of the arcs generated at the vertices will
yield a full circle.
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Figure 3.8
CO for a moving polygon A and a circular obstacle B.

3.4.3 The translational CO for convex polygons

A polygon has three degrees of motion freedom: two translations and
one rotation. Thus, the general CO for a moving polygon A is a three-
dimensional entity. We will consider only a single orientation § = 0 of A,
that is, a cross section of the general CO. In general, we denote such
cross sections CO%=9, but we will not use the superscript when the

reference is clear from the context.

CO’s for a single convex moving polygon For a polygon Aanda
circular obstacle B, we expect that the translational CO will be quite
similar to the case of a moving circle B and a polygonal obstacle A. This
expectation is not completely correct. It is indeed the case that the CO
boundary for a polygon A and a circle B is composed of arcs of B and
edges equal in length and parallel to those of A. But, the normals to the
edges of the CO will be opposite to those of the corresponding edges of A
(see Figure 3.8). The case of a circular A demonstrated the same effect,
but it was not noticeable because of symmetry. The reversal follows
from the negative sign on a* in (3.4.2).

The resulting CO%°(B) is rotated by m radians from CO%0(A).
Let pg be a reference point for B and b* the position vector of a
boundary point on B relative to the reference point. Essentially, every
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Figure 3.9
CO for a moving polygon A and a polygonal obstacle B. The edge normals of B
and the negated edge normals of A can be sorted by angle; this order will be the
order of their appearance in the CO boundary. The range between two edge
normals is associated with a vertex.
boundary point in CO%=°(B) is expressible as - X
=
pp +b" —a* (3.4.3) = .
Tz
while every boundary point in CO%™(A) is
p,+a*—b* (3.4.4)

Assume that both A and B are in their initial position so that Py=
pPp = 0. Then, the boundary points of one CO are the negatives of
the other, that is, one C'O is the reflection through the origin of the
other. In two dimensions, this reflection is equivalent to a rotation of
radians. When the positions of A and B are changed, the shape of the
CO is unchanged; the only effect is a translation of the CO.

When both A and B are convex polygons, the translational CO is
also a convex polygon. From the above discussion it should come as
no surprise that the boundary of this CO is composed of edges equal
in length and parallel to the edges of A and B. For an example, see
Figure 3.9. Clearly, unless an edge of A and one of B have opposing
normals, contact between A and B will involve an edge of one touching
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a vertex of the other. We classify the CO edges by which object provides
the edge. When an edge of A touches a vertex of B, we call the resulting
CO edge a type A edge. When an edge of B touches a vertex of A, we
call the resulting CO edge a type B edge. Type A edges have opposite
normals from the corresponding original edges of A. When A and B
have edges with opposing normals, the resulting CO edge is the union
of a type A and type B edge.

Each CO edge is obtained from a pairing of an edge from one object
and a vertex of the other. The particular pair that actually generates
such an edge is determined by the normal of the edge and the range
of normals of the vertex (as defined earlier). Only when the range of
normals associated with a vertex includes the negated normal of an edge
can that vertex—edge pair come into contact and produce a CO edge (see
Figure 3.9).

The condition for a vertex—edge pair forming a CO edge leads to a
very simple algorithm for the translational CO for polygons. The ver-
tices that define a polygon are stored in order of increasing angle; this
provides a convenient data structure for implementing the algorithm.
Define a loop that, in parallel, scans the vertex list of both polygons.
Conceptually, an angle cursor is advanced each time through the loop,
succesive values of this cursor correspond to the angle of the edge nor-
mals of B and the negated edge normals of A. At any point, the angle
cursor will point to a vertex of one object and an edge of the other.

Having obtained the vertex-edge pairings, the resulting CO edge is
determined by an application of (3.4.2). Consider a type B edge first.
Let the position vectors of endpoints of the edge of B be b; and b4
respectively and let the position vector of the corresponding vertex of A
(relative to the reference point of A) be a;. Then the endpoints of the
edge of CO4(B) generated by this pairing are: b; —aj and bj1 —a;.

We represent a line supporting an edge by an equation of the form:
fi-x+d = 0. Where n is the (outward pointing) unit vector that
is normal to the line and the absolute value of d is the perpendicular
distance to the edge from the origin. If the line equation of the jth edge
of B is:

ﬁj - X+ dj =0
then the line equation of the corresponding edge of the CO is:
n; - (x+aj)+d; =0 (3.4.5)
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Figure 3.10
CO for A = UA; for obstacle B.

Note that this equation is satisfied by the endpoints of the CO edge, as
it must.

The situation for type A edges is analogous. The position vectors
(relative to the reference point of A) of the endpoints of the ith edge of
A are af and aj_;; the position vector of the B vertex matched to that
edge is b;. Then the endpoints of the edge of CO 4(B) generated by this
pairing are: b; —a} and b; —aj, ;. Similarly, if the line equation of the
ith edge of A is:

m; -x+c¢; =0
then the line equation of the corresponding edge of the CO is:
I/I\li . (bJ — X) + ¢ = 0 (346)

Note that once again this equation is satisfied by the endpoints of the
CO edge.

CO’s for unions of convex polygons The methods described above
for a single moving polygon generalize directly for moving objects rep-
resentable as unions of convex polygons. In that case, the CO is simply
the union of the CO’s of each of the component polygons. For an ex-
ample, see Figure 3.10. It is crucial that a single reference coordinate
system be used for all the polygons in the union. The effect is to refer
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the motion constraints of all the components of the moving object to a
single point.

The CO algorithm suggested in Section 3.4.3 can be generalized to
handle non-convex obstacles [26], but the resulting CO is a polygon
whose boundary, in general, crosses itself. Such a self-intersecting poly-
gon is called a non-simple polygon.

3.4.4 The CO for convex polyhedra

We now turn our attention briefly to the problem of computing CO 4(B)
when A and B are convex polyhedra. The translational case is a fairly
direct extension of the polygonal case, but the general case including
rotations is much more difficult.

When both A and B are polyhedra, the faces of CO%°(B) are of
three basic types, the first two are analogous to the type A and type B
edges we have already seen, the third is new.

1. Type A faces — the set of positions of A for which a face of 4 is in
contact with a vertex of B. The normal to the C-surface is the normal
of the face of A that gives rise to it.

2. Type B faces — the set of positions of A for which a face of B is in
contact with a vertex of A. The normal to the C-surface is the normal
of the face of B that gives rise to it.

3. Type C faces — the set of positions of A for which an edge of 4 is in
contact with an edge of B. The normal to the C-surface face is parallel
or anti-parallel to the cross product of the edge vectors that give rise to
it, that is, the C-surface normal is orthogonal to both edges.

When both A and B are convex polyhedra, we can readily determine
which of the pairings of edges, faces, and vertices actually produce faces
on the boundary of the CO. The conditions for type A and B surfaces
are simply that the edges that intersect at the contact vertex all be
above the plane of the contact face. If any of the edges at the point of
contact were below the plane of the face then that would indicate that
the two objects would be overlapping, not just in contact at that point.
In general, the applicability condition, for convex A and B, requires that
the C-surface act as a separating plane between the two solids, that is,
that A and B be on opposite sides of the C-surface. The conditions for
type C, although a bit more complex, follow this same pattern [12].
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Three-dimensional solids have six degrees of motion freedom and,
therefore, they require a six-dimensional C-space. The C-space obsta-
cles are six-dimensional solids bounded by five-dimensional C-surfaces,
of type A, B, and C. It is possible to compute descriptions of the bound-
ing surfaces of these solids and to build motion planning algorithms on
these descriptions [9, 12].

3.4.5 Slice projection

The C-space for a rotating planar object is three-dimensional, with one
dimension corresponding to each of the degrees of motion freedom of the
object. The C-space obstacles are also three-dimensional; they describe
the range of forbidden configurations of the moving object. The trans-
lational CO’s we have been discussing correspond to two-dimensional
cross sections, for fixed orietations of A, of this three-dimensional CO.

It is possible to construct exact representations of these high-dimen-
sional C-space obstacles [9, 12], but for many practical applications it
is sufficient to build approximations to the exact C-space obstacle. One
common approximation technique is to quantize one or more of the C-
space parameters to obtain a lower-dimensional obstacle that represents
the motion constraints over some range of values of that parameter. We
call this technique slice projection. Slice projection is the basis of the
gross motion planner in HANDEY. (See Section 4.1.)

Definition Let C denote an n-dimensional general C-space obstacle
for a moving object with n degrees of freedom. We can represent ap-
proximations of C by the union of (n — 1)-dimensional slice projections.
Each (n — 1)-dimensional configuration in a slice projection of C repre-
sents a range of n-dimensional configurations (differing only in the value
of a single configuration parameter) that intersects C.

A slice projection of an n-dimensional C-space obstacle is defined by a
range of values for one of the defining parameters of the C-space and an
(n—1)-dimensional volume. Let q = (¢1,...,q,) denote a configuration,
where each g; is a configuration parameter, which measures either an-
gular or linear displacement. Let m; be a projection operator for points,
defined such that

mi(a) = (q1,-- -, Q51,415 - qn)
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Let g, (6,1 (S ) be a projection operator for point sets S, defined such
that

My, ela;,5;)(S) = {mj(a)la € S and g; € [a;,b;]}

Then, the slice projection of the obstacle C for values of ¢; € [a;, b;] is

HQjE[aj ,bj] (C)

In the example above, configuration parameter j above is called the slice
parameter while the other joints are known as free parameters.

Note that a slice projection is a conservative approximation of a seg-
ment of an n-dimensional C-space obstacle. That is, the slice projection
contains all the points in the actual C-space obstacle and, usually, ad-
ditional points not in the actual obstacle.

An approximation of the full obstacle can be built as the union of a
number of (n—1)-dimensional slice projections, each for a different range
of values of the same slice parameter. Each of the (n — 1)-dimensional
slice projections, in turn, can be approximated by the union of (n — 2)-
dimensional slice projections and so on, until we have a union of one-
dimensional volumes (linear ranges) or possibly zero-dimensional ranges
(points).

Computing slice projections A slice projection can be computed
without having to compute the exact C-space obstacle first. The basic
idea is very simple: A slice projection Ilg, ¢[a;5,/(CO(B)) is merely the
C-space obstacle for a suitably defined object A, ¢[a;,] With one less
degree of motion freedom than A. The object A, ¢(4;5;) is the volume
swept out by A as g; takes on all values in [aj,b;]. Figure 3.11 shows
a slice projection for a range of orientations of A. Each slice projection
is a two-dimensional polygon corresponding to the translational CO of
Apelo,s) (for j = 0) and Age(s 2 (for j =1).

Note that we can vary the size of the ranges used in the slice projection
to control the accuracy of the representation. But, also note that some
problems will require arbitrarily high resolution and therefore arbitrarily
many slices.

3.4.6 The CO for manipulators

We have limited ourselves thus far to discussing Cartesian C-space ob-
stacles, the obstacles for objects with Cartesian degrees of freedom. The
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Original object

Object rotated Resultant object
through a small j=0
range

Slicej=1

Slicej =0

Part of 3D C-space obstacle

Figure 3.11
Slice projection of general CO4(B) for two ranges of 8: 6 € [0, 6] (for j = 0} and
6 € [6,26] (for j = 1).

C-space concept is not limited to these cases; we have mentioned that
the joint space of a manipulator is also a C-space. The C-spaces gener-
ated by manipulators with revolute joints, however, are more difficult to
compute than those with prismatic joints, just as the rotational degrees
of freedom lead to more complex CO’s in the Cartesian C-spaces.

The natural choice of C-space for a manipulator is its joint space,
since the Cartesian configuration of the end effector does not, in general,
uniquely characterize the positions of the links.

The boundaries of the C-space obstacles for a manipulator can be
obtained from the expressions for the type A and B edges in (3.4.5)
and (3.4.6). Essentially, there are two types of collisions between links
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T

Type A collision Type B collision

Figure 3.12
Two types of collisions: (type A) link edge and polygon vertex, (type B) link vertex
and polygon edge.

and polygonal obstacles: an edge of the link collides with a vertex of an
obstacle polygon (type A) or a link vertex collides with an edge of an
obstacle polygon (type B) (see Figure 3.12).

We can express the positions of the link vertices and edges as a func-
tion of the joint angles of the manipulator. Substituting these expres-
sions in the equations of the CO edges in (3.4.5) and (3.4.6) give rise
to implicit equations that are satisfied by joint angle vectors when there
is contact between a link and obstacle. These equations describe the
boundary surfaces (C-surfaces) of the C-space obstacles in the joint
space of the manipulator [24]. Of course, these equations may be dif-
ficult to solve explicitly for the joint angles. Instead of pursuing this
course, we will employ slice projection to construct numerical approxi-
mations of the C-space obstacles for manipulators (see Chapter 4).



4 Gross Motion Planning

The HANDEY gross-motion planner plans collision-free motions for ro-
bots. The gross-motion planner is invoked as follows:

Move(goal, robot, world)

The planner computes a path for the robot from its configuration in
the specified input world to the robot’s configuration in the goal world.
The path is required to avoid collisions with all the obstacles in the world
model. The path produced by the planner is a list of robot joint vectors;
the planner assumes that the robot controller can follow straight lines in
the joint space between the specified configurations with good accuracy.

The planner operates by computing the constraints on the motion of
the robot due to the presence of obstacles in the world. These constraints
are represented in a configuration space map (C-space map) (see
Section 3.4 for an introduction to configuration space). The C-space
map specifies which combinations of joint values cause collisions with
obstacles and which do not. The gross motion planner searches for a
piecewise-straight path through the robot’s C-space map that avoids all
collisions.

This chapter first presents the slice-projection approach as applied to
computing C-space maps for revolute robots. Next, we consider heuristic
techniques for minimizing the amount of computation needed to com-
pute C-space maps: reducing the number of joints in the maps, reducing
the number of slices, simplifying the models of robots and obstacles, and
caching intermediate results. Then we discuss how to find paths in the
C-space maps. The chapter ends by presenting a gross-motion planning
algorithm, based on the slice-projection approach, for implementation
on massively parallel SIMD computers,® such as a Thinking Machines
Corporation’s Connection Machine.

4.1 Approximating the COs for revolute manipulators

Consider a simple two-link planar revolute manipulator whose joint pa-
rameters are 0, and 85. C-space obstacles for such a manipulator are
two-dimensional. The one-dimensional slice projection of a C-space ob-
stacle, C, for 0, € [a,b] is some set of linear ranges {R;} for 6. The

LSingle Instruction Multiple Data—that is, a parallel computer whose many pro-
cessors all receive the same instruction stream but operate on data local to each
Pprocessor.
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ranges must be such that if there exists a value of 8, call it d, and a
value of 8, € [a,b], call it ¢, for which (¢,d) € C, then d is in one of
the R;.

The configuration space of the two-link manipulator and obstacles as
shown in Figure 4.1 (bottom), can be represented as in Figure 4.1 (top).
The actual configuration space is the surface of a torus since the top
and bottom edge of the diagram coincide (0 = 27), as do the left and
right edges. The obstacles are approximated as a set of 5 ranges (shown
dark) for a set of values of #;. The resolution is two degrees along the
01-axis.

If the manipulator has three links, its configuration space can be con-
structed as follows:

1. Ignore links beyond link 1. Find the ranges of legal values of 8, by
considering rotations of link 1 around the fixed base.

2. Sample the legal range of 81 at the specified resolution. Do steps 3
through 5 for each of the value ranges of 6.

3. Ignore links beyond link 2. Find the ranges of legal values of 84 by
considering rotatations of link 2 around the positions of joint 2 deter-
mined by the current value range of 6;.

4. Sample the legal range of 8, at the specified resolution. Do step 5 for
each of these value ranges of 6.

5. Find the ranges of legal values of 83 by considering rotations of link 3
around the position of joint 3 determined by the current value ranges
of 91 and 92.

The resulting C-space map (see Figure 4.2) is a set of two-dimensional
slice projections, each like the one in Figure 4.1. Right-Margin Movie 1
shows steps in the construction of such a C-space map.

Note that the process described above is an instance of a simple re-
cursive process:

To compute C-space(s):

1. Ignore links beyond link ¢. Find the ranges of legal values of 8, by
considering rotating link 7 around the positions of joint ¢ determined by
the current value ranges of 81,...,8;_1.

2. If 1 = n then stop, else sample the legal range of €; at the specified
resolution. Compute C-space(i + 1) for each of these value ranges of 8;.
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Figure 4.1

A two-link planar revolute manipulator and obstacles is shown at the bottom of the
figure. The top shows a two-dimensional C-space with obstacles approximated by a
list of one-dimensional slice projections (shown dark). Several configurations of the
manipulator (labeled 1-4) are shown in the input space and the C-space.




60

Chapter 4  Gross Motion Planning

Figure 4.2
Configuration space for the first three links of a Puma robot is represented as a set
of two-dimensional slices, each computed for a different value of 8;.

Observe that the basic computation to be done is that of determining
the ranges of legal values for a joint parameter given ranges of values of
the previous joints. This is an instance of the slice projection method
we first saw in Section 3.4.5.

The recursive nature of the C-space computation calls for a recursive
data structure to represent the C-space. One possible implementation
uses a tree whose depth is n — 1, where n is the number of joints, and
whose branching factor is the number of intervals into which the legal
joint parameter range for each joint is divided. Figure 4.3 illustrates
such a tree. The leaves of the tree are ranges of legal (or forbidden)
values for the joint parameter n. Many of the internal nodes in the
tree will have no descendants because they produce a collision of some
link 7 < n.

The main advantage of a representation method built on recursive
slice projection is its simplicity. All operations on the representation
boil down to dealing with linear ranges, for which very simple and ef-
ficient implementations are possible. The disadvantages are the loss of
accuracy, and the rapid increase of storage and processing time with
dimensionality of the C-space. Contrast this approach with one that
represents the boundaries of the obstacles by their defining equations
[9]. Using the defining equations is more compact and more accurate,
but the algorithms for dealing with interactions between obstacle bound-
aries may be very complex.
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Figure 4.3
The recursive nature of the C-space leads to a recursive data structure: an n-level
tree whose leaves represent legal ranges of configurations for the robot manipulator.

4.1.1 Slice projections for polygonal links

To compute the one dimensional slice projections of C-space obstacles
requires determining the range of forbidden values of one joint param-
eter, given ranges of values for all previous joint parameters. We will
illustrate how these ranges may be computed by considering the case of
planar revolute manipulators moving among planar obstacles. We will
first discuss this problem informally and then derive the solution from
the equations of C-surfaces.

4.1.2 A geometric view

Assume that joint k, a revolute joint, is the free joint parameter for a
one-dimensional slice projection and that the previous joints are fixed
at known values. We assume, for now, that the previous joints are fixed
at single values, not ranges of values; we will see later how to relax this
restriction. We require that the configuration of the first £ — 1 links
be safe—that no link intersect an obstacle. This is guaranteed by the
recursive computation we saw above. Given these assumptions, we need
to find the ranges of values of the single joint parameter 6, that are for-
bidden by the presence of objects in the workspace. That is, the range
of 8y for which the kth link polygon collides with some obstacle.

The key geometric observation is that collision between two polygons
exists either when an edge of one crosses an edge of the other or when
one polygon is completely contained within the other. Furthermore, the
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Figure 4.4

Contact conditions for computing one-dimensional slice projections: (a) Vertex of
obstacle and edge of link (b) vertex of link and edge of obstacle. The circles
indicate the path of the vertices as the link rotates around the specified joint.

only way a collision can first come into being is by one edge crossing
another edge. Since we are interested in avoiding collisions in the first
place—not in detecting them after they have happened, we will focus
only on edge/edge interactions. Then, determining forbidden ranges of
6, boils down to computing the union of the angle ranges for which an
edge of the link crosses an edge of an obstacle polygon. Because we have
ignored the complete overlap case, the absence of a forbidden range for
a joint angle does not mean there can be no collision for any joint value;
it means there can be no change in the collision state.

For two polygon edges that start out disjoint to come to overlap, they
must first pass through a vertex/edge contact. Therefore, the ranges
of forbidden values for 8, will be bounded by angles where link % is
just touching an obstacle. For polygonal links moving among polygonal
obstacles, the extremal contacts happen when a vertex of one object
is in contact with an edge of another object. These correspond to the
Type A and Type B edges we saw in Section 3.4.6. Therefore, the first
step in computing the forbidden ranges for 8} is to identify those values
of 6, for which some obstacle vertex is in contact with a link edge or
some link vertex is in contact with an obstacle edge (Figure 4.4). We
call these values contact angles.

The link is constrained to rotate about its joint, therefore every point
on the link follows a circular path when the link rotates. The link
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vertices, in particular, are constrained to known circular paths. The
intersection of these paths with obstacle edges determine some of the
potential contact angles of 8, for example, B in Figure 4.4. As the link
rotates, the obstacle vertices also follow known circular paths relative to
the link. The intersection of these circles with link edges determine the
remaining potential contact angles for 6y, for example, A in Figure 4.4.

Determining whether a vertex and an edge segment can intersect re-
quires first intersecting the circle traced out by the vertex and the infinite
line supporting the edge to compute the potential intersection points.
The existence of such an intersection is a necessary condition for a con-
tact between link and obstacle, but it is not sufficient. In addition, the
intersection point must be within the finite edge segment, not just the

line supporting the edge. The potential contact angles satisfying this
in-edge constraint are the actual contact angles.

The in-edge constraint can be trivially tested given the potential con-
tact point and the endpoints of the contact edge. Since we know that
the contact point is on the line of the edge, all that remains to be de-
termined is whether it lies between the endpoints of the edge. This .
can be done by ensuring that the z- and y-coordinates of the contact pf ;%
point are within the range of z- and y-coordinates defined by the edge bl
endpoints. Note that for contacts involving link edges and obstacle ver- ?«E
tices, the position of the endpoints of the link edge must be rotated - 90
around the joint position by the computed value of the joint angle
at the contact.

The set of contact angles represent the critical angles at which edges
of the link and obstacle initiate or break contact. We can pair up these
angles to determine the range of angles for which any pair of link and
obstacle edges overlap. The forbidden angle ranges for 8 are simply the
union of these ranges for all edge pairs.

4.1.3 Derivation using C-surfaces

The two types of contacts (obstacle vertex with link edge and obstacle
edge with link vertex) give rise to the two basic types of C-space surfaces,
type A and type B. The equations of such surfaces are parameterized by
the configuration parameters, §;.

For a revolute joint, choose the coordinate system to be located at the
joint. The coordinate representation of all of the vectors will be relative
to this coordinate system; this simplifies some of the derivations.
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We represent a line supporting an edge by an equation of the form:
n-x+d =0, where 1 is the (outward pointing) unit vector that is
normal to the line and |d| is the perpendicular distance to the edge from
the origin. The condition for a vertex v being in contact with such a
line is simply - v +d = 0.

For a type B contact, we are given a link vertex whose initial position
vector (for 6, = 0) is v and an obstacle edge whose line equation is
n-x+d = 0. If the link angle is 84, the coordinates of the rotated link
vertex are:

v’ = (vg cos O — vy sin O, v, sin Ok + v, cos by)

Substituting into the line equation yields a simple trigonometric equation
in B (all the other terms are constant):

(ngvg + nyvy) cos By + (nyvy — ngvy)sinfy +d =0 (4.1.1)
From the definition of the scalar and vector product, we have that
NgUz + NyUy = || V] cos @, NyUs — NgUy = ||V sin¢

where ¢ is the angle between n and v. From this, it is clear that the
C-surface equation is merely

v cos(6x — ¢) = —d

The solution to this equation is:

6 = cos™! <—d) +¢ (4.1.2)
vl
Figure 4.5 illustrates this situation. There is one such C-surface for each
combination of link vertex and obstacle edge.
Using the same notation, except that the edge is a link edge and the
vertex an obstacle vertex, the equation for a type A C-surface is

(ngvy + nyvy) cos O — (nyvy —ngvy)sinfy +d =0 (4.1.3)

The only difference is the sign of the coefficient of sin 8. This difference
arises from the fact that we are thinking of the obstacle vertex as counter-
rotating while the link stands still. That is, the direction of rotation of
the vertex is the opposite of 0y; this changes the sign of the sine of the
angle. The solution to this equation is:
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Figure 4.5
Illustration of terms used in Equations (4.1.1) - (4.1.4)

Oy, = cos™! (ﬁ) —¢ (4.1.4)

There is one such C-surface for each combination of obstacle vertex and
link edge.

Note that there are generally two solutions to each of the equations
(arising from the arccosine) since they correspond to intersections of a
circle traced out by a vertex and an infinite line supporting an edge. Of
course, when the magnitude of the argument to the arccosine is greater
than one, this indicates an infeasible contact, that is, the line is beyond
the reach of the vertex. (Of course, when the argument is equal to
one, the line is tangent to the circle—a grazing contact.) The valid
intersections of the circle and line, however, do not necessarily represent
contacts between the link and an obstacle. The in-edge constraint must
also checked, as described before, by computing the coordinates of the
intersection point and the positions of the edge endpoints, given the
computed values of 0.

Each contact angle computed above can be tagged by the edges in-
volved. Each vertex is the endpoint of two edges, so each contact angle
represents a transition point for two edge pairs: each vertex edge paired
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Figure 4.6

Each edge/edge interaction can give rise to 0, 1, or 2 disjoint ranges of angles. In
this example, the four positions of the link (the parallelogram) are shown colliding
with the rectangular obstacle. The link edge labeled 1 forms two angle ranges with
the obstacle edge labeled e; there are two disjoint angle ranges for which there is a
collision. The link edges labeled 2 and 4 each have a single collision range with the
obstacle edge e. The edge labeled 3 has no collision range with e.

with the contact edge. A given pair of edges can give rise to zero, one or
two angle ranges (see Figure 4.6). This follows from the fact that each
vertex/edge interaction can give rise to up to two contact angles.
Having constructed the angle ranges for each edge pair, we can com-
bine them to construct the final forbidden range for the joint angle. For
example, in Figure 4.6, the union of the ranges arising from the e : 1,
e: 2 and e : 4 collisions give rise to the total collision range for the joint.

4.1.4 The effect of ranges of joint angles

Qur discussion thus far has been limited to situations where all the
joints except the last have known fixed values. The definition of one-
dimensional slice projections allows all the joints, save one free joint,
to be within a range, not just a single value. We can readily convert
the slice projection problem (for ranges of joint values) to the simpler
cross section projection problem (for single joint values) we have already
discussed.

The key idea is to grow either the link or the obstacles so that any
safe placement of the “new” link among the “new” obstacles represents a
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range of legal displacements (within the slice joint ranges) of the original
link among the original obstacles. There are two approaches that achieve
this goal:

1. One can grow the link by the upper bound on the largest Cartesian
displacement of any point on the link in response to a displacement
within the specified range of joint values.

2. One can replace the obstacles by the volume they would sweep out
if they were attached to the manipulator while it moves within the slice
joint ranges.

For a detailed treatment of this issue, see [47]. HANDEY attempts to
side-step this problem by using a fine enough resolution in its slice pro-
jections.

4.2 Slice projections for polyhedral links

The basic approach described in Section 4.1 carries over directly to three-
dimensional manipulators and obstacles. The only significant difference
is that, since we are dealing with polyhedra, we have slightly different
conditions for collision. In the planar case, the relevant collision condi-
tion involved the crossing of a link edge and an obstacle edge. Therefore,
the beginning and end of a collision are signaled by a vertex/edge tran-
sition. In the solid case, collisions involve an edge of one polyhedron
crossing a face of another. Therefore there are three collision transi-
tions: type A, vertex of obstacle and face of link; type B, vertex of link
and face of obstacle; and type C, edge of link and edge of obstacle (see
Section 3.4.4). As in the planar case, the final range of forbidden angles
for the joint will be the union of the forbidden ranges for each edge/face
pairing.

Let us consider type B contacts first. Each revolute joint is character-
ized by an axis of rotation. As the joint rotates, link vertices trace circles
in a plane whose normal is the joint axis. The intersection of this circle
with the plane supporting an obstacle face defines two candidate points
of contact. As in the two-dimensional case, possible contacts must sat-
isfy the in-face constraint—the contact must be within the obstacle face.
This constraint can be checked using any of many existing algorithms
for testing whether a point is in a polygon.
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Link k-1

Figure 4.7
Joint coordinate system.

Type A contacts are handled analogously to type B contacts except
that now the vertex belongs to an obstacle and the face to a link. The
axis of rotation is still that of the manipulator joint.

Detecting type C contacts requires detecting the intersection of a line
(supporting a link edge) rotating about the joint axis and a stationary
line (supporting an obstacle edge). Of course, an intersection point must
be inside both edge segments to be feasible.

In what follows we assume that the coordinate system is chosen so
that the origin corresponds to the position of revolute joint £ and the
z-axis is aligned with the joint axis (see Figure 4.7). The coordinate
representation of all vectors is relative to this coordinate system. We
assume that the initial position of the link polyhedron corresponds to
8, = 0. We are interested in computing values of 8, for which the link
is in contact with the obstacle polyhedron.

4.2.1 Type B contact: link vertex and obstacle face

We are given a vertex of the link whose position vector is v and an
obstacle face whose plane equation is - x +d = 0 (@i is the plane’s
outward-facing unit normal). We solve for the angle 6 that rotates the
vector v onto the plane. We obtain the equation for 8 by substituting
the vertex’s position, rotated by 6, into the plane equation and solving
for 6.
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The coordinates of the position vector for the rotated vertex are:
v = (v cos Oy — vy sin Ok, vy sin Oy + vy, cos O, v,)

Substituting into the plane equation gives n-v’'+d = 0, yielding a simple
trigonometric equation

NgUz + NyVUy ) €08 O + (MU — Nzvy, ) sinly = —d — n,v, 4.2.5
yVy y y

whose solution is:

Tz Uz 7T d
8, = cos! e
VW2 (1 - n2)
+ atan(ny vy — Naly, gty + Nyty) (4.2.6)

Eq. (4.2.5) is the equation for a type B C-surface. Note that if we
let n, = 0, then Eqgs. (4.2.5) and (4.1.1) are essentially identical. The
arctangent simply computes the angle between the plane normal and the
projection of v on the zy-plane; this magnitude is analogous to ¢ in the
planar case. Eqgs. (4.2.6) and (4.1.2) are also related in the same way.

4.2.2 Type A contact: obstacle vertex and link face

We are given an obstacle vertex whose position vector is v and a link
face whose plane equation is n-x--d = 0 (1 is the plane’s outward-facing
normal). The solution for 0 is almost identical to the type B case, the
only difference is the sign of the first argument to the arctangent. This
reflects the fact that in a type A contact we are treating the link as
stationary and assuming the object is rotating in the opposite direction.
This changes the sign of the sine of the angle.

_1 -n,v, —d
VW2 + 021 - n2)

+ atan(ny vy — NyUsz, NaUy + Nyty) (4.2.7)
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4.2.3 Type C contact: obstacle edge and link edge

This case is substantially more difficult. We represent points on the
edges parametrically in t. Therefore, points on the link’s edge are repre-
sented by t;m + v where v is the position vector of one of the endpoints
of the edge and m is a vector along the edge (actually the difference
vector between the endpoints). The parameter ¢; € [0, 1] parameterizes
position along the edge. We can represent the vector along the obstacle
edge similarly as t,n + w for ¢, € [0,1].

As the edge rotates around the z-axis, points on the edge trace out
circles. The equation for points on those circles are:

2y = (Mgt 4 ve)? + (myty + vy)?

z = Myt +v,

These can be combined by solving the second equation for ¢; = (z —
v,)/m, and substituting into the first to obtain:

z mZ

2% 42 = (:;’ (z—vz)-i—vm)z—f- (my(z—vz)—i—vy)z (4.2.8)

This is an implicit equation for points on the rotation surface.
The parametric form of the obstacle edge can be used to solve for the
intersection of the edge with the rotation surface.

T = Ngly + Wy, Y = Nyts + Wy, 2z ="n,l, + W,

Substituting into (4.2.8) gives a quadratic equation in t,.
Define the following terms:

p = (n2+n2)m?— (m+m)n’

¢ = 2Anewe + nywy)m? — (m2 + m)w, - v,)n,
— (mgug + myvy)m,n,]

2

r = (wi—sz)mz

—mg(w, —v,) + vamz)? + (my(w, —vz) + vymz)2]
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The quadratic equation that must be solved for ¢, is

pt2+qto+7 =0

Having t, we can solve for #; since we know that the 2z values at contact

must be equal. Therefore,

nzto + Wy — Uy
=221 = =
my
Given values for t; and ¢,, we must first check that they are in the range
[0, 1] (the in-edge constraint), then we can compute points of intersection
on each of the edges. Let 1 be the position vector of the intersection point
on the link edge and o the position of the intersection point on the object

edge. Then,
O, = atan(lz0y — lyoz,lz05 + lyoy)

We have assumed, when deriving (4.2.8), that m, # 0. In the not
uncommon event that, in fact, m, = 0, then all the points on the rotation
surface have z = v, and so will the intersection point with the obstacle
edge. We can use this to obtain ¢, = (v, — w,)/n,. We can then solve
for ¢; by using the fact that the contact point on the link edge will be
on the same circle as the contact point on the obstacle edge:

(Mot +v2)? + (myty + vy)? = (ngto + we)? + (nyte + wy)?

But we know the value of ¢, so this is a quadratic equation for ¢;. Given
the values of ¢; and t, we can solve for 8, as above.

4.2.4 Merging the ranges

Each vertex/face contact determines one end of the range for the con-
tact face paired with each edge that defines the contact vertex. Each
edge/edge contact determines one end of the range for the contact edges
paired with each of the faces defining the other edge. Having constructed
the angle ranges for each edge/face pair, we can combine them to con-
struct the forbidden range for the joint angle. This is completely analo-
gous to the process in the planar case.
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4.3 Efficiency considerations

Thus far, we have focused on the basic algorithmic and geometric de-
tails of constructing C-space maps. Our discussion, however, has not
addressed two crucial issues:

1. Efficiency: How can we reduce the time required to build C-space
maps?
2. Search: How should C-space maps be searched for a path?

The next two sections describe the strategies adopted by the HANDEY
system to answer these questions.

The straightforward application of C-space maps to the problem of
searching for safe paths for a six-joint manipulator involves building a
high-resolution six-dimensional C-space map. This strategy is extremely
wasteful, however. The worst-case time to compute a C-space map using
the slice projection algorithm described in Section 4.1 grows as

r*1f(n)
where:

r is the number of slices computed for each joint,
k is the number of joints in the manipulator, and

f(n) is the time to compute a single slice as a function of n, a measure
of the complexity of the environment such as number of edges in
the obstacles.

This time complexity means that increased resolution and increased
number of joints rapidly increase the time to compute C-space maps.
It is obvious from the form of this complexity measure that we can
reduce the actual time spent in computing C-space maps by:

1. reducing the number of joints considered, ,
2. reducing the number of slices, 7, or
3. reducing the time to compute a single slice, f(n).

Another useful strategy is to cache intermediate results that may be
useful later. HANDEY makes use of all of these strategies.
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4.3.1 Reducing the number of joints

When making a large motion from one location in the workspace to
another, it is seldom the case that the orientation of the gripper matters.
Recall that the first three joints of a manipulator are sufficient to move
the gripper but not to control its orientation. The last three joints, which
we will call the wrist joints?, primarily affect the orientation of the
gripper. This suggests that when searching for a collision-free path, we
consider only motions of the first three joints of the manipulator in detail
and pay less attention to the values of the wrist joints. Constructing the
resulting three-dimensional C-space maps will be much more manageable
than constructing a six-dimensional map. There are, however, two ways
of “ignoring” the wrist joints. One way is by holding their values fixed
and the other is by considering them as free to move over some range
of values. In either case, we are constructing slice projections of the full
six-dimensional C-space map.

Let the starting joint angles of a manipulator be denoted 6, and the
goal joint angles as 6,. Let plo! represent the sequence of joint values
(65, ...,6;). Gross motion planning in HANDEY is carried out using three
slices of the six-dimensional C-space:

1. A slice constructed with 4 = 0[64’6], call it the start slice.

2. A slice constructed with 816 ¢ [gl4:5], 0[g4’6]], call it the reorienta-
tion slice.

3. A slice constructed with @14 — 024’6], call it the goal slice.

In the start slice, the wrist joints are held fixed at the values they have
in the starting configuration of the manipulator. In the reorientation
slice, the wrist joint angles are allowed to vary between their values in the
start and the goal configurations. To compute this slice, the wrist links
and the gripper are replaced by an approximation to their swept volume
as they move within this range of values. In the goal slice, the wrist
Joints are held fixed at the values they have in the goal configuration
of the manipulator. Note that any safe point in the reorientation slice
must also be a safe point in both the start and goal slices.

2Technically, a manipulator wrist exists when the last three joint axes intersect at
a common point. This is the most common arrangement for industrial manipulators
since it guarantees a closed-form solution to the inverse kinematics [66].
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Low-Resolution C-Space Slice for
Total Range of Values of Wrist Angles
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Figure 4.8
The gross motion planning problem is split into three 3-degree-of-freedom slices.

The search problem then involves finding a path that begins at the
start joint angles (in the start slice) that moves into the reorientation
slice and ends at the goal joint angles (in the goal slice). Figure 4.8
illustrates this approach. Note that we are basically using slice pro-
jection to approximate a six-dimensional C-space map by three three-
dimensional C-space maps. From a computational viewpoint this is an
excellent tradeoff since the time to compute three three-dimensional
slices (3r2f(n)) typically will be much less that to compute a single
six-dimensional slice (r5 f(n)).

We should emphasize that the choice of three three-dimensional slices
is based on a tradeoff between accuracy and efficiency. Note that the
wider the range of angles used to define a slice, the smaller the free space
becomes in that slice, or, equivalently, the farther from obstacles the
manipulator must remain. The choice of slices in HANDEY is based on
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the observation that we want maximal accuracy of representation near
the start and goal configurations. The start and goal slices are therefore
defined for fixed angles to allow approach and departure motions near
obstacles. The reorientation motion for the gripper can {and should)
happen away from the obstacles, therefore, we use the whole range of
required motion to define the remaining slice.

The use of only three three-dimensional slices to approximate a six-
dimensional slice means that there are, in principle, many problems for
which paths will not be found and for which paths do, in fact, exist. For
example, if the gripper is carrying a long bar or if the workspace is very
cluttered, then the orientation of the gripper may matter a great deal
and the use of a single reorientation slice will likely lead to failure. We
could extend the approach described above to use multiple reorientation
slices, defined for small ranges of angles, when the gripped object is large
or the space is cluttered, but the current version of HANDEY does not
do this.

4.3.2 Reducing the number of slices

Using the recursive slice projection algorithm of Section 4.1, the three-
dimensional slices of the six-dimensional C-space are approximated by
a set of ry two-dimensional slices, each of which is in turn approximated
by r; one-dimensional slices (see Figure 4.3, page 61). In the simplest
case of uniform sampling of the total angle range for each joint, we
have that rp = ry = r, where » = (27 /angle step size). In that case,
computing one three-dimensional slice requires computing on the order
of 72 one-dimensional slices.

We can reduce the amount of computation required to compute slices
either:

1. by reducing the size of the joint angle range represented in the slice,
or
2. by increasing the angle step size by lowering the angular resolution.

HANDEY uses both of these techniques to advantage.

The number of one-dimensional slices needed to compute a three-
dimensional slice can be reduced by using a very low angular resolution
in computing the reorientation slice. The rationale is that this slice is
already a gross approximation defined for a wide range of angles of the
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wrist joints. Furthermore, the working assumption is that the reorienta-
tion motion will take place relatively far from the obstacles. Any motion
close to the obstacles will take place in the start or goal slices, which are
computed using constant values of the wrist joint angles. These slices
need to be computed at high resolution.

The number of one-dimensional slices needed to compute a three-
dimensional slice can also be reduced by building only as much of the
C-space map as is needed to find a safe path. When searching for a
path from 0[61’3] to 9&1’3], HANDEY first constructs the C-space map only
within the bounding box defined by these two joint vectors. If a safe
path cannot be found within this subset of the C-space map, then the
computed area of the C-space map is broadened iteratively until either
a path is found or some pre-determined maximum area of the C-space
map is computed. In this approach, the construction of the C-space map
proceeds on an “on-demand” basis.

The tricky issue in implementing on-demand construction of the C-
space map arises from the fact that the representation of the C-space
is split among three slices: start, reorientation, and goal. Each of the
three slices covers the range of possible values of the first three joints,
but is defined for a different range of values of the wrist joints. The
defining wrist joint angles for the start slice are included in the defin-
ing wrist angle range for the reorientation slice. This means that a
particular joint vector 6% in the start slice has a corresponding joint
vector in the reconfiguration slice. Note that, in general, points near
obstacles may be free in the start or goal slice but inside a C-space ob-
stacle in the reorientation slice. If two corresponding joint vectors are
in free space in their respective slices then a safe path can go from one
slice to the other through this point. An analogous relationship exists
between points in the goal slice and the corresponding points in the
reorientation slice.

In order for a path to connect from the start configuration to the
goal configuration, there must be a safe path from the specified initial
point in the start slice to some safe point in the reorientation slice, a
path from there to a point safe both in the reorientation and goal slices,
and from that point to the specified final point in the goal slice. These
connectivity conditions constrain what portions of the corresponding
slices must actually be computed. Minimally:
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1. The reorientation slice must span the space traced by a line between
the start and goal points.

2. The start slice must include the initial point and must overlap the
computed area of the reorientation slice.

3. The goal slice must include the goal point and must overlap the com-
puted area of the reorientation slice.

Larger portions of these slices may have to be computed if this minimal
subset does not include a safe path, that is, if the free spaces in the slices
are not connected. The issue is, however, how to choose between expand-
ing the computed portion of the start, goal, or reorientation slices?

The approach employed in HANDEY is the following: First, compute
the minimal set described above. If a path is found in this subset, we are
done. Otherwise, compute the complete reorientation slice at low reso-
lution and then expand the start and goal slices just enough so that free
space in those slices connects with one of the connected components of
the free space in the reorientation slice. In practice, this means comput-
ing one or more one-dimensional slices, testing connectivity among the
free spaces and repeating. This approach is predicated on the premise
that computing the low-resolution reorientation slice can be done much
more efficiently than the detailed start and goal slices. We will see in
the next section that this is generally the case.

4.3.3 Reducing the time to compute a single slice

The time to compute a single one-dimensional slice using the approach
in Section 4.1 depends on two factors:

1. The complexity of the polyhedral description of the links and obsta-
cles.
2. The dimensionality of the links and obstacles.

Clearly, when moving far away from an obstacle, its detailed surface
features are irrelevant. We do not want to spend time computing de-
tailed C-space obstacles for very complex objects lying in the workspace
away from the start and goal points; using a bounding box or sphere ap-
proximation is usually sufficient in these cases. The key issue in imple-
menting this strategy is deciding when it is safe to use the approximation.
HANDEY uses a very simple strategy: use bounding boxes for everything
when computing the reorientation slice and no approximations when
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computing the start and goal slices. This strategy is compatible with
the fact that HANDEY already tries to minimize the number of slices in
the start and goal slices.

The time to compute a single one-dimensional slice for planar links and
obstacles grows as v;e, + v,€; where v denotes numbers of vertices and
e numbers of edges; the subscript [ indicates the link description and o
indicates the obstacle description. For solid links and obstacles, the time
grows as v; f, + vo fi + €1e,, where f denotes numbers of faces. Clearly,
the simplicity of polygonal descriptions when compared to polyhedral de-
scriptions means that computing one-dimensional slices for planar links
and obstacles will take much less time on the average. This is borne
out in practice. The moral is that we should use planar approximations
whenever possible.

We now show how low-resolution C-space maps can be efficiently con-
structed using primarily planar computations. Many commercial revo-
lute robots have two adjacent revolute joints with parallel rotation axes,
for example, joints 2 and 3 of the Puma, preceded by another revolute
joint, for example, joint 1 of the Puma, whose axis is orthogonal to those
two (see Figure 4.9(a)). This means that we can approximate the manip-
ulator as a planar two-link arm operating in a plane determined by the
first joint angle. Note that many apparently dissimilar robots such as
the Unimation Puma, Asea, Hitachi, Yasukawa Motoman, Minimover,
and Rhino share this property.

Assume a fixed value, 61, for the first joint of one of these manip-
ulators. Now, consider a plane P(6,) orthogonal to the joint axes of
joints two and three and located as shown in Figure 4.9. As 8 changes,
this plane cuts the obstacles in the workspace. For any obstacle O, we
can find the bounding box of all the cross sections of O produced by all
values of 6;. This bounding box can serve as the obstacle for a planar
manipulator whose link shapes are defined by the projection of links
2 and 3 onto the plane. Effectively, we are approximating the actual
obstacles by toroids, centered at the base of the robot, with constant
rectangular cross sections in the plane of the second and third links of
the robot (see Figure 4.9(b)).

A low-resolution C-space map for the first three joints of the robot can
be readily computed by a simple variant of the slice projection algorithm
described earlier. Because we have chosen to approximate the obstacles
by toroids of constant cross section over their range of 81, we will not
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Bounding cross section for
obstacle A throughout A8y

Figure 4.9

Obstacles can be approximated by toroids, centered at the base of the robot, with
constant rectangular cross sections in the plane of the second and third links of the
robot. (a) A sample world with obstacles: the table and a box on the table. (b)
The rectangular cross sections of the obstacles used by the planner
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need to sample 6; at a fixed resolution. Instead, we only need to sample
0, at those critical values where an obstacle ends or a new one starts.
Sampling at any other values would produce a map of obstacles identical
to one at a critical value of 6. Note that every combination of obstacles
encountered in one of these slices will simply be the union of some subset
of the original obstacles. Since the C-space map of a union is simply the
union of the C-space maps (Section 3.4.3) it suffices to compute the
C-space maps, for joints 2 and 3, for the rectangular cross section of
each approximate obstacle. The C-space maps for the complete slices
can then be constructed by a simple union of the C-space maps of each
obstacle in the slice. Furthermore, these obstacle maps can be stored in
an obstacle cache for the next time the gross-motion planner is called,
since most of the obstacles will not have changed.

In the description above we have ignored the width of the links and any
offset between them in defining the obstacle cross sections. In practice,
we need to take this effective width into account when computing the
bounding box. The details are messy but straightforward. Other types
of robot kinematics can also be approximated as planar manipulators
revolving about the axis of the first joint. The only difference is the
type of planar manipulator produced by the approximation.

4.4 Searching for paths

We have seen that the C-space representation that arises naturally out
of the recursive slice projection algorithms described above is an n-level
tree whose leaves represent legal ranges of configurations for the robot
manipulator (see Figure 4.3, page 61). The remaining question is how
to search for a collision-free path in a configuration space represented
by such a tree. HANDEY uses a very simple search strategy.

The basic idea is to construct a free-space graph whose nodes cor-
respond to legal ranges at the leaves of the C-space tree and where a
link between nodes indicates that the ranges are adjacent in the config-
uration space. In HANDEY, adjacency is defined as: reachable by a unit
change in exactly one joint parameter, where a unit change is defined
as moving between neighboring slices for that joint parameter. This
approach is illustrated in Figure 4.10. In a two-dimensional C-space
array, this is analogous to having the cells be 4-connected instead of
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Figure 4.10

A three-dimensional C-space tree with connectivity between free ranges indicated.
The free-space ranges corresponding to that tree with the connection between
ranges C and D, which go between slices, indicated.

8-connected. The motivation for this choice is efficiency. The number of
neighbors of a tree leaf using our definition of adjacency grows linearly
with the dimensionality of the C-space. If we were to define adjacency
as reachability by a unit change in one or more of the joint parameters,
then the numbers of neighbors of a leaf would grow exponentially with
the dimensionality of the C-space.

The free-space graph is searched using a standard shortest path al-
gorithm. The definition of distance in the free-space graph is, unfortu-
nately, problematic. If the graph nodes corresponded to points in the
C-space, there would be well-defined notions of the length of a link con-
necting two nodes, using, for example, Manhattan or Euclidean metrics.
But, in our free-space graph, a node corresponds to a range of configu-
rations (line segments in the C-space). Therefore, there are an infinite
number of paths that move from a range to an adjacent one. The actual
shortest path through a given set of ranges cannot readily be determined
incrementally as the search proceeds.

HANDEY, therefore, uses a simple local approximation to the actual
length of the best path through a set of ranges. Every graph-search
algorithm consists of a search in the space of partial paths through the
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Goal 1
-

Start [o| -

o Goal 2

Figure 4.11

The rectangles represent ranges of free values of, say, 83 for a given value of, say, §1.
The graph search procedure keeps track of a position (shown as a filled circle)
associated with the last node of a partial path. This position is used to define a
unique distance between ranges. The track of positions used to reach two different
goals from a given start are shown.

graph. At any point in time, such an algorithm keeps track of a set of
partial paths that are eligible for expansion. In our free-space search,
a partial path is merely a list of leaves in the C-space tree. In HAN-
DEY, the search algorithm keeps track of not only the partial paths but
also of a specific position in the range at the end of the partial path
(see Figure 4.11). This position is chosen to be the point closest to the
previous range in the partial path. HANDEY uses the closest distance
between the end position associated with a partial path and a new graph
node as a measure of the distance between two nodes. The resulting
paths are not optimal, but they are generally reasonable. One could
improve the paths by defining a larger set of connection points between
adjacent ranges and searching for shortest paths through these points.

4.5 A massively parallel algorithm

The motion planner described in the preceding sections is intended to
operate on a traditional serial computer. In this section, we present an
alternative motion planning algorithm that is both practical on sequen-
tial machines and can take advantage of the capabilities of massively-
parallel computers. It is simple enough that it could be implemented
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in hardware, potentially leading to real-time configuration space path
planning. Also, the description of the algorithm illustrates several im-
portant features of the configuration space representation of obstacles.

The key idea that makes this algorithm possible was first articulated
in W. Newman’s doctoral thesis [56]. Newman noted that, for most
robot kinematics, one can precompute a one-parameter family of prim-
itive configuration space maps, indexed only by radial distance to
the robot base. One can then obtain complex C-space maps by superpo-
sition of these primitive obstacle maps. This result is a generalization of
the union property of the configuration space, where the configuration
space obstacle for a union of objects is the union of the configuration
space obstacles of the individual objects [46]. (See Section 3.4.3.) The
superposition of primitive maps is quite general and can be used to
construct C-space maps for the first three links of the majority of exist-
ing industrial robots. We have exploited an extension of this property
to develop parallel algorithms for computing the C-space maps for six-
degree-of-freedom wrist-decoupled robots.

The primitive C-space maps can be represented as bitmaps. The
advantage of a bitmap representation is that it provides a simple and
efficient means of superimposing precomputed maps. Furthermore, the
bitmap representation of obstacles can readily be adapted to interface
to a wide variety of distance sensors, such as laser range-finders and
sonar. The drawback of a bitmap representation is that the memory
requirements limit the practical resolution of the map representation,
and it forces a discretization of the configuration space in all dimensions.

We have implemented this motion planner for the first three degrees-
of-freedom of a Puma robot in *Lisp on a Thinking Machines Corpo-
ration’s Connection Machine with 8192 processors [28]. The time to
build a three-dimensional configuration space quantized at 11 degrees is
approximately 0.3 sec; for a configuration space with twice that resolu-
tion, the time is approximately two seconds. In both cases, the running
time is independent of the number of obstacle bits of the input obstacle
maps. Increasing the number of physical processors in the Connection
Machine, which can have up to 64K processors, would provide a linear
speedup.

We have also implemented a six-degree-of-freedom version of the al-
gorithm. This algorithm performs a sequential search of the six-dimen-
sional configuration space, building three-dimensional slice projections
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in parallel. In the example illustrated in Figure 4.12 a path was found
in approximately three minutes.

4.5.1 Primitive configuration space maps

The algorithm is based on exploiting the rotational symmetry in the
kinematic structure of most robots to allow precomputation of the con-
figuration space maps for simple obstacles [5, 56]. We will illustrate this
idea first for a two-link planar revolute robot, then for the first three
links of a Puma-like robot, next for the first three links of a variety of
other robot types, and finally for wrist-decoupled six-degrees-of-freedom
robots. The treatment of the first three links of robots parallels that in
[5, 56]; the treatment of six-degrees-of-freedom robots is new. In this
section we describe the general approach. Section 4.5.2 generalizes the
approach to six-degree-of-freedom grippers. In Section 4.5.4 we show the
actual serial algorithms which implement the approach. In Section 4.5.6
we show the parallel algorithms.

A two-link revolute robot Consider the two-link planar manipu-
lator shown in Figure 4.13. The configuration of this manipulator is
specified by the two joint angles 82,63. The choice of joint angle sub-
scripts 2 and 3, instead of 1 and 2, is to retain consistency with the
three-dimensional robot. In Figure 4.13, we can also see a point obsta-
cle whose polar coordinates are 7, ¢. The C-space obstacle corresponding
to collisions between this point obstacle and the last link is shown in the
bottom of Figure 4.13. This configuration space obstacle is made up
of a single locus, described by the following parametric equations with
parameter s (which is the distance on the second link where the point
intersects):

2 _ g2 _ g2

. -1 T — l2 — 8
63 = cos <————2l25 ) (4.5.9)
By = ¢ — atan(ssinf3,lz + scosfs) (4.5.10)
Or, schematically:
93 = f3(7‘, S) (4.5.11)
0 = o+ fz('f‘,S) (4512)

The crucial observation is that ¢ enters into these equations only as
an offset in #,. The only obstacle parameter that affects the shape of
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Figure 4.12

A six-degree-of-freedom path for a Puma robot found with this algorithm. The task
is to insert a 12 inch ruler into a partially closed cardboard box. The sequence is
left to right, top to bottom.




86

Chapter 4  Gross Motion Planning

the locus is r. The C-space obstacle for another point with the same
r but different ¢ can be derived from the one in Figure 4.13 simply by
shifting in the 0, direction. Note that when r < Iy, all configurations
for which 05 = ¢ are forbidden because of a collision of the first link
with the point obstacle. But, once again, ¢ enters only as an offset
in 92.

This property follows from the rotational symmetry of the problem;
the choice of the zero value for 85 is totally arbitrary. Had we chosen the
base frame to be rotated so that the ¢ coordinate for the obstacle point
was zero, we would not have changed the geometry of the problem in
any way. A rotation of the base coordinate system amounts to a shift in
the configuration space. Therefore, we should expect the effect of a co-
ordinate system rotation to manifest itself as a shift in the configuration
space; it does.

Given this property, we can characterize the primitive configura-
tion space maps for a given manipulator by storing the configuration
space generated from point obstacles with ¢ = 0 and different values of
r. Each of these maps, for this simple manipulator, is characterized by a
single locus. The primitive maps form a one-parameter family of curves,
(fa(r,s), fa(r, s)), in the configuration space with radial distance r as a
family parameter.

The fact that the shape of the configuration space obstacles for an
obstacle point depend only on r is not limited to manipulator links
modeled as lines; it holds for any link shape. It follows directly from
the rotational symmetry of the problem. Therefore, one can build the
primitive configuration space maps for each range of 7 using any existing
configuration space algorithm, or simply by finely sampling the positions
of the robot and testing for collisions with the point obstacles. Since this
only needs to be done once for a given robot, there is no particular need
for efficiency. Figure 4.14 shows some primitive configuration space maps
for links with more complex shapes. These maps can be used instead of
the obstacle maps for line links shown in Figure 4.13. The extension from
point obstacles to physical primitives is trivial, provided the primitive
obstacle is symmetric around the relevant joint axis of the robot.

The third dimension The approach which we have used to handle
rotation about the base in the planar case can also be applied to rotation
about the shoulder axis of a three-dimensional robot.
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Figure 4.13

Top: A two-link planar manipulator. 82 and 83 are the joint variables. A point
obstacle is shown at polar coordinates (r, ¢). Configurations which collide depend
on the parameters s, r, and ¢. ¢ only affects the configuration as an offset of 6.
Bottom: The configuration space obstacle of a point on the z-axis (dotted). As the
polar angle, ¢, of the point increases, the configuration space obstacle shifts along
02, but does not change shape (solid).
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Figure 4.14
Primitive maps for some values of r for a planar robot. The link shapes for these

maps are those of the second and third links of a Puma robot. The primitive maps
are shown for r = 0.0 mm (at the lower left) to » = 919.4 mm (at the upper right)
in increments of 14.6 mm. For small r, the primitive map is entirely blocked
because the obstacle collides with link 1 in any orientation. Compare these maps
with the C-space shown in Figure 4.1, page 59.

-2 Joint 3 axis

Al o .
Joint 1 | Joint 2 axis

Figure 4.15
Top view of a Puma-like robot with a shoulder offset.
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Figure 4.15 shows a top view of a Puma-like robot, including a shoul-
der offset, k. Let us, for the moment, neglect the actual shape and dis-
placements of the arm links and assume that both links 2 and 3 reside
in a plane. Then, given a point obstacle at z,y, z (with \/z2 + y2 > h),
there are two values of §; for which that point will lie in the plane of

the arm. Let v’ = /22 + y2 — h? and

¥ = atan(y,z) + atan(xr’, h) — g (4.5.13)

¢ = atan(z,£r') (4.5.14)

ro= r24 22 (4.5.15)

Note that there are two sets of 7, ¢, 1 , one for each of the two roots for
r’. These correspond to the two values of #; which cause the plane of
the arm links to intersect the point obstacle. Call the values of i and
¢ resulting from the positive root ¢; and ¢;; call the values resulting
from the negative root ¥ and ¢3. We can then write the parametric
equations describing the two configuration space loci for which there is

collision between link 3 and the obstacle point as:

03 = fa(r,s) (4.5.16)
b2 = ¢1+ fa(r,s) (4.5.17)
b = ¥ (4.5.18)
and

03 = fa(r,s) (4.5.19)
b2 = @2+ falr,s) (4.5.20)
01 = o (4.5.21)

where f; and f; are as before. As in the planar case, the primitive
configuration space obstacles form a one-parameter family of curves. In
fact, it is exactly the same family, since the effect of 8, is merely to pick
a plane within which the obstacle interaction happens.

These equations ignore the shape of the arm out of the plane. For
the Puma, the links are a constant width w perpendicular to their plane
of motion. In that case, there are two ranges of 1 values over which
the effects of a point obstacle are felt. The range can be approximated
by treating the obstacle point as a sphere of diameter (at least) w. If
the shape of the link out of the plane of motion were not a constant
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width, then we would need to use three-dimensional primitive C-space
obstacles. To see this, consider attaching a spherical protrusion to the
side of a planar link. Assume an obstacle point on the z-axis. Then the
shape of the link in the plane containing the obstacle point is either the
shape of the planar link or a circle, for those values of §; which cause the
protrusion to intersect the obstacle. Of course, this has drastic effects on
the primitive obstacles, requiring the use of three-dimensional primitive
maps so as to capture the variations as a function of .

Other robot kinematics The approach described in the preceding
sections is not limited to Puma-like robots. Whenever one has intersect-
ing joint axes, one obtains the symmetries that these algorithms exploit.
To illustrate this point, we will examine a few alternative kinematics
and briefly point out how they can be handled (refer to Figure 4.16).

e Cartesian kinematics: There is a single three-dimensional primitive
obstacle map for this kinematics. This represents the z,y, z positions of
the robot arm that collide with a point at (0,0,0). All other C-space
obstacles are obtained by superimposing shifted copies of this single
basic obstacle shape.

e Scara kinematics: If one focuses only on the vertical bar and gripper,
ignoring the first two links, then this is identical to Cartesian kinematics.
One can take into account the first two revolute links by computing the
0, 65 obstacles for the links and mapping each 85, 83 obstacle points into
the corresponding forbidden z,y position of the third link.

e Cylindrical kinematics: If one treats the last link as planar with fixed
width, as we did for the Puma, then the primitive obstacles for this
kinematics form a one-parameter family of two-dimensional obstacles
indexed by r. Shifts in the ¢ and z directions are used to construct the
final configuration space obstacles. For arbitrary link shape, we need
the primitive obstacles to be three-dimensional.

e Spherical kinematics: The situation is more complicated; we actually
need a two-parameter family of primitive maps. We will consider this
case in more detail in Section 4.5.2.

Other primitive obstacles Our discussion has focused on the use of
primitive configuration space obstacle maps due to point obstacles. Al-
though this is conceptually the simplest choice, it is by no means the only
or the most practical choice. We will see below that considerations of
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Other typical robot kinematics.

quantization suggest the use of circular or spherical obstacles. Branicky
and Newman [5] have explored the use of lines and planes as primitive
obstacles. At the expense of increasing the number of required prim-
itive configuration space maps one can also use other primitives. For
example, we could use square boxes at different orientations, but that
would require a primitive obstacle map for each size and orientation of
the box as well as for each radial distance of the box center from the
robot base.

4.5.2 Grippers and wrists

We have limited our attention thus far to the first three links of a
robot. In this section we extend our ideas to full six-degree-of-freedom
robots. We will show that for “wrist-decoupled” robots the applicability
of families of primitive obstacle maps extends to the grippers. We
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will also show how a simple search strategy can make use of fast three
degree-of-freedom configuration space computation to implement a full
six-degree-of-freedom path search.

In the majority of non-redundant linked robots, the first three links
serve to position the robot’s wrist, a point where the last two or three
joint axes intersect. It is well known that this type of wrist structure
ensures the existence of a closed-form solution to the robot’s kinemat-
ics. For related reasons, this design also ensures that the computa-
tion of the configuration space obstacles for the robot’s gripper can
be effectively decoupled from the computation of the obstacles for the
arm. Therefore, we will assume that we are dealing only with “wrist-
decoupled” robots. We can exploit the same kind of rotational sym-
metry that we have used to construct the configuration space around
the base of the robot to characterize the obstacles for the robot gripper
(and its payload). Furthermore, this approach is applicable to wrist-
decoupled robots independent of the kinematic arrangement of the first
three links.

The difficulty of dealing with the gripper is that the symmetry exists
about the position of the “wrist,” that is, the tip of the arm and not
its base. Therefore, we have to perform a computation at each wrist
position. This should not be surprising; it simply recognizes the fact that
the gripper has six degrees-of-freedom. Fortunately, the computation
is the same at each wrist position. Only the obstacles found in the
neighborhood of each wrist position differ. This type of computation is,
in principle, ideal for SIMD computers such as the Connection Machine.
In practice, memory limitations have forced us to pursue a somewhat
different approach for the six-dimensional case (see Section 4.5.3). We
will illustrate our approach in the planar case, where it is easier to
visualize.

Planar grippers Consider a simple planar robot gripper, such as the
one in Figure 4.17. We are interested in determining the legal combi-
nations of z,y, 6 values for the gripper. That is, we want to construct
a three-dimensional configuration space. Note that we are using val-
ues of 8, the orientation of the gripper about the global z axis, and
not the values of the last joint angle. This choice is essential to en-
able us to consider collisions of the gripper independently of collisions
of the arm.
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Figure 4.17
A two-link robot with gripper.

Our strategy is to characterize the forbidden positions and orientations
of the “floating” gripper independent of any arm constraints. After this
is done, we add the arm constraints, which amount to specifying that
some positions and orientations of the gripper are not feasible because
of arm collisions or limitations in the legal ranges of joint angles.

There are two basic approaches to computing the z,y, 8 configuration
space maps for the floating gripper:

1. Find all of the forbidden z,y positions of the wrist for each sampled
8 value of the gripper.
2. Find all of the forbidden 6 values for each z, y position of the gripper.

The different approaches lead to different algorithms that may be more
or less suitable for parallel versus serial implementation.

For each 6, we can easily construct a C-space map representing all
the z,y positions of the gripper for which there is a collision with an
obstacle at position (0,0). For a point obstacle, this simply looks like
a copy of the gripper rotated by w + 6. The C-space obstacles due to
more complex obstacles are obtained by combining shifted copies of this
map. Essentially, there is a single three-dimensional primitive obstacle
map for the floating gripper, representing forbidden values of z,y, 0 due
to a point obstacle at position (0,0).

In our implementation, we have used the second of the listed ap-
proaches: characterizing the range of wrist angles for a given wrist
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position. This process is analogous to that of building the C-space
obstacles for the planar revolute manipulator. Earlier, we noted that
rotations of the base coordinate frame of the revolute manipulator did
not affect the shape of the C-space obstacles, but only their position in
the C-space. In the case of a floating planar gripper, neither translations
of the wrist nor rotations about the wrist affect the shape of the C-
space obstacles. Only the distance between the point obstacle and
the wrist matters. Therefore, the primitive obstacles for the gripper
(at a particular wrist position) form a one-parameter family of one-
dimensional C-space obstacles, representing forbidden values of 6§ and
indexed by distance from the wrist position.

Three-dimensional grippers The three-dimensional case is analo-
gous to the planar case. The difference is that now we have to deal with
three wrist angles and three displacements. We examine the case of a
gripper mounted on a spherical wrist; the extension of these remarks to
other types of wrist construction is straightforward.

We will use the angles «, 3,y to represent the orientation of the gripper
relative to the global Cartesian frame. The wrist angle a corresponds to
the angle ¢ in the spherical coordinate representation. The wrist angle
[ corresponds to the spherical angle ¢. The wrist angle v represents
rotation about the axis defined by a and 3. Given the 81,865,083 joint
angles of the arm that determine a wrist position, these wrist angles can
easily be converted to joint angles for the wrist.

One crucial issue in handling a three-dimensional gripper is that the
Euler-type angle specification used for the gripper only has one angle
whose origin can be specified arbitrarily, namely «. Therefore, we
require a two-parameter family of three-dimensional primitive maps,
parameterized by values of 8 and 7.

It is easy to see that the geometry of the system is unchanged when
the base coordinate system is rotated by an arbitrary angle. Just as
with the first link of the two-link robot, it follows that the shape of
the primitive obstacles is independent of «. However, once the axis of
rotation for « is chosen, a natural origin for g is defined; the obstacles
are not independent of 5. The three-dimensional C-space obstacle cor-
responding to a point changes in its 84 extent as the 3 coordinate of the
gripper in contact with the point changes. As 8 approaches the axis of
rotation for o, the size of an obstacle increases in the §4-dimension.
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Compared to the primitive obstacle maps for the arm, the maps for the
gripper include an extra dimension of the map and an extra parameter
describing the family of maps. Although this would appear to increase
the complexity of the problem, it will be seen that the simplicity of the
algorithm to compute the C-space will not be affected. The fundamen-
tals remain identical to those for the C-space of the arm.

Although the three-dimensional gripper can be handled by simple
algorithms, it still requires substantial amounts of time and space to
construct the underlying six-dimensional configuration space. A useful
approximation that reduces the dimensionality of the problem (and the
required computation time and space) is to treat the gripper as being
rotationally symmetric about the last joint axis. In that case, we can ne-
glect the last wrist angle and operate only on two dimensional bitmaps,
encoding the values of o and 3.

4.5.3 On-demand computation of obstacle maps

In general, one has to be wary of computing high-dimensional obstacle
maps, as they require memory and computation that is exponential in
the degrees-of-freedom. A single full six-degree-of-freedom configuration
space bitmap with a sampling resolution of 11 degrees per index (such
as are described in Section 4.5.4) would consume 128 megabytes of stor-
age. Even our Connection Machine, as currently configured, contains
only half that amount of memory. Our approach has been to compute
obstacle maps only as needed to find a path. In particular, we construct
the complete obstacle map for the three degrees of freedom of the arm
and compute the maps for the wrist as necessary. We compute the wrist
maps for a single z,y, z position of the wrist at a time, only requir-
ing a three-degree-of-freedom map for the orientation of the wrist. The
three-degree-of-freedom maps consume a more manageable 4096 bytes
each.

Any safe path for the robot must lie in the free space of the configura-
tion space of the arm minus the gripper. We can thus use that configu-
ration space to direct a sequential search for a full six-degree-of-freedom
path for the arm plus gripper. The search generates a path for the arm
within the configuration space of the arm, and for each step of the arm’s
path, a motion of the wrist is computed which maintains safety from
collision due to the gripper. This is easily accomplished by comparing
the gripper configuration spaces of neighboring configurations along the
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Finding a path using one arm configuration space and several gripper configuration
spaces. For each possible path point in the arm C-space, we construct a gripper
C-space. To move between neighboring points in the arm C-space, the gripper must
avoid collisions in both gripper C-spaces. Gripper configurations in the common free
space of the two gripper C-spaces are safe for that arm motion.
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path to identify common free space (see Figure 4.18). With the gripper
in any configuration in the common free space, the arm motion for that
path step will be safe. All that remains is to find a path for the gripper
into the common free space.

The parallel implementation of our approach (see Section 4.5.6) is
sufficiently fast in computing configuration spaces that we can compute
the gripper obstacle maps on demand as the search proceeds. As the
search strategy tries each new step along the arm path, it computes
the gripper map for the new configuration to compare it with the map
for the current configuration. Whenever there is a common free space
between the maps and there is a path for the gripper into the common
free space, the search can consider that new step as a possibility. If no
common free space or path can be found, then that branch of the search
reaches a dead-end.

4.5.4 Serial algorithms

These observations about how configuration space maps can be con-
structed by superposition of shifted primitive maps lead us to straight-
forward algorithms for computing quantized configuration space maps
for manipulators. We will explore the basic methods by presenting some
serial algorithms for a Puma-like robot. The use of a Puma-like robot
is merely illustrative, as we pointed out earlier, the algorithms apply to
other kinematics with little change.

Bitmaps All of the algorithms presented in this paper operate on two
or three-dimensional bitmaps. These bitmaps are used to represent
Cartesian coordinate spaces, joint coordinate spaces, polar, and spheri-
cal coordinate spaces. In all cases, an entry in a bitmap represents a rect-
angular region of the corresponding space centered at the intersection of
the grid lines. We call these rectangular regions the entry’s domain. For
example, if the quantization intervals for a two-dimensional Cartesian
space are d; and d,, the 4,7 entry in the bitmap represents the region
where (1—0.5)xd; <z < (i+0.5)*d; and (j—0.5)xd, <y < (j+0.5)xd,,.
Therefore, the bitmap index corresponding to any value can be obtained
by rounding the quotient of the value and the size of the quantization
interval, i.e., round(z/d;). (Note that the entry’s domain includes both
the upper and lower bound.)
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We present algorithms that treat the bitmap entries as representing
points, not rectangular regions. We do this for simplicity of exposi-
tion. The extensions to the algorithms required to incorporate the more
conservative interpretation are important, but relatively minor.

The algorithms we discuss make heavy use of a commonly used op-
eration on bitmaps: that of writing a bitmap at a specified location
in another bitmap, using an arbitrary boolean function to combine the
existing bit values with the new values. This is a low-level primitive
provided by all bit-mapped display systems and, in many cases is sup-
ported by hardware graphics accelerators. As a result, this operation
is extremely fast. We will primarily use the inclusive-or operation to
combine values and so we will write this operation as follows:

bitmap-ior(origin-bitmap, target-bitmap, shift-x, shift-y)

We first illustrate the algorithms for the two-link planar manipulator.
The algorithms in this section make use of the following data structures:

e O(i,j) — an n x n bitmap representing the Cartesian obstacles. A
bit is on in this bitmap if there is any part of an obstacle overlaps the
bit’s domain.

e 7(i,j) — an n X n array that stores the r index corresponding to the
given Cartesian indices. This array is constant and only changes when
the quantization increments change.

e ¢(i,j) — an n x n array that stores the ¢ index corresponding to the
given Cartesian indices. This array is constant and only changes when
the quantization increments change.

e P[r;;](p,q) — a vector of primitive obstacle bitmaps, each represent-
ing the forbidden region in configuration space due to a point obstacle
with ¢ = 0. There is one bitmap for each quantized value of r, the
radial distance of the point obstacle from the origin, for sampled values
of 0 < r < ly+13. The p and ¢ indices correspond to quantized values of
0, and 05 respectively. This data structure needs to be computed only
once for the robot.

e C(p,q) — the computed C-space bitmap for all the obstacles. The p
and ¢ indices correspond to quantized values of 02 and 03, respectively.
This array is first initialized with the robot’s joint-angle limits before
being used.
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Serial algorithms for the two-link robot The simplest serial al-
gorithm for building configuration space simply loops over the entries
in the Cartesian obstacle bitmap and, for each filled entry, writes the
primitive configuration space bitmap for that entry’s r value into the
global configuration space bitmap, at a 6, offset equal to that entry’s ¢
value. The algorithm can be written as follows:

procedure two-link-from-xy-bitmap-serial
begin
for i from 0 to n do
for j from 0 to n do
if O(i,j) = 1 then bitmap-ior(P[r (3, 5)], C, ¢(i, 5),0)
end

Note that primitive bitmaps and the global configuration space bitmap
are of the same size (they both are uniformly sampled versions of S?).
Uniform sampling is essential to allow direct combination of differently
shifted bitmaps. When we write the obstacle bitmap into the global
map shifted by a specified value of 5 what we intend is that the obstacle
bitmap be “wrapped-around” so that bits that are shifted off the 27-edge
reappear at the O-edge. In practice, this can be implemented by making
the global map span the range 0 < 65 < 4x. After all the primitive
maps have been written into the global map, the section of the global
map spanning 27 < 83 < 4w can be combined (using the bitmap-ior
operation) with the section spanning 0 < 8, < 2.

The running time of this algorithm depends linearly on the number
of bitmap-ior operations that it must perform. The number of bitmap-
ior’s required to compute a configuration space map using this algorithm
grows with the area of the z, y obstacles. If we are searching for paths be-
tween robot configurations known to be safe, then we only need to char-
acterize the boundary of the configuration space obstacles. Therefore,
we can improve the algorithm above by only performing the bitmap-ior
for Cartesian points that are on the boundary of a Cartesian obstacle,
that is, not completely surrounded by other points. With this varia-
tion, the number of bitmap-ior’s is proportional to the perimeter of the
Cartesian obstacles rather than to their area. This can be a substantial
saving in problems involving large obstacles.
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The third dimension The algorithm for constructing the 81,602,083
configuration space is essentially the same as the two-degree-of-freedom
algorithm. The key differences are that the mapping from z,y,z to
7, ¢, is not unique and that the resulting configuration space is three-
dimensional.® This imposes some changes in the required data struc-
tures:

for ¢ given in (4.5.13)
o ¢1(i,4,k), 92(3, 4, k) are the indices corresponding to the two solutions
for ¢ given in (4.5.14).
e Clo](p,q) is a vector of 8,03 bitmaps. The o-index corresponds to a
quantized value of 6;.

o (i, ], k),¥2(4, j, k) are the indices corresponding to the two solutions
)

The other data structures are simply replaced by their direct three-
dimensional counterparts. The algorithm for a three-link Puma-like
robot can then be written as:

procedure three-link-from-xy-bitmap-serial
begin
for 7 from 0 to n do
for j from 0 to n do
for k from 0 to n do
if O(i,5,k) =1 then begin
bitmap-ior (P[r(i, j, k), Cly1 (i, 4, k)], 61 (6,3, ), 0)
bitmap-ior(P[r(i, Js k)]v CW)Q (ivjv k)]v ¢2 (ia s k)a O)
end
end

Note that the primitive configuration space maps, P[r], are still two-
dimensional. This property follows from our assumption that the arm
links reside in a plane. For more general link shapes and kinematics, the
primitive maps will be three-dimensional, requiring a three-dimensional
bitmap3-ior operation. Such an operation can be implemented easily in
terms of the two-dimensional operation, in the same way that the two-
dimensional operation is built out of the fundamental one-dimensional
operations provided by traditional computer instructions.

3We will see in a later section that we can get around this problem by beginning
in the r, ¢, -space and avoiding Cartesian space altogether.
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4.5.5 Planar grippers

We are interested in determining the legal combinations of z, ¥, # values
for the gripper. Recall that we are using values of 8, the orientation
of the gripper about the global z axis, and not the values of the third
joint angle. As we discussed earlier, there are two ways to approach the
computation:

e for each reachable z,y wrist position, find the legal range of 8, or
e for each value of 6, find the legal range of x,y wrist positions.

We will consider both approaches here.

For each z,y We can characterize the point obstacles by their polar
coordinates relative to a coordinate frame which is aligned with the base
frame of the robot, but with its origin being the wrist position. Call
these relative coordinates r*, ¢*. The value of r* for the obstacle point
determines the forbidden ranges of 8 (this is analogous to the primitive
62, 83 obstacle maps for the manipulator) and the value of ¢* determines
the offset in 6 (as it does for the manipulator). Note that only bitmap
entries whose r* value is less than or equal to the gripper length [, need
to be considered. Letting nj be the bitmap index corresponding to [
we can construct the 8 obstacles at every 4,j position of the wrist as
follows:

procedure planar-gripper-from-xy-bitmap-serial-1
begin
for i from —nj, to n+ny do
for j from —ny to n+ny do
if free(i,7) then
begin
for * from —ny, to n; do
for j* from —ny to n, do
if O +i*j+37*) =1 then
bitmap-ior (P[r(¢*, j7)], C(i, 1), 6" (i*, §°))

end

end

The inner loop is essentially identical to the two-link planar algorithm.
The key difference is that the primitive bitmaps P[r] and the contents
of each C(i,J) are one-dimensional, representing ranges of . The test
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free(i,7) is meant to test whether the wrist position indexed by 14,j is
reachable by the arm without collisions; this can be tested using the
configuration space map for the arm.

For each 6 For each 6 we can easily construct a bitmap representing
the x,y positions of the gripper for which there is a collision with an
obstacle at (0,0). For a point obstacle, this simply looks like a copy of
the gripper rotated by 7 + 8.

We can represent the three-dimensional configuration space bitmaps
required in this problem as vectors of two-dimensional bitmaps. In the
algorithm below, p loops over quantized values of #. Therefore, C[p]
denotes the two-dimensional z,y bitmap for the particular value of ¢
indexed by p. The complete algorithm is simply:

procedure planar-gripper-from-xy-bitmap-serial-2
begin
for p from 0 to m do
for i from 0 to n do
for j from 0 to n do
if O(i,7) = 1 then bitmap-ior(P[p], C|p], 1, j)
end

The number of bitmap-ior operations required to execute this algorithm
is equal to the area of the obstacles times the number of § samples. We
can reduce this number in several ways:

e We can limit the computation to points on the boundary of the ob-
stacles, that is, to filled points not completely surrounded by other filled
points. This reduces the number of bitmap-ior operations to the perime-
ter of the obstacles times the number of 8 samples. This restriction pro-
duces an incomplcte configuration space bitmap, but one that can be
used to plan motions as long as we independently check that the start
and goal points are collision-free.

e If we have the input obstacles represented as a quad-tree, we can
apply the basic algorithm to the “boxes” at the leaves of the quad-tree.
In fact, since the boxes at the leaves of the tree have dimensions which
are powers of 2, we can precompute the primitive obstacle bitmaps for
each of these dimensions. Then, the time to construct a configuration
space map depends only on the number of leaves in the quad-tree times
the number of 8 samples.
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4.5.6 Parallel algorithms

The parallel version of our approach is both simpler and trickier than
the serial version. It is simpler because the parallelism unrolls all (or
nearly all) the loops from the serial version. It is trickier because the
organization of the data in the SIMD computer must be carefully laid
out to take full advantage of the parallelism offered. Qur algorithm runs
in time that depends only on the resolution desired. It is independent
of the number of obstacles or their size.

The fundamental algorithm is unchanged whether we’re generating
the C-space map for the two-link planar robot, the three-dimensional
Puma-like robot or the general 3-D gripper. The layout of the data in
the Connection Machine is the only difference, described below.

The Connection Machine Our Connection Machine [28] has 8192
physical processors which can be configured on demand to simulate a
conceptually unbounded number of virtual processors arranged in an
arbitrarily dimensioned grid. This capability suggests several natural
mappings of parameters of the path planning problem to axes of the
virtual Connection Machine. Unfortunately, large numbers of virtual
processors (large ratios of virtual-to-physical processors) make unrea-
sonable demands on the available physical memory of the machine, and
also increase program running time approximately linearly with the vir-
tual processor ratio. As a result, our actual implementation trades off
natural implementation strategy against memory and time.

Besides the bitmap-ior operation, the Connection Machine offers two
other operations which our parallel algorithms exploit. The first opera-
tion is nearest-neighbor communication between processors. Our algo-
rithms use this communication to shift the primitive obstacle bitmaps.
The second operation is a scan operation, which combines data from
all processors along a specified dimension of the processor grid using an
associative arithmetic function, such as logical-or. This scan operation
runs in essentially constant time.

Data representation As in the serial case, we first illustrate the al-
gorithms for the two-link robot. Our parallel algorithms make use of the
data structures described below.

We need to represent three data structures in the Connection Machine:
the bitmap representing the Cartesian obstacles, the primitive obstacle
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bitmaps, and the configuration space bitmap. It is natural to associate
the primitive obstacle bitmaps and the configuration space bitmap with a
two-dimensional processor grid, with each processor representing one bit.
It is not immediately obvious how to represent the Cartesian obstacles
to efficiently exploit the machine.

In the serial algorithm, we transformed each Cartesian obstacle bit
into a (r, ¢) coordinate pair which was used to index into the vector of
primitive obstacle maps and to offset the primitive map before combining
it into the configuration space map. We can imagine, instead, generating
the initial obstacle bitmap directly in polar coordinates.* This polar-
coordinate obstacle bitmap is denoted O,(r,¢). Here, r and ¢ denote
indices on the bitmap, and represent quantized values of the polar coor-
dinates. The bit Op(r, ¢) will be on if there is an obstacle in Cartesian
space intersecting the domain of that bit—if there is an obstacle at the
peint (r, ¢).

We configure the Connection Machine into a four-dimensional, n xn x
n X n grid, indexed by p, ¢, r and ¢. The reason for this will be seen in
the procedure for computing the configuration space, which will consist
of one scan along each of the dimensions of the Connection Machine.
As in the serial algorithm, the p and ¢ indices correspond to quantized
values of 8, and #3. The r and ¢ indices will represent the (quantized)
polar coordinates.

To see the layout of the data in the CM, consider a two-dimensional
sub-grid indexed by a particular pair of (r,¢)—a p-g plane (see Fig-
ure 4.19). Within this sub-grid, we store the primitive obstacle map,
P[r], offset along the #s-axis (i.e., the p-axis) by the value of ¢ used to
select this sub-grid. The effect is that we will store in a processor with
indices (p, q,T, ¢) the primitive obstacle bit P[r](p — ¢, q). (The subtrac-
tion p — ¢ must, of course, be computed modulo .) Call this the P-bit.
Each primitive obstacle map, P[r] will be represented in the Connection
Machine n times, once for each value of ¢. Since the primitive maps
depend only on the robot and the resolution of the quantization, the
maps need to be downloaded into the Connection Machine only once.

4In fact, using a non-local processor communication feature of the Connection Ma-~
chine, the polar-coordinate obstacle bitmap can be computed from the rectangular-
coordinate bitmap. It is easier, however, to directly compute the polar-coordinate
bitmap: each processor tests whether the (polar-coordinate) domain it represents
intersects any obstacle. In parallel, this bitmap can be computed linearly with the
number of obstacles.
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Figure 4.19

The primitive maps as stored in the Connection Machine. This stack illustrates the
storage for a single value of . Each plane represents a #2-683 plane indexed by a
particular value of ¢. (For the resolution shown, there would be 32 of these planes.) Cen
The map is shifted according to the ¢ index of the processor. The r-dimension (not

shown) controls the shape of the primitive configuration space obstacle.

The two-dimensional polar-coordinate obstacle bitmap, O,(r, ¢), is
duplicated for all values of p and ¢; that is, each processor, (p,q,r,¢),
stores the obstacle bit for coordinates (r, ¢). For each 7 and ¢ the entire
05-03 plane is either 1 or 0, depending on Op(r, ¢). Call this the Op-bit.

The final configuration space, C(p,q), will be generated in the two-
dimensional, p-¢ sub-grid selected by (r = 0) A (¢ = 0).

Parallel algorithm for the two-link robot Assuming that the ob-
stacle bitmap has already been stored in the Connection Machine, the
computation of the configuration space only needs to combine the prim-
itive maps as selected by the obstacle bitmap. This is the same as in
the serial algorithm. In the parallel version, however, the combination
is done in just two scan operations.
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We look again at the serial procedure, reproduced here (modified to
use the polar-coordinate obstacle map):

procedure two-link-from-polar-bitmap-serial
begin
for r from 0 to n do
for ¢ from 0 to n do
if Op(r,¢) =1 then bitmap-ior(P[r|,C, ¢,0)
end

We see that a bit in the configuration space, C(p,q), is turned on if
there is any 7 and ¢ such that O,(r,¢) = 1 and P[r](p — ¢,¢) = 1. This
condition is easily computed: compute the conjunction of the O ,-bit and
the P-bit, and scan using logical-or along the r and ¢ dimensions. The
result will be the configuration space.

This is the entire parallel algorithm:

procedure two-link-from-r¢-bitmap-parallel
begin
C « scan(logior, P A O,, r-axis, toward-zero)
C « scan(logior, C, ¢-axis, toward-zero)
end

This algorithm runs in essentially constant time, since only the scan
operations are used. The obstacle bitmap, O, can be computed directly
in the Connection Machine in time that is linear in the number of ob-
stacles. Contrast this with the serial algorithm which, at best, runs in
time linear in the combined perimeter of all the obstacles.

One way to visualize this algorithm is to imagine the two-dimensional
p x ¢ grid. At each grid point is stored a duplicate copy of the two-
dimensional O,(r, ¢) bitmap. Also at each grid point are stored n? bits
from the primitive obstacle bitmaps: P[r](p — ¢,¢), for all values of r
and ¢. The two scans then, in essence, select for each r and ¢, the prim-
itive maps and appropriate shifts indicated by O,(r, ¢). The processors
at (r =0) A (¢ = 0) will then contain the bits of the configuration space
map, C(p, q).

Another way to view the algorithm is as a projection from four di-
mensions to two of the primitive maps as selected by the obstacle bits.



4.5 A massively parallel algorithm 107

The third dimension Conceptually, the extension of the two-link,
two-dimensional parallel algorithm to one for a full three-dimensional,
Puma-like robot is trivial. As mentioned above, the first joint rotation,
0,1, simply selects which plane the remaining two links operate in, and the
algorithm operates within that plane identically to the two-dimensional
case. Thus, we need simply add a single dimension to our processor grid
and represent our original obstacle bitmap in a kind of spherical coordi-
nate system indexed by (r, ¢, ) triples. This spheric-coordinate obstacle
map is denoted by Og(r, ¢, ). (These are not the usual spherical coor-
dinates, since the shoulder offset of the Puma robot yields two values
for ¢ and ¢ for a single point. As with O,, the O, bitmap is easily
computed directly, since the mapping (r,¢,%) — (z,y, z) is many-to-
one, and each (7, @, ¢) domain can be easily tested for intersection with
obstacles.) The algorithm is identical to the two-dimensional case, with
the substitution of Oy for Op.

Unfortunately, on our Connection Machine, five dimensions each with
32 processors on each axis (a resolution of 11 degrees) requires 32 mil-

lion virtual processors, or a virtual processor ratio of 4096 : 1. This —
ratio is totally unreasonable in terms of both execution time and mem- @iﬁz& N@*
ory availability. The algorithm is modified to alleviate this problem by &3 @{
combining the bits for each data structure along 63-dimension into bit- & J
vectors within each processor. Also, instead of storing all the shifted Tgq }

copies of the primitive maps in the ¢-dimension, we loop (serially) over
all values of ¢, using the nearest-neighbor communication facility of the
Connection Machine to shift the primitive maps, combining the maps
into the configuration space at each step, as indicated by the O bitmap.
This modification of the algorithm still runs in time that depends only
on the resolution; it increases linearly with the resolution.

Parallel algorithm for the three-dimensional gripper The par-
allel algorithm for the three-dimensional gripper is as easy to construct
as the three-dimensional arm was from the two-dimensional arm. This is
because the algorithm is, in essence, identical. The primary difference is
simply that, as discussed in Section 4.5.2, the primitive obstacle maps are
three-dimensional, and they are indexed by two parameters, § and r, as
well as being shifted by «. Conceptually, this leads to a six-dimensional
processor grid, with axes 04, 05, 06, @, 3, and 7. In the implementation
this is reduced to three dimensions by looping over o and compressing
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the 65 and 0¢ dimensions into a two-dimensional bitmap in each pro-
cessor. Other than the size of the bitmap stored in each processor, the
algorithm is identical to the three-dimensional arm algorithm. (For the
arm, n bits are stored in a vector; for the gripper n? bits are stored in
a two-dimensional bitmap.)



5 Grasp Planning

The HANDEY grasp planner chooses a grasp on an object and plans
motions to approach and depart from this grasp. The grasp planner is
invoked as follows:

Grasp(goal, robot, world, depart?)

If the depart? flag is true, the grasp planner will generate two plans.
The first one is to approach and grasp the part specified in the goal at
its pickup pose in the specified world. The second is to release the part
at its putdown pose and to back away slightly from the grasp. If the
depart? flag is false, only the approach plan is computed.

Recall the key steps in planning a pick-and-place operation, illustrated
in Figure 2.6, page 23. The grasp planner computes an approach con-
figuration, a grasp configuration, a departure configuration, and paths
connecting the approach configuration to the grasp configuration and
the grasp configuration to the departure configuration. These configu-
rations need to be chosen so as to satisfy the interacting constraints on
pick and place operations discussed in Chapter 2.

This chapter develops a method for simultaneously satisfying many,
but not all, of the pick-and-place constraints. In particular, although
the approach (and departure) configuration is chosen to be in a region
reachable by the robot, the grasp planner cannot ensure that the gross
motion planner will be able to find a path from the initial configuration
to the approach configuration. Also, as we have seen, the choice of a
grasp may preclude existence of a path from pickup to putdown for the
robot holding the grasp object; this is currently ignored when picking
a grasp. Neither of these limitations has proven to be a problem in
practice.

5.1 Basic assumptions

As with all of HANDEY, the grasp planner operates on polyhedral models
of grippers and parts. The grasp planner, however, makes a number of
additional simplifying assumptions:

1. The robot grasps objects using a parallel jaw gripper.

2. A grasp must have the inner face of each gripper finger in contact
with a grasp feature of the object. At least one such contact must be
a planar face/face contact.
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Figure 5.1

A grasp must have at least one inner face of a gripper finger in contact with a face
of the object (highlighted). This face/face contact determines the grasp plane.
Motion to and from the grasp is constrained to be parallel to this grasp plane.

3. The objects grasped are relatively light and their surfaces are suffi-
ciently rough so that grasping stability can be easily guaranteed.

4. The object face involved in a grasp establishes a grasp plane. Ap-
proach to and departure from a grasp is done with the fingers moving
parallel to this plane (see Figure 5.1).

We will address each of these assumptions in turn.
5.1.1 The gripper model

The parallel-jaw gripper used during most of HANDEY’s development is
shown in Figure 5.2(a). The grasp planner simplifies this to the model
depicted in Figure 5.2(b). This figure also shows the finger frame,
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Figure 5.2

Parallel-jaw gripper models: (a) an accurate model of a gripper and (b) the
simplified model used in the grasp planner.

used in determining the position and orientation of the gripper. The
origin of the finger frame is the reference point for the gripper. The
key modeling assumption in the gripper representation is the division of
the gripper into several brick-like components, whose projections into the
grasp plane are rectangles aligned with the axes of the finger frame. The
dimensions of these components are specified as part of the robot model.

5.1.2 Grasps

Grasps can be categorized by the type of the grasped features, that is,
faces, edges, or vertices, with which the interior of the fingers, the grip
surfaces, are in contact. The current version of HANDEY only consid-
ers grasping parallel faces whose projection along their common normal
overlap. The method described in this chapter, however, is directly ap-
plicable to any grasp involving at least one face and another suitable
feature. That is, possible grasps could include:

1. two parallel faces,
2. a face and a parallel edge, or
3. a face and a vertex.
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Figure 5.3

Overlap stability criterion. (a) Use front and back faces as grasp faces. (b) Only
the intersection of these faces offers a viable grasp (non-hatched area). (c) Some
point on gripper fingers must overlap graspable area. (d) Grasp criterion is met if
gripper reference point is inside hatched boundary.

The pair of features must overlap in their projection in the grasp plane.
The treatment of each of these grasps can be reduced to the parallel-face
case simply by treating the edges and vertices involved in the grasp as
small faces, parallel to the other grasped face.

5.1.3 Grasp stability

When choosing among candidate grasp faces and when choosing grasp
poses on a given grasp face, one should consider stability: the resulting
grasp must resist disturbance forces, both static—arising from the force
of gravity, and dynamic—arising from the motion of the robot. The sub-
ject of stable grasping has received extensive attention in the published
literature (see Section 2.5). We have chosen to neglect sophisticated sta-
bility considerations in HANDEY; we use a very simple geometric over-
lap criterion that is sufficient when dealing with light parts that are not

slippery.
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The grasping stability criterion used in HANDEY is as follows: we
require that some point interior to a circle inscribed on the gripper
fingers overlaps the intersection of the grasp faces (see Figure 5.3). Using
an inscribed circle to define overlap has several practical advantages: it
is insensitive to the orientation of the fingers and it is easy to modify the
criterion to insure a minimum amount of overlap (smaller radii insure
greater overlap).

It is possible to extend this simple grasp criterion to include a more
complete treatment of stability. In practice, all HANDEY needs is some
way to identify a subset of the grasp plane which contains valid targets
for grasps. Currently in HANDEY, the choice of this subset is based
purely on geometric criteria, but it could be based on force and other
stability criteria as well.

5.1.4 Planar motion

When the gripper is about to grasp an object, the finger grip surfaces
must already be parallel to the grasp plane, and the only motions the
gripper can make are those which are nearly parallel to the grasp plane.

The grasp planner exploits this approximate constraint by planning mo- \Qf\%
tions in which the gripper is restricted to the grasp plane (see Figure 5.1). '~ Iﬁ\x;
Thus, with little loss of generality the grasp planning problem can be =
reduced from six degrees-of-freedom to the three degrees-of-freedom re- Cog

quired to specify the position, (z,y), and orientation, 8, of the gripper in
the grasp plane. These three parameters define the gripper pose. The
position and orentation of the gripper at the point it grasps the object
is called the grasp pose.

The gripper motion in the grasp plane will take place between the
gripper’s approach pose to the grasp pose and from there to the
departure pose. At the gripper approach and departure poses the re-
sponsibility for planning motions will be transferred between the gross
motion planner and the grasp planner. The gross motion planner oper-
ates at a lower resolution than the grasp planner, hence it should not be
expected to plan motions that bring the robot or the grasp object too
close to other objects. Therefore, the criterion for choosing the approach
and departure gripper poses is (approximately) that the projection of the
fingers do not overlap the grasp faces. This constraint is implemented
in HANDEY by requiring that, at the approach and departure poses, the
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Figure 5.4

Approach/Departure criterion. (a) Grasp faces. (b) Union of grasp faces. (c¢) No
point on gripper fingers may overlap the union of the grasp faces. (d) Non-grasp
criterion is met if gripper reference point is outside hatched boundary.

union of the grasp faces does not overlap a circle circumscribed about
the gripper fingers (see Figure 5.4).

5.2 Grasp planner overview

Briefly, the HANDEY grasp planner performs these computations:

1. Choose a pair of faces to grasp (thus establishing a grasp plane).

2. Project obstacles at the pickup and putdown locations into the grasp
plane.

3. Characterize grasp, approach, and departure regions relative to the
grasp object,

4. Compute approach and departure C-space slices as required.

5. Search the C-space for the following: grasp pose, approach pose,
departure pose, approach path, and departure path.

This process is outlined in Figure 5.5. Each of the steps in turn is
discussed more fully below.
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Figure 5.5
Conceptual outline of the grasp planner
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Figure 5.6

\/ Grasp the ‘V’ shaped object

Figure 5.7
Choose the ‘V’ shaped face pair

5.2.1 Choosing grasp faces

Consider the example shown in Figure 5.6. Here a pick-and-place op-
eration must be planned for the highlighted object. The first step is
to choose a pair of grasp faces for investigation. Usually there will be
multiple pairs of grasp faces available for grasping. The grasp planner
attempts to rank these possibilities in order of decreasing likelihood of
finding a viable grasp pose. It does this at low resolution before pro-
ceeding with a more detailed examination at higher resolution. Choosing
among the possible grasps involves these steps:

1. Compile a list of all pairs of faces which lie on parallel planes and
whose normals point away from each other.

2. For each of these pairs compute a measure of the area available for
grasping considering obstacles near the pickup and putdown positions.
(This will be explained more fully below.)
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Figure 5.8
Grasp plane

3. Rank the face pairs in order of decreasing graspable area.
4. Select the pair with the largest grasp area for consideration at higher
resolution.

If all the grasping constraints cannot be met by the first pair in the list,
the grasp planner tries, in turn, the other potential grasps.

A grasp face choice is shown in Figure 5.7. The position of the gripper
in this figure has no significance except to indicate which grasp faces will
be investigated further.

5.2.2 Projecting obstacles into the grasp plane

The selection of a grasp face pair establishes a grasp plane. This is
shown in Figure 5.8. Recall that the grasp planner will plan motions
that confine the gripper reference point to this plane.

Now consider the volume which is swept out as the gripper translates
and rotates while confined to the grasp plane. In particular the high-
lighted rectangle in Figure 5.9(a) shows the volume (a grasp volume)
that the rear gripper finger could sweep out. The only collisions the rear
finger might suffer while moving about its grasp volume are with those
portions of nearby objects that intersect this volume. Figure 5.9(b)
shows the intersection of the rear finger grasp volume with local objects.
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Figure 5.9
(a) Volume swept out by the rear gripper finger (highlighted}, (b) portions of
obstacles which collide with this volume.

Figure 5.10
3-D obstacles are projected into 2-D obstacles (hatched) on the grasp plane.
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Figure 5.11
Scan lines represent two-dimensional objects. Conversion from (a) boundary or grid
cell representation to (b) scan lines is straightforward.

At this point, the problem can be simplified with no further loss of
generality by projecting the portions of objects which might cause a
collision into the grasp plane (see Figure 5.10). This will greatly facili-
tate the next step—the computation of the C-space map for the gripper
component. Note that because each gripper component can encounter
different portions of obstacles as the gripper moves about the grasp
plane, a separate grasp volume and separate projection must be made
for each.

The grasp planner stores obstacle projections in the form of scan lines
(see Figure 5.11). Scan lines are a common representation used in graph-
ics to paint polygons onto a raster-scan device. There are several al-
ternatives to scan lines for representing two-dimensional data; among
these are boundary representations, quad-trees, and filled grid cells.
The boundary and quad-tree representations may offer compact storage
but the algorithms for dealing with them tend to be complex. The grid
cell representation generally offers simple algorithms but may require
more processing time than the others on a serial machine. Scan lines are
a compromise between these extremes. Furthermore, conversion from
boundary or grid cell formats (also used in HANDEY) to scan lines can
be done rapidly.
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Figure 5.12
Pick-and-place example

Consider the pick-and-place example in Figure 5.12. Here the high-
lighted object must be moved to the position indicated by the dashed
outline. Recall the gripper model used by HANDEY, (see Figure 5.2,
page 111) and examine Figure 5.13. This figure shows the two-dimen-
sional representation of the obstacles to the various gripper components
at the pickup and putdown positions. (An outline of the pair of object
faces chosen for grasping is superimposed for clarity.) In particular, note
that the grasp object is hatched for the gripper flange and body pro-
jections but not for either gripper finger. This indicates that the grasp
object is an obstacle for the flange and body but not for the fingers.

The scan line obstacle representation is also used to facilitate the rank-
ing of grasp faces (see Section 5.2.1). Figure 5.14 helps to explain how
this is done. The maximum area available for grasping is the intersection
of the projection of the grasp faces onto the grasp plane. Some of this
area is excluded because of blockages by nearby obstacles. Thus, the in-
tersection of the grasp faces, and the free areas of both fingers at pickup
and putdown provides a measure of the graspability of a particular face
pair. When picking the grasp faces, this computation is made (at lower
resolution) for each of the grasp face pairs of the grasp object.

5.2.3 Constructing C-space maps for the gripper

To determine the safe poses for the gripper moving in the grasp plane,
an z,y,0 C-space map is constructed. Slices of this space represent
different orientations of the gripper (compare Section 3.4.5). Since the
grasp planner stores all two-dimensional data as scan lines it will be
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Figure 5.14

The graspable area is the non-hatched region on the grasp face pair. This is
computed by taking the union of the obstacles to each gripper finger at pickup and
putdown. The remaining non-blocked area on the face pair is available for grasping.
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Computation of C-space scan lines. (a) One line, AB, of the stationary object [ \/
combines with one line, C'D, of the moving object. This produces, (b) and (c), a Baa
single scan line, EF, of the C-space obstacle, where E =B — C,and F = A — D. -
(d) All remaining scan lines.

necessary to compute the C-space map using scan lines. This operation
is demonstrated in Figure 5.15.

The collection of scan lines to the left in Figure 5.15(a) represent a
stationary object; those to the right (in the primed frame) represent the
moving object (some component of the gripper). Computing the C-space
obstacle yields the set of positions (also represented by scan lines) which
are forbidden to the origin of the moving coordinate system. Consider
the C-space obstacle generated by one line of the stationary object with
one line of the moving object. Figure 5.15(b) and Figure 5.15(c) show the
set of positions forbidden to the moving object origin. Figure 5.15(d) is
the full C-space obstacle generated by computing the C-space obstacles
of each stationary line with each moving line. The many overlapping
lines thus generated are combined to simplify the representation.
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Pickup C-space slices Putdown C-space slices
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Figure 5.16
Pickup and putdown C-space slices for several orientations of the gripper
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Figure 5.17

(a) Non-hatched area indicates all placements of the gripper reference point which
produce viable grasps. (b) Non-hatched area indicates placements for which the
gripper is clear of both grasp faces.

AN
s
To generate the full C-space map for the gripper a calculation similar \?// g
to the one outlined above must be carried out for each component of the C J‘
gripper. This is illustrated in Figure 5.13, where the flange, body, and '\//
Esz

each finger of the gripper generate C-space obstacles at both the pickup
and the putdown location. The obstacles in the C-space map for the
gripper are the union of the obstacles in the C-space maps generated
from each of the gripper components. An example of gripper maps for
several gripper orientations! is shown in Figure 5.16.

It is now possible to simultaneously satisfy most of the constraints
on the grasping operation. The non-hatched area of Figure 5.17(a)
shows the gripper positions (regardless of orientation) which qualify as
minimally acceptable grasps. The intersection of this area with the free
area of one of the pickup C-space slices (for example Figure 5.18(a))
produces the set of gripper positions, for a particular orientation relative
to the grasp object, that are acceptable grasps at the pickup pose. To
find the set of gripper positions, for the selected gripper orientation, that
also qualify at the putdown pose, we intersect the free area at putdown

LA new scan line representation is constructed for the gripper components for
each orientation.
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Figure 5.18

(a) Non-hatched area represents free C-space for given gripper orientation at the
pickup location. (b) Non-hatched area represents free C-space for given gripper
orientation at the putdown location

Figure 5.19

Considering only gripper collisions for orientation § = —7/8: (a) The set of points
for which a grasp exists at both pickup and putdown. (b) The set of viable
approach points. (c) The set of viable departure points.
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(Figure 5.18(b)) with the two areas already intersected. The result is
shown in Figure 5.19(a). Also shown in Figure 5.19(b) and (c) is the set
of viable approach and departure positions computed by intersecting the
orientation-independent set of non-overlap points, Figure 5.17(b), with
the free area at either pickup or putdown.

5.2.4 Arm constraints are C-space obstacles

The free regions in Figure 5.19 identify grasp, approach, and departure
areas. Any point in the region avoids collisions between the gripper
and nearby obstacles. This is not enough to guarantee a feasible grasp.
As shown by the examples in Chapter 2 it is also necessary to avoid
collisions involving the arm and to satisfy the robot’s kinematic limits.
We can deal with these arm constraints by identifying their effect on
legal gripper poses in the chosen grasp plane.

The grasp planner checks each free point in the free areas of the grasp
plane for both kinematic feasibility and for the presence of collisions.
The inverse kinematics function for the robot is used to compute all
the robot configurations that can place the robot gripper at a specific
pose in the grasp plane. If no solution is possible at a particular pose,
then that pose is marked as blocked. Kinematically feasible poses are
then checked for arm collisions by checking the C-space map built by
the gross motion planner. As we saw in Chapter 4, the gross motion
planner builds a C-space map for the first three joints of the robot arm.
Each pose in the grasp plane corresponds to some set of robot arm
configurations (up to four for the Puma) in this three-dimensional C-
space. Determining the presence of a collision simply requires a lookup
in this map. The result of solving the inverse kinematics and looking up
collisions in the arm’s C-space map is a new set of obstacles that can be
projected into the grasp plane. Doing this at the putdown location for
the example produces the result in Figure 5.20(a). Figure 5.20(b) shows
the effect due only to kinematic limits. Both of these figures are slightly
misleading in that they show the result of the kinematic feasibility and
arm collision test over the whole grasp plane. In fact, only the areas free
of gripper collisions need be tested. This is usually only a small fraction
of the grasp plane. Note also that a different such map will be obtained
for each solution branch of the inverse kinematics. The solution branch
with the most free space is the one of interest.
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Figure 5.20
(a) Arm collisions at putdown mapped into the grasp plane (b) Arm kinematic
constraints at the putdown pose mapped into the grasp plane
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Figure 5.21
C-space search
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5.2.5 Searching the C-space maps

The discussion so far has focused on constructing C-space maps for a
single gripper orientation relative to the grasp object. In general, we will
need to construct slices of the C-space map corresponding to different .-
gripper orientations. Our objective is to identify a path that starts in
one of the legal approach regions, connects to a legal grasp region, and

from there connects to a valid departure region. These regions need not
be in the same gripper orientation slices, as illustrated in Figure 5.21.
To make precise how this search operates, we need a few definitions:

O The set of gripper positions that overlap the intersection of the grasp
faces (see Figure 5.3, page 112).

N The set of gripper positions that do not overlap the union of the
grasp faces (see Figure 5.4, page 114).

F4(#) The set of gripper positions, for gripper orientation §, that are
collision-free and kinematically feasible at the pickup (approach)
pose (see Figure 5.18(a), page 126). I{@\

Fp(0) The set of gripper positions, for gripper orientation §, that are & . *\\\ﬁ
collision-free and kinematically feasible at the putdown (depar-
ture) pose (see Figure 5.18(b), page 126).

G(#) The set of gripper positions in F4(0) N Fp(6) that are viable grasp e
points, where the fingers sufficiently overlap the grasp faces, Fig-
ure 5.19(a). G(8) = F4(6)NFp(@)N O

A(0) The set of gripper positions in F4(0) that are viable approach

points, where the fingers do not overlap the union of the grasp
faces (see Figure 5.19(b)). A(6) = F4(0) N N.

D(#) The set of gripper positions in Fp(#) that are viable departure

points, where the fingers do not overlap the union of the grasp
faces (see Figure 5.19(c)). D(f) = Fp(8) NN

The objective of the grasp search is to find: =\

_—

A grasp point g € G(6,),

an approach point a € A(8;),

a departure point d € D(0y),

a path connecting a to g contained in F4(8) (6 may vary), and

U oo

a path connecting d to g contained in Fp(6) (8 may vary).
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The grasp planner proceeds by iterating over gripper orientation, 8,
computing slices of both F'4 and Fp. For each new 8 slice, the planner
updates the set of regions in the new slice that overlap regions in the
previous slice. Each set of connected slices in F'4 is tagged if it contains
a viable approach point-—if any of the slices intersects the O region.
Similarly, the connected slices of Fp are tagged if they contain a viable
departure point—if any of the slices intersects the N region. When each
new slice is computed, the intersection G(0) = Fa(0) N Fp(@) N O is
checked. If G(6) is not null, those connected regions of F 4 and Fp
overlapping G are marked as containing a grasp point and a link is
established between the regions. The search stops when a region of F 4
contains both an approach and a grasp point and is linked to a region
of Fp that contains a departure point and the same grasp point.

Given these connected regions, a path is found connecting the “cen-
tral point” of the approach, grasp and departure regions. These central
points are computed by a technique, borrowed from binary vision [31],
called thinning. This technique consists of successively stripping off the
perimeter of an area until only a single central point remains. Another
variation on thinning is used to find paths connecting the designated
approach, departure and grasp points to the central points in the inter-
section between regions in adjacent slices.

5.3 Using depth data in grasp planning

One of the earliest applications of HANDEY was to pick up objects local-
ized by processing a depth map [48]. A depth map is a two-dimensional
array whose indices code for position and whose elements represent the
height of a surface at that location. HANDEY uses a triangulation-based
laser range-finder to construct depth maps. Figure 5.22 shows a set of
objects and Figure 5.23 shows the corresponding (simulated) depth map.

The use of a depth map as a source of information about the envi-
ronment presents some new problems for the grasp planner. We have
assumed up to now that every object in the robot’s workspace is rep-
resented by a polyhedral model. To preserve that assumption in the
context of the use of a sensory system, one can either require that the
user specify the pose of every nearby object save the one to be localized,
or the recognition system must recover the identity and pose of every
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Figure 5.22
A grasp object (highlighted) among obstacles

Figure 5.23
Simulated depth map of the preceding scene

object in its field of view. We chose, instead, to relax the polyhedral
model assumption within the context of the grasping operation.

To plan a grasping operation, the system need only identify the object
to be grasped from the depth map. The height values not associated with
the grasp object can be treated as uninterpreted clutter. For the grasp
planner to use this data, it must detect potential collisions between the
measured surfaces and the various gripper components: This is done
by testing each point (pixel) in the depth map within the footprint? of
the grasp volume of a gripper component. If any portion of the ray

2The footprint of a grasp volume is its projection onto the horizontal plane of the
depth map.
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Rear finger grasp volume

Z

Depth map

s

Grasp object

Figure 5.24
A depth map pixel (which contains altitude information) intersects the grasp
volume of the rear finger. The intersection is projected onto the grasp plane.

extending downward?® from that point intersects the grasp volume then
that line segment is projected onto the grasp plane. This procedure is
illustrated in Figure 5.24.

There are, however, some difficulties. Depth map data points pro-
duced by the grasp object are indistinguishable from those produced by
unrecognized clutter objects (see Figure 5.25). The darkened area rep-
resents a point in the depth map contributed by the grasp object. Since
a ray extending downward from this point intersects the front finger’s
grasp volume, the previously described projection scheme would require
projecting this point onto the grasp plane. In that case an overhanging
grasp object face would always be seen as completely blocked. This can-
not be allowed. Therefore, after the grasp object has been identified in
the depth map and prior to the intersection of depth map points with
the grasp volumes, the points for which the grasp object is responsible
are removed from the depth map—their height values are set to zero.

3Downward means toward the horizontal plane of the depth map.
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Front finger grasp volume

Figure 5.25
Some depth map pixels correspond to overhanging portions of the grasp object.
Projection of such points onto the grasp plane must be forbidden.

Note that the possibility remains that a non-modeled clutter object
could be hidden under an overhanging part of the grasp object. This
condition cannot be determined by a single depth map from a fixed point
of view; it can be detected only at runtime, possibly by a guarded move.
HANDEY currently ignores this possibility.

In addition to intersecting depth map data with the grasp volumes,
it is still necessary to intersect nearby modeled objects with the grasp
volumes and project that information as well. In this operation, we must
also include parts of the grasp object that protrude beyond the grasp
faces since these can also cause collisions.

5.4 The potential-field planner

The grasp planner described above, based on configuration space maps,
evolved from an earlier planner which used a potential-field motion plan-
ning method [35, 36]. In this section we will briefly review the design

Ji

J3

J2
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of this earlier grasp planner both because it illustrates a different set
of motion planning techniques and because it sheds some light on the
interactions among the constraints in pick-and-place planning.

Many of the basic assumptions of the grasp planner described above
were inherited from the earlier grasp planner. In particular, both sys-
tems use a two-dimensional grasp plane on which the three-dimensional
obstacles are projected. Also, both systems divide the problem into the
search for an approach and a departure path. The two planners differ in
the method of choosing the approach, grasp and departure points as well
as the method of finding the paths between them. In the C-space-based
planner, the choice of approach, grasp, and departure points and the
choice of paths is intertwined, driven by the connectivity of the C-space.
In the earlier potential-based planner, the system guesses approach, de-
parture and grasp points and then searches for paths, using a potential
field, to connect them. Specifically, the earlier planner planned the ap-
proach and departure phases nearly independently.

The following steps were used to plan the approach phase:

1. Find an approach pose on the grasp plane near the pickup location
using a generate-and-test strategy: test several candidate approach po-
sitions and orientations for gripper collisions, arm collisions, and kine-
matic feasibility.

2. Identify a region on the grasp faces which is not totally blocked by
obstacles at pickup and putdown, then shrink this region to a single
point, the nominal grasp point.

3. Plan a path from approach to grasp using a potential-field method.

These steps were used to plan the departure phase:

1. Find a departurc pose on the grasp plane near the putdown location
using a generate-and-test strategy.
2. Plan a path from grasp to departure using a potential-field method.

The key difficulty with this earlier planner, as we will see, proved to
be in the initial guessing of approach, departure and grasp points.

5.4.1 Obstacle backprojection

The earlier planner enforced the constraints requiring a grasp to be col-
lision free and kinematically feasible at both pickup and putdown in an
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Figure 5.26

Using backprojection to satisfy pickup/putdown collision constraints: (a) shows the
initial world configuration; the highlighted object must be positioned as in (b). In
(c), the putdown obstacles have been backprojected into the pickup location.

overly conservative way. The key idea is called obstacle backprojec-
tion. The portions of the grasp faces that will be unblocked at both
pickup and putdown can be identified if obstacles near the putdown po-
sition are treated as though they were present at the pickup location,
appropriately rotated so as to maintain their relationship to the grasp
object (see Figure 5.26).

If, while planning the approach path, the grasp planner ensures that at
all times the gripper avoids both the objects at the pickup pose and the
backprojected obstacles from the putdown area, then the final position
and orientation will leave the gripper collision-free at both pickup and
putdown. However, it is not necessary that the gripper avoid backpro-
jected obstacles while approaching the grasp point, only that its motion
not terminate while in collision with one. The use of a potential-field
based planner limits our ability to incorporate such a refined constraint,
since one can’t predict when the potential-field planner will terminate
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the motion. This was an important way in which the earlier grasp plan-
ner overconstrained the grasping problem.

5.4.2 The potential-field method

The initial motivation for basing a grasp planner on a potential-field
method was to exploit its ability to find simple paths very quickly. We
understood that these methods are susceptible to stopping short of the
goal because of local minima in the potential field. Our initial approach,
described in this section, ignored the local minima problem. Qur ex-
perience with the limitations of this method then led us to refine our
approach to attempt to minimize the impact of local minima (see Sec-
tion 5.4.3).

We require a path from a nearby approach point to the grasp. Fig-
ure 5.27 shows one iteration in the computation of this path. The gripper
attempts to move its reference point toward the grasp point while avoid-
ing obstacles. To avoid the obstacles, the gripper is surrounded by bump
lines at some distance, d. A bump line is a line segment which moves
with the gripper on the grasp plane and is checked each iteration for
collisions with filled grid cells. A bump vector is a unit vector per-
pendicular to a bump line pointing away from the gripper. Because the
edges of the gripper model are aligned with the coordinate axes of the
gripper and the bump lines are parallel to the components of the model
there are only four distinct bump vectors.

In the absence of intervening filled grid cells, the motion of the gripper
is a simple translation along the vector connecting the gripper reference
point with the object grasp point. The unit vector in this direction is
called the free motion vector.

During any iteration when a bump line/grid cell collision is detected,
the motion of the gripper must be restricted. In this case motion is
allowed only along one of the bump vectors. After bump vectors asso-
ciated with colliding bump lines have been eliminated, a motion step
is executed along the bump vector most closely aligned with the free
motion vector. In Figure 5.27, the next motion step will occur along the
bump vector pointing toward the lower right.

This method is analogous to a potential field with a very strong de-
pendence on distance. Beyond the distance d, the repulsive force is zero;
within d the force is sufficiently strong to prevent motion in a direction
that would decrease the distance.
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Bump vectors

Free motion vector

Filled grid cells

~ Gripper reference
point

Object grasp
point

Figure 5.27

A potential-field method is used to plan the path to a grasp. During a collision
between a bump line and an object, motion in the direction of the corresponding
bump vector is forbidden (indicated by an ‘x’). Bump lines are constructed such
that the sign of the torque does not change along their length. Small circles
indicate the end points.

It may be necessary to change the orientation of the gripper as it
moves toward the grasp point. Bump lines provide a way to do this
as well. Any colliding bump line produces a torque about the gripper
reference point whose magnitude is proportional to the cross product
of the bump vector and a vector connecting the gripper reference point
with the center of the bump line. Bump lines must be constructed such
that the sign of the torque doesn’t change along the line. The total
torque on the gripper is then the sum of the torques generated by each
colliding bump line. In Figure 5.27, the next rotation increment will be
clockwise.
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procedure potential-field
begin
for ¢ from 1 to max-iterations
begin
if bump-lines do not collide with filled grid cells
then position = position + k X free-motion-vector
else
begin
Compute nearest-bump-vector
Compute total-torque from the bump lines
position = position + k x nearest-bump-vector
orientation = orientation + m X total-torque
end
end

end

Figure 5.28

Original potential-field algorithm. The free-motion-vector is the unit vector from
the gripper reference point to the grasp point. The nearest-bump-vector is the
bump vector most closely aligned with the free-motion-vector after the bump
vectors associated with colliding bump lines have been eliminated. Constants k and
m are scaled such that no point on any bump line can move a distance greater than
the width of one grid cell during one iteration.

Each iteration, the gripper translates and rotates in a way determined
by the direction to the grasp point relative to the gripper and by near
collisions with obstacles. The rotational and translational step sizes are
chosen such that no point on any bump line is moved by more than one
grid cell per iteration. This precludes the possibility that any filled grid
cells will penetrate the bump lines.

The motion terminates successfully when the gripper reference point
is within some predetermined distance of the grasp point or when the
gripper fingers overlap the grasp faces by a sufficient amount. An un-
successful termination occurs when no path has been found after some
set number of iterations. Lack of progress toward the goal can be an-
other condition of failure. This whole procedure is described by the
pseudo-code in Figure 5.28.

The method outlined above does not satisfy all the required con-
straints on a viable grasp. At some point in the robot path implied
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by the computed gripper path, one or more of the following conditions
may occur:

1. the arm is in collision with an object in the environment,

2. there is no kinematic solution, or

3. there is no continuous kinematic solution—moving from the previous
to the current path step requires a reconfiguration of the robot.

In our first implementation, paths found by the algorithm in Figure 5.28
were subjected to verification to ensure that the arm collision and kine-
matic feasibility conditions were met. In practice, failures at this point
were frequent. In subsequent implementations, robot path verification
was incorporated into the inner loop of the potential field method. If
the motion step computed from local considerations failed in one of the
ways listed above, then a step along a different bump vector or a small
arbitrary rotation was tried.

After successfully planning a grasp, the system still experienced fre-
quent failures at the putdown step because the grasp was chosen without
regard to the kinematic limits at the putdown position. To address this
problem, we used an approach similar to obstacle backprojection. Just
as the grasp planner avoided the backprojected obstacles from the goal
at every step of the approach (so as to guarantee that the approach
path did not terminate in a goal collision), it would now perform the
kinematic/arm-collision test for both the pickup and putdown pose at
every step on the approach path. This approach highly overconstrained
the problem since the kinematic/collision constraint really applied only
to the final point of the path. Nevertheless, this approach still managed
to find solutions for many of the pick-and-place problems tried. Partly,
this is because requiring the existence of a series of collision-free and kine-
matically feasible solutions near (and at) the putdown pose increased the
likelihood of later finding a gross-motion to reach the putdown pose and
a departure path from there.

5.4.3 Improved potential-field strategy

It is well known that motion planners based on simple potential meth-
ods can fail by becoming trapped in local minima (see Figure 5.29(a)).
The attractive force driving the motion always points toward the goal;
no motion away from the goal is possible. The moving object will be

J1
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trapped when, due to the repulsive forces from obstacles, the net force
has no component toward the goal.

We found that a simple modification can avoid one kind of local min-
ima. If the start and goal points are known and lie in a common region
of the free space, it is possible to construct a path between them. One
method for doing this is as follows. While preserving the start and goal
points and the topology of the free space (represented by empty grid
cells), shrink the free space by removing cells from its boundary until a
step is reached when no cells can legally be removed. This is the thinning
operation mentioned in Section 5.2.5. At this point there will either be
one or more filaments connecting start and goal (see Figure 5.29(b)) or
there will be no connection. Lack of a connection proves that no path
exists; it will be necessary to try different grasp faces. If a filament is
found, however, it can be used to drive the motion of the gripper.

The modifed potential-field path planner proceeds as follows:

1. Grow all obstacles by half the width of the finger. (This discourages
motion through too narrow channels.)

2. Construct a filament path by thinning the free region containing the
start and the goal. (Select the shortest path first if more than one
filament is discovered.)

3. Place the attraction point at the starting point of this path.

4. In each iteration, move the attraction point along the filament toward
the goal.

5. Use the existing potential-field mechanism to generate torques and
small displacements for the gripper to move it out of the way of obstacles
as it progresses toward the goal.

An important refinement of this approach is that the attraction point
must not move forward along the filament after any iteration when the
gripper did not move toward the attraction point. Otherwise, the attrac-
tion point and gripper reference point become separated and the algo-
rithm degenerates to the one previously described. Left-Margin Movie 2
shows a path found by this planner. (See the description of the Margin
Movies in “On the Margins,” page xvi.)

This method is superior to the simpler one in two important ways:
it can sometimes prove that no path exists, and it solves a broader
class of problems. Unfortunately, it can still fail to find a viable path
even when one exists. This is because, although the path construction
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Figure 5.29

Partial solution to the local minima problem. (a) Local minimum traps gripper
from some starting locations. (b) Precomputing path avoids local minima in
Cartesian space. (c), (d) Local minimum in configuration space can trap gripper
from some starting configurations.

step eliminates local minima from the Cartesian space, minima may still
remain in the gripper’s configuration space. See Figure 5.29(c) and (d).

The many refinements to the potential-field grasp planner have im-
proved its performance substantially. However, two fundamental short-
comings of the potential-field method remain:

1. it cannot guarantee to either plan a grasping operation if one is pos-
sible or halt if one is not, and

2. it cannot incorporate certain important constraints in other than a
significantly overly conservative way.

For these reasons we developed the C-space grasp planner. It has per-
formed satisfactorily.
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6 Regrasp Planning

Regrasping must be done whenever a robot’s grasp of an object is not
compatible with the task the robot must perform. Consider, for example,
a robotic cell with a manipulator alternatively picking up parts from a
conveyor or a pallet and inserting them into an assembly. Assume that
the parts are presented in arbitrary orientations. The task may not be
achievable with a single grasp because none of the grasps feasible at the
pickup may be feasible at the assembly (see Figure 6.1). There is no
single grasp to pick up the part A and place it in the assembly near the
part C; the part must be grasped, then it must be placed away from
part B and it must be regrasped before performing the final assembly.
The regrasp planner in HANDEY is invoked as follows:

Regrasp(goal, robot, world)

When this planner is called, the robot must be holding the part which is
specified in the goal. The planner will generate an appropriate sequence
of pairs of robot operations consisting of placing the part on the table (or
in another gripper) and regrasping it with another grasp until a grasp
compatible with the putdown pose in the goal is found. In this chapter,
we will first focus on the use of a table for intermediate placements. We
will explore the use of a second gripper in Section 6.7.

Figure 6.1
In order to move part A from its initial position in {(a) to its destination in (d) it is
necessary to move it to an intermediate position (b) and regrasp (c).
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In our approach to regrasping using a support table, we characterize
the possible grasps of an object and its stable placements on the ta-
ble. Both grasps and placements are described by the discrete choice
of a surface of contact, combined with the choice of a continuous rota-
tion parameter. The regrasping problem is then solved by computing
transitions in a space where we represent all compatible conjunctions
of grasps and placements. A grasp and a placement are compatible if
neither the grasp nor the placement causes a collision and the placement
is kinematically feasible given this grasp of the object.

If there were no constraints due to the presence of nearby objects
or due to joint angle limits, all regrasping could be done in a single
step. In practice, these constraints may require that more than one
regrasping step be done. The Right-Margin Movie 2 shows a sequence
of grasps and placements produced by the HANDEY regrasp planner (See
the description of the Margin Movies in “On the Margins,” page xvi.)

6.1 Grasps

The regrasp planner makes the same set of basic assumptions on legal
grasps as the grasp planner does (Section 5.1). In particular, grasps
will involve contact between the interior surfaces of the fingers, the grip
surfaces, and nearly parallel grasp faces, which define a grasp plane.

We will build a subset of this type of grasp by considering the union of
several grasp classes: {Gi}icf1,..,n}- Each grasp class G; is character-
ized by a grasp plane and a grasp point. The grasp plane is always
parallel to and midway between the grasp faces of the object. The grasp
point lies always in the grasp plane and can be projected inside the two
faces defining the grasp plane.

By restricting a particular point attached to the gripper, named the
gripper reference point, to coincide with the grasp point, and by
restricting the motion of the gripper to be such that the grip surfaces stay
parallel to the grasp plane, we can define a family of grasps corresponding
to this grasp class.

We associate each grasp class G; with a coordinate frame attached to
the object and written G;. The grasp frame G; is defined as follows: its
origin G; is the grasp point, the vector z¢, is normal to the grasp plane,
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Figure 6.2
(a) Definition of the grasp frame. (b) Definition of the finger frame.

the z- and y-axes lie in the grasp plane. The orientation of the z- and
y-axes is chosen arbitrarily (see Figure 6.2(a)).

We also define a coordinate frame attached to the gripper, called the
finger frame.! The finger frame F is defined as follows: vector z F
is normal to the grip surfaces. Vector zp points towards the wrist of
the robot. The origin of the finger frame, F, is located near the end of
the fingers and is midway between the grip surfaces. It is the gripper
reference point (see Figure 6.2(b)).

By restricting the type of grasps, the relative position of the grasp
frame and the finger frame can be parameterized by a single parameter,
¢, corresponding to the angle between =z and z¢g, (see Figure 6.3).

Since the finger frame is attached to the gripper, the relative position
of the gripper and the object is totally determined by G; and 6:

GR.(O)F ! (6.1.1)

where F denotes the relative position of the finger frame to the wrist

!The regrasp planner and the grasp planner choose slightly different definitions of
the finger frame. Since they are independent modules each can choose a definition
for the finger frame which suits its own purposes.
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Figure 6.3
Parameterizing a grasp by G; and ¢

frame and R, (6) a rotation about the z-axis. We denote a particular
grasp from the grasp class G; as:

Figure 6.4 shows two grasps which belong to the same grasp class.

The set of grasp classes is obtained as follows: For each (convex) edge
of the object we define two potential contact points. These points are
located on the two adjacent faces defining the edge. They are obtained
by displacing the middle point of the edge towards the interior of the
faces. For example the edge e defines two potential contact points, ¢y
and ¢y (see Figure 6.5(a)). A potential contact point generates a grasp
class if it can be projected inside another face of the object parallel to
the face to which it belongs. In this case, the grasp plane is defined as
the plane parallel to and midway between these two faces. The grasp
point is obtained by projecting the potential contact point onto the grasp
plane.

Note that it may appear as if this method generates many redundant
grasps, for example, in a cube, each grasp point is generated twice, one
for each of the corresponding edges of opposite faces. In fact, these points
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Wrist Frame

Figure 6.4
Two grasps of the same grasp class

Figure 6.5
(a) Definition of the contact points. (b) Two grasp classes associated with one edge
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are associated with different normals and correspond to grasps in which
the gripper is rotated 180° about its = axis. It is the case, however, that
small faces will generate many grasp points clustered together, such as
those on the upper faces in Figure 6.5(a). These points can be readily
eliminated.

Figure 6.5(b) shows the two grasp classes for one edge. For each
corresponding grasp class, the gripper is shown in the § = 0 orientation.

6.2 Placements on a table

A placement of a three-dimensional polyhedron can be characterized
by a face of its convex hull? in contact with the table. Such a placement
is stable if the projection of the object’s center of mass onto the table lies
in the interior of the support face. We denote by P; the class of stable
placements sharing the same contact face with the table. In this section,
we will build a subset of all the possible placements by considering the
set of several of these placement classes: {P;}je(1,....m}-

Each placement class P; is characterized by a placement plane
and a placement point. The placement plane is supported by the face
of the convex hull which is in contact with the table. The placement
point is defined by the projection of the object’s centroid on the place-
ment plane. (In HANDEY, we do not model the density of the various
components of the object, therefore, we cannot accurately compute the
center of mass of an object. Instead, we make the implicit assumption
of uniform density and use the centroid to approximate the center of
mass.)

By restricting the placement point to coincide with a particular point
on the table, named the target point, and by restricting the place-
ment plane to be in contact with the table, we can define a family of
placements corresponding to this placement class.

With each placement class P; we associate a coordinate frame at-
tached to the object and written P ;. The placement frame P is defined
as follows: its origin P; is the placement point, the vector zp, is the
mward-pointing normal to the support surface. The orientation of the
z- and y-axes is chosen arbitrarily (see Figure 6.6(a)).

2The convex hull of a part is the smallest convex object that completely contains
the part [69].
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Figure 6.6
(a) Definition of the placement frame. (b) Definition of the target frame

We also define a coordinate frame attached to the table named the
target frame. The target frame T is defined as follows: vector zr
is normal to the table. The direction of the x- and y-axes is chosen
arbitrarily. The origin of the target frame, T, is located on the table®
(see Figure 6.6(b)).

By restricting the type of placements, the relative position of the
placement frame and the target frame can be parameterized by a sin-
gle parameter, ¢, corresponding to the angle between 1 and zp; (see
Figure 6.7). Since the placement frame is attached to the table, the
absolute location of the object is totally determined by P; and ¢:

TR.(¢)P;* (6.2.2)

where P; denotes the relative position of the placement frame to the ob-
ject frame and R, (¢) a rotation about the z axis. We denote a particular
placement from the placement class P; as:

(Fj,¢)

Figure 6.8 shows two placements which belong to the same placement
class.

3The fixed location at which regrasping is accomplished is chosen to minimize
collisions with local objects and to have a rich set of nearby kinematic solutions for
the robot.
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Figure 6.7
Parameterizing a placement P; with ¢

Figure 6.8
Two placements of the same placement class
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Figure 6.9
All the stable placements of a sample part on the table.

The set of placement classes is obtained by computing the convex hull
of the object. The stable faces are selected as well as the placement
frames. Figure 6.9 shows all the different placement classes found for
the sample part. For each placement class, the part is shown in the
¢ = 0 orientation.

The choice of the target frame origin, T, should be such that there
is a wide range of orientations available to the gripper when the fingers
are placed above the target. In principle, the method presented here can
easily be extended to handle multiple target frames, but HANDEY does
not do this.

6.3 Constructing the legal grasp/placement pairs

We can now define the regrasping problem more formally. The conjunc-
tion of a placement (P;, ¢) and a grasp (G, 8) define how to grasp the
part placed at a particular location on the table. The placement defines
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Figure 6.10
Fixing the location of the gripper with (8, ¢)

the location of the part relative to the table (6.2.2) and the grasp defines
the location of the gripper relative to the part (6.1.1). Together they
completely specify the location of the finger frame, which determines
the wrist frame. Figure 6.10(a) shows the location of the wrist corre-
sponding a given pair (6, ¢). The wrist frame, given a specific grasp and
placement, is:

TR.($)P; ' G.R.(0)F '

Not all combinations of grasps and placements can be reached by the
robot: there must be a set of joint angles for the robot that places the
finger framc at the required position and orientation. Moreover, we must
take into account constraints of reachability due to:

1. possible collisions of the object and the hand—this restricts legal
choices of (G, 0) parameters;

2. possible collisions of the hand and the environment at the place where
regrasping is performed—this restricts legal choices of conjunctions of
(G,,0) and P;; and

3. mechanical bounds on the joint angles—this restricts legal choices of
conjunctions of (G;,8) and (P}, ¢).
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n 20,

Figure 6.11
A transition between two grasps using a placement (Pj, ¢).

For each pair (G;, P;) we compute the set q; ; of legal (6, #) by prun-
ing the set ([0,2m),[0,2n)) using each of the three above constraints
(see Section 6.4). A pair (G;,P;) represents a legal conjunction of a
grasp and a placement if this set q,; is non-empty. (The q,; will
be empty if the above contraints prevent the object in the placement
class P;, at any orientation from being grasped.) For example, Fig-
ure 6.10(b) shows the subset of legal (6, ¢) value for the grasp-placement
pair shown in Figure 6.10(a). The dark regions are illegal values of
(6,4). The small ‘x’ indicates the particular (6, ) values shown in
Figure 6.10(a).

We can now refine the description of regrasping operations: a re-
grasping step is a transition between two grasps, (Gi,,01) and (Gi,,02),
taking advantage of a placement (P;,¢) compatible with both grasps.
The two statements below give a more formal characterization of those
jumps. The second one expresses the duality between grasps and place-
ments.

1. A transition between the grasps (G;,,0:) and (G,,,0,) is legal if and
only if there exists a placement (P;, ¢) such that:

(61,¢) € q;, ; and (02,9) € Q.5

This simply states that with a grasp of class G;,, we can pick up an
object that has been ungrasped from a grasp of class G;,. For example,
Figure 6.11 shows such a transition.

&

M
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a2, e

Figure 6.12
A transition between two placements using a grasp (G;, ).

2. A transition between the placements (P;,, ¢1) and (Pj,, ¢2) is legal if
and only if there exists a grasp (G, §) such that:

(0,¢1) € q; 5, and (0,¢2) € q, ;,

This states that with a grasp of class G;, we can move a part between
the two placements (Pj,,¢1) and (Pj,,¢2). For example, Figure 6.12
shows such a transition.

One version of the regrasping problem can now be stated: given some
initial grasp (Gi,,0:,) and some goal grasp (G, ,0;,), find a sequence of
grasps (Gig,00), -, (Giy,, 0n), such that (G, ,0n) = (Gi,,0;,), and there
exists a legal transition between consecutive grasps. If there are multiple
solutions to the problem, we want a sequence of minimum length.

The search for a regrasp sequence uses the set defined by

{(Gi, Py) li € {1,2...,n},j € {1,2,...,m}}

This set can be represented with a grasp/placement table (see Fig-
ure 6.13). In this table, we use a circle to represent (G;, P;) pairs with
non empty q, ;. The same figure shows the sets q, ; associated with
the (G, P;) labeled a,b, ¢, d and a particular valid configuration for each
q;;- A horizontal edge in this table represents a jump between two
placements with a common grasp; a vertical edge represents a jump be-
tween two grasps with a common placement. The path shown in the
grasp/placement table of the Figure 6.13 corresponds to a two-step re-
grasp, such as the one shown in Right-Margin Movie 2.
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Figure 6.13
The grasp/placement table topology
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Figure 6.14
All the grasp classes compatible with the putdown pose.

In practice, many versions of the regrasp problem exist. For example,
in HANDEY the initial grasp is fully specified by the grasp planner, but
the final grasp class G;, can be chosen among several possible candi-
dates compatible with the putdown pose (see Figure 6.14). In order not
to overconstrain the problem, the grasp angle is not bound to a fixed
value for each G;, but is only constrained to be in some subset of [0, 27)
compatible with the putdown pose. We denote this subset as ©;,. Fig-
ure 6.15 shows the extreme angles for the grasp class in Figure 6.14(c).

An example of another version of the regrasp problem is to find an
initial grasp if the part already lying on the table and the final grasp
has been specified. In any case, the main technique for solving regrasp
problems is to propagate legal ranges for both placements and grasps
along the regrasp sequence. We illustrate this technique in the next
section by solving the regrasp problem as it is defined in HANDEY.

6.4 Solving the regrasp problem in HANDEY

HANDEY plans the regrasp sequence after grasp planning is completed
and the initial grasp is fully specified. Note that this eliminates a valu-
able degree of freedom for regrasping. We could, instead, plan the re-
grasp sequence before the initial grasp in order to minimize the regrasp
sequence length. We have chosen not to do this to simplify the imple-
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Figure 6.15
The extreme angles for the grasp class in Figure 6.14(a).

mentation of the grasp planner and the regrasp planner. On the other
hand, the regrasp sequence s planned before the final putdown grasp is
chosen.

Before searching for a regrasp sequence, the regrasp planner identifies
the set of “boundary conditions” for the search, namely,

e the set of initial placements compatible with the initial grasp and the
corresponding ranges of the angle ¢, and

e the set of grasps compatible with the putdown pose and the corre-
sponding ranges of the angle 6.

6.4.1 Computing the initial placements

In HANDEY, the initial grasp typically does not belong to any of the pre-
computed grasp classes G;, since it has been computed independently by
the grasp planner (see Chapter 5). This does not present a fundamental
problem, but it does mean that we have to compute the entry in the
grasp/placement table for this initial grasp. This requires computing
the legal range of ¢ for each placement. Note that 6 is fixed for this
grasp.

For each placement class P;, we sample the interval [0,27) to find
the range, ®;, which makes this placement compatible with the initial
grasp. In practice we take advantage of the local symmetry of the table
around the regrasp location to reject immediately any placement (P;, ¢)
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for which the gripper collides with the table. We sort the set of initial
placements by the length of the largest connected subrange of ;.
We define (P;, ®;) as this set of compatible placements as follows:

(Pj, ®;) = {(P;, d)¢ € 25}
We call this a constrained placement.
6.4.2 Computing the final grasps

Given the putdown pose of the part and a chosen grasp class G;, we
compute the range, ©;, that produces grasps compatible with this put-
down pose. We could simply sample the interval [0,27) and check for
collisions and inverse kinematic solutions for each value of 8. In practice,
we first compute the collision-free rotation range of the gripper around
the grasp point with the same algorithm used in the path planner to ob-
tain the range of legal joint angles for a link rotating about a joint axis
(see Section 4.2). This range is then sampled and tested for kinematic
feasibility. A legal range of 6 is illustrated in Figure 6.15.

We sort the set of grasp classes by the length of the largest connected
subrange of ©;. The grasp class having the largest connected subrange
is the most favorable for placing the part at the putdown pose. Fig-
ure 6.14 shows all the grasp classes having a non-empty final range for
our example.

We define (G;, ©;) as follows:

(Gi’ @Z) = {(Gz‘79)|9 € @i}
We call this a constrained grasp.
6.4.3 Finding a path through the table

We can now give a more detailed definition of the HANDEY regrasp
problem. Given a constrained placement (P;,®;) and a constrained
grasp (G;,©;) find (0,4) with § € ©; and ¢ € ®; such that given
an initial placement (P;, ) the grasp (G, 0) is achievable after one or
more regrasp operations. We call such a problem a grasp/placement
problem and denote it as

(G4, 0:), (P, ®5))



6.4  Solving the regrasp problem in HANDEY

159

A classical breadth-first search is used to find a regrasp sequence that
solves such a problem. The definition of the search requires two basic
functions:

1. an end-test function to determine if a given grasp/placement prob-
lem ((G;,0;), (P;, ®;)) leads to an immediate solution to the problem,
2. A generate function to produce subgoal grasp/placement problems,
that is, problems that if solved will lead to the solution of the current
problem.

The initial state for the search consists of an initial constrained place-
ment, (Pj,,®;,), denoting a range of initial placements accessible with
the current grasp and a constrained goal grasp, (G,,©;,), denoting a
range of grasps accessible at the putdown pose. A solution to the prob-
lem will be found if there is a solution to the grasp/placement problem,
((Gig ) eig): (ij’ (I)jk))'

The generate function will produce subgoals having the form:

((Git ) eiz)’ (ij ) (I)jk))

Note that the constrained placement stays unchanged in the definition
of each new subgoal. This strategy can be interpreted as backward
chaining from the goal grasp. Technically, it would also be possible to
proceed forward from the initial placement; in this case we would have
generated problems of the form: ((G5,,©;,), (P;,, ®;)). But, since there
are typically many more grasps than placements, the chance of ending at
the desired grasp starting from the initial placement is smaller than the
chance of ending at the initial placement starting from the goal grasp.

The end-test function Given a problem ((G;,,9,,), (P;,, ®;,)) a di-
rect solution exists if:

Jpo6y with ¢g € q)jk and 6 € @ig and (90, d)o) S i,k
That is,

1. We can place the part on the table using the current grasp and place-
ment (P, , ¢o), since ¢pg € @, .

2. We can grasp (regrasp) the part at this location using the grasp
(Gs,,00) since the placement (Pj,,¢o) is compatible with this grasp,
that is, (6o, o) € i, -

3. We can carry the part to its final location, since 6y € ©;,.

Ji

&

AN
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Generating subgoals If a solution cannot be found with the current
((Gi,,©4,), (Pj,,®;,)), then we introduce intermediate grasps into the
regrasp sequence, by recursively generating new grasp/placement prob-
lems. To generate a new problem we proceed in two steps.

1. We find an intermediate placement class P;, compatible with the goal
class of grasps G;,, that is, a placement class for which the following set
is not empty (see Figure 6.16):

S@ig = {(9a¢)|(07¢) € qig,jl and 0 € @ig}

Further, we compute the following range for ¢:
q)h = {¢|3(9’¢) € S@ig}

For any ¢; € ®;, the placement (P;,, ¢1) is compatible with the grasp

class G;, and with the range of ©;, available for that grasp class. That
is, if the part is placed on the table at this placement we can always find
a 0 in the constrained grasp.
2. Next, we compute a class of grasps and a range that are compati-
ble with (P;,,®;,). Namely, we find an intermediate class of grasps G;,
which is compatible with P;,, in addition we require this class of grasps
to be compatible with the range ®;,. We compute the set (see Fig-
ure 6.17):

Sq)h = {(6’ ¢)l(9a¢) S qil’jl and ¢ < <I>jl},

and we define a new goal range for 8:

@n = {913(97¢) € S‘I’il}

Consider the new problem defined by ((G;,, ©;,), (P}, ®;,)) and sup-
pose we get a solution (61,¢;1). Given the initial grasp condition, we
can place the part on the table using the placement (P;,, ¢1) and, pos-
sibly after several regrasps, have the part in the gripper using the grasp
(Gi;,01) with 8; € ©,,. At this point it is possible to show that, given
the grasp (G;,,81), we can reach the goal grasp:

1. We can put down the part at the placement (P;,, ¢o) with ¢g € Sa;,
2. Since ¢g € ®;, we can grasp (regrasp) the part with (G, ,80) and
fo € ©,,, that is, a grasp suitable for the final pose of the part.
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Constraining a placement with a constrained grasp
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Figure 6.17

Constraining a grasp with a constrained placement
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More generally, if we get a solution for a problem at depth n then
it is possible to find the solution for the problem which generated this
problem at depth n — 1 and, as a consequence, find a solution for the
initial problem (depth 0). Potentially, a problem ((G;,,©;,), (P}, ®;,))
can generate several alternative subgoal problems, that is, there are
several possible intermediate placements for a given grasp and, again,
several possible grasps for a given intermediate placement. To obtain a
breadth first search strategy that minimizes the number of regrasping
operations, these problems need to be evaluated with the test function

before they are expanded into new problems.
6.4.4 Similar problems

During the breadth-first search, it is possible to generate a new problem
having an ancestor sharing the same grasp class but with a different
constraint on 8. We call such a problem a similar problem. Similar
problems need to be treated specially to avoid infinite recursion.

When generating new problems, the system maintains a table of all
the previously generated problems and, more particularly, the list

q
(Gi7 U @2)i6{1,2,...)n}
=1

where (J_,; Ol denotes the union of the constraints previously gener-
ated for the grasp class G;. When a similar problem is generated,
((G:,©71), (P;,, ®;,)), the system replaces it with the problem:

(G, 08" — U9 Pj, @5.))

If the set @77 — (J7_, ©! is empty, it does not expand the problem
further. This reduction is made with no loss of generality because of the
following two properties:

1. If the problem ((G;, ©s,), (P, ®;,.)) has a solution and if @;,, C ©
then it is the case that ((G4, ©4,), ( i @5, )) has a solution.

According to our definition of a problem, the solution for the first
problem is also a solution for the second one. As a consequence we get
the second property:

123
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Figure 6.18

Geometric boundary conditions for the regrasp problem in HANDEY: (a) the
initial grasp of the part; (b) the initial placement in the regrasp sequence; (c) the
goal, or putdown, grasp.

2. The problem ((G;,0;, UB,,), (P, ®;,)) has a solution if and only if
either the problem ((G;,©;,), (P},, ®;.)) has a solution or the problem
((Gy,©4,), (Pj,, ®5,)) has a solution.

. " . i
So, by replacing the problem ((G;, 0! "), (P;,,®,,)) with the prob- M\ =N
lem ((G;, @?H - UL, e.l), (P, ®;,)), we consider only the part of the P [%{\
problem which is new to us. We assume that if there is a solution for [; f»g%
the previously generated ranges it will be found by expanding another .- —

branch of the tree.

6.5 An example

In this section we work through a particular example to illustrate the
algorithm described above. The initial grasp of the part is given. The
initial placement and the putdown grasp are computed with their re-
spective legal angle ranges (see Figure 6.18). That defines the initial
problem: ((G;,,©s,), (P, ®;,))-

The end-test function is applied to this initial problem. In this par-
ticular example the set q;, ;, s empty: the goal grasp is not compatible
with the initial placement for any value of (8, ¢). At this point, a single-
step regrasp operation is impossible given the initial placement and goal
grasp—we need to expand the problem.
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Figure 6.19
Intermediate placement compatible with goal grasp.
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Figure 6.20
Intermediate grasp compatible with intermediate placement.
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Figure 6.21
Intermediate grasp compatible with initial placement.
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e Step 1: A placement class P;, compatible with G; is found. The
set q;_; and the constraints on the legal values for 6, ©; , are used to
compute the constraints on this placement ®;, (see Figure 6.19).

e Step 2: Given (P},,®;,) a compatible grasp class G;, is found. The
set q,, ;, and the constraints on the legal values for ¢, ©;,, are used to
compute the constraints on this grasp ©;, (see Figure 6.20).

Finally we consider the problem ((G;,,©s,), (P, ®;,)). The grasp
class G;, is compatible with the placement class P;, and it is possible
to find a solution (1, 1) in q;, ;, which satisfies the constraints on the
ranges for 8 and ¢ (see Figure 6.21). The pose corresponding to this
solution is shown in Figure 6.18(a). By construction, we can deduce
(81, ¢0) and (6g, ¢g) which gives us the desired regrasp plan.

6.6 Computing the constraints

We will now consider in more detail how to compute q;, ;, the description
of the legal combinations of (G, 8) and (P}, ).

For a given choice of a grasp class G; (which implies a choice of the
grasp point), the position of the gripper relative to the grasp frame is
parameterized by the angle 8. We want to compute the range of ¢ for
which there are no collisions between the gripper and the grasped object,
the table, and any nearby obstacles. Note that this problem involves
computing the forbidden ranges of angle for a polyhedron (the gripper)
rotating about a fixed axis. This is precisely the basic computation used
by the slice-projection motion planner described in Chapter 4. This
computation must be repeated for each value of ¢.

The other constraint that a legal {6, ¢) value must satisfy is the exis-
tence of at least one solution for the inverse kinematics of the arm for
that gripper configuration. In HANDEY this constraint is enforced by
sampling the range of collision-free (6, ¢) and testing the inverse kine-
matics for that configuration of the gripper. Sampling in this way can
be time consuming since it must be done over a two-dimensional space.

In addition to testing for potential gripper collisions and the kine-
matic feasibility of the gripper pose, we must also check for potential
arm collisions. This is precisely the computations performed by the
grasp planner (see Chapter 5) in computing the grasp plane C-space
maps.
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Computing all the valid grasp/placement constraints by this method
is very time consuming. Much of the time is spent on checking kinematic
feasibility and computing collisions with fixed objects. In practice, this
can be precomputed for the part of the workspace where regrasps are to
be carried out.

6.7 Regrasping using two parallel-jaw grippers

We mentioned earlier that instead of using a table to assist during re-
grasping, one can use another gripper. We will call this second gripper
the left gripper. There are two simplified versions of this problem that
can be treated very similarly to the single gripper with a table case that
we treated above. HANDEY does not currently implement these exten-
sions, but they are described here since they are closely related to the
earlier development.

6.7.1 Regrasping using a fixed left gripper

Using the table to support the part during regrasping severely limits
the available range of grasps on the part. The presence of the table
constrains the legal range of 8 for most grasps to be substantially less
than w. Consider replacing the table by a left gripper constrained so that
it is fixed in space. This gripper can be used to hold the part while the
other gripper changes the grasp. This situation is essentially identical
to the table case except that the legal ranges of # can be expected to be
larger.

Grasps for the left gripper can be characterized by some grasp class
G; and rotation angle §;. The grasp (G;,0;) plays the role that the
placement (P;, ) played in the previous development. The planning
process for this restricted case is exactly analogous.

What have we gained from using another gripper? Two things:

1. The legal (8, ¢) for a given grasp/placement is likely to be larger since
we have removed the table as an obstacle.

2. There are more available placements since we have removed the sta-
bility requirement for placements. Any legal grasp for the left gripper
becomes a placement.
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As a result, the search space is much larger and less constrained. This
increases the chances of finding a one-step regrasp operation.

6.7.2 Regrasping using a mobile left gripper

Consider first a simple extension to regrasping with a table: assume
that the target point for regrasping lies at the center of a turntable.
Then, we can modify the search for a regrasp sequence by dropping the
propagation of the ¢ range. If two grasps are compatible with a given
placement for any values of ¢, then we can move from one grasp to
the other at that placement simply by using the turntable to select the
valid ¢ for each grasp. By introducing a turntable in the system, we
drastically increase the number of pairs of grasps which share a common
placement. As a consequence, we increase the chances of performing a
regrasp operation in one step.

We can now combine the advantages of the left gripper and turntable
methods by allowing the left gripper to rotate along its = p axis. All that
is required is to constrain the left gripper so that its reference point F
is fixed in space while the gripper is allowed to rotate about z 7. Most
robot grippers have a full range of rotation about their gripper axis and,
therefore, can readily emulate a turntable.
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7 Coordinating Multiple Robots

In Chapter 4, we discussed the problem of generating paths for robots
while avoiding fixed obstacles in the workspace. Finding paths becomes
trickier when some of the obstacles may be moving. In particular, when
two robots are operating in close proximity to each other, they each
become obstacles to the other. Unfortunately, the configuration space
methods described in Chapter 4 are designed to work only for fixed
obstacles. In this chapter, we describe a method of coordinating the
paths of multiple robots so as to avoid collisions between them (as well
as collisions with fixed obstacles).
The multi-arm coordinator is invoked as follows:

Coordinate(plani, plang, world)

where plan, and plans are plans for two different arms. The multi-arm
coordinator produces a combined plan for the two arms that will move
the arms through the same paths but allows them to move at the same
time (in parallel) whenever possible.

7.1 Coordination and parallelism

Consider a task where two robots are cooperating in assembling some
device from its components. For much of that task, the robots will be
working in separate areas of the workspace, and could operate simulta-
neously. Portions of the task, however, will require the robots to move
into some common area of the workspace, where the device is actually
being assembled. Since the two robots cannot occupy the same volume
at the same time, these portions of the task must be synchronized to
ensure that only one robot enters that common portion of the workspace
at a time. (For the most part, this chapter deals with two robots, and
the examples shown will use just two robots. Please note, however, that
much of the development described here is applicable to more than two
robots. Discussion of the extensions is deferred to Section 7.6.7.)

The primary goal of the multi-robot planner is to synchronize the
paths of multiple robots to avoid collision. We will see that the plan-
ner attempts to preserve as much parallelism as it can—allowing all
robots to move independently, provided they stay out of each other’s
way. The multi-robot planner computes a set of synchronizing instruc-
tions, specifying which portions of the robots’ paths may not be executed
simultaneously. We will see that this modular approach provides great
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flexibility in the path planner and the actual robot controller for loosely-
coupled robots. The multi-robot planner does not, however, solve certain
types of multiple robot coordination problems, such as tightly-coupled,
or dynamically-linked robots.

We will first take a look at different types of multiple robot coordina-
tion, then we will give a short example of the operation of the multi-robot
planner. Following the example, we will examine the planner in detail.

7.1.1 Planning motions of more than one robot

There are many possible approaches to multiple robot coordination,
though each approach solves a slightly different problem. Tightly-coupled
robots would include two robots which together manipulate a single part
or assembly simultaneously. This would require a precise planning and
control of both robots’ trajectories to prevent unacceptable forces being
applied to the assembly. The multi-robot planner does not attempt such
precise planning.

Workspaces that include moving parts as well as robots require a
planner to track the parts and to plan the robots’ trajectories to avoid
those parts as well as the other robots. The multi-robot planner will only
synchronize the trajectories of moving objects which can be controlled
(the robots).

Loosely-coupled robots work together in the same workspace, but do
not manipulate the same part at the same time (except to hand-off a part
from one robot to another). This is the domain in which the multi-robot
planner works.

7.1.2 Goals of the multi-robot planner

First, a word on terminology. The other planners in HANDEY generate
paths, which describe the shape of a motion, that is, the shape of the
curve in the robot’s configuration space. A path does not specify the
velocity or acceleration of the robot along that curve. We define a tra-
jectory of a robot as the time history of positions along a path, that
is, a curve through the robot’s state space. There are infinitely many
trajectories possible for a given path, each differing in the time history
of velocities along the path. A path describes through which points in
space the robot passes; a trajectory describes when it passes through
them.
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One key difference between the method used by the multi-robot plan-
ner and previous coordination methods is that this method attempts
to decouple the path specification step from the trajectory specification
step. In particular, the multi-robot planner does not plan paths—that
is left to a separate path planning module (see Chapter 4). All collisions
are avoided by using time, that is, by waiting for the other robot to get
out of the way, without changing the path. (We will see, however, that
this method also leads to a prescription of how to change paths so as
to minimize the interference between the trajectories.) The multi-robot
planner does not actually plan trajectories, either, in that we don’t con-
trol the actual velocities of the robots. We assume that we can control
the sequencing of the paths of the robots.

We will be particularly interested in the problem of coordinating the
trajectories of robot manipulators working in known, predictable envi-
ronments. We assume that the paths of the manipulators can be planned
off-line to avoid collisions with all the objects in the environment, ex-
cept the other robot. There are no unforeseen obstacles. This is true
of most industrial tasks. We also assume that, although the robots’
paths are predictable, their trajectories are less predictable. One exam-
ple of this is arc welding where the speed may be adjusted in response
to observed weld parameters. Another example is when one of the steps
in the task may involve a sensor-based operation of varying duration.
There are other, simpler reasons for unpredictable trajectories, such as
unavoidable error in the controller.

Given the preceeding assumptions, we have the following goals for the
multi-robot planner:

e it should be possible to plan the path for each manipulator essentially
independently,

e the resulting trajectories should guarantee that the manipulators will
reach their goals,

o it should be possible to execute the trajectories without precise time
coordination between the manipulators, and

e the safety of the manipulators should not depend on accurate trajec-
tory control of individual manipulators.
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Figure 7.1

Two planar robots working in a common workspace. Simple paths have been
planned for these robots to exemplify the multi-robot planner’s operation. (No
grippers or manipulated parts are drawn to keep the pictures simple.) Note that,
although the robots’ paths are shown in sequence, the two paths were planned
independently, without regard to the position of the other robot.

7.2 Robot coordination as a scheduling problem

The multi-robot planner accepts as input a path for each robot. These
paths are specified as a sequence of joint angle vectors, or setpoints.
(Other robot commands such as to open and close a gripper may be
included. We will have more to say about those in Section 7.4.4.) The
output of the multi-robot planner is a schedule. A schedule describes
the order in which the setpoints for each robot may be sent to their
respective controllers for execution. In particular, the schedule specifies
where each robot must wait before entering a portion of space that is
already occupied by the other robot. The following example illustrates
the procedure.

Figure 7.1 shows two planar robots. Paths have been planned, inde-
pendently, for both robots. Each robot moves from a position above its
private work table to the common work table, then to a parked position
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Figure 7.2
A collision would occur if both robots attempted to move to the central work table
simultaneously.

(a) (b)

Figure 7.3

(a) Volumes swept out by each robot executing one path segment. (b) Intersecting
swept volumes indicating a potential collision. The highlighted area indicates the
region of the potential collision.

pointing straight up. Note that both robots want to occupy a portion
of the region above the common work table for some portion of their
respective paths. Naturally, if they were to both move there at the same
time, they would collide (see Figure 7.2).

Civen the paths for the two robots, we can characterize where the
possibility of collision exists. Between each pair of adjacent setpoints
on a robot’s path the robot sweeps out a particular region of space. We
call the motion between adjacent pairs of setpoints path segments. By
comparing a path segment of the first robot’s path with each segment
from the second robot’s path, we can identify where collisions might
occur (see Figure 7.3). If the the same volume of space could be occupied
by both robots during the execution of a pair of path segments, we say
that the pair of segments creates a potential collision. The two robots
would likely collide if they were to both execute those path segments
simultaneously. Detecting whether two path segments may collide is
straightforward (see Section 7.4.6).
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Robot Robot Robot Robot
B A B A
(a) (b)
Figure 7.4

(a) Robot A waits for robot B to get out of the way before proceeding along its
planned path. (b) Robot A waits for robot B to get out of the way, but,
unfortunately, robot B cannot get out of the way because robot A is in the way of
robot B’s continuation along its planned path.

Knowing which path segments could cause a collision between the two
robots, it is a simple matter to prevent any collisions by ensuring that
segments from each robot which potentially collide are not executed at
the same time. Specifically, if robot B is executing a path segment which
may collide with the segment that robot A is about to execute, we in-
struct robot A to wait before executing the next segment until robot
B has finished executing segments which may collide with that one (see
Figure 7.4(a)). This is the fundamental task which the multi-robot plan-
ner performs: identify which path segments might cause collisions and
insert wait commands in the paths to prevent simultaneous execution of
those pairs of path segments with potential collisions.

7.2.1 Deadlock

Of course, the procedure described so far does not guarantee that the
robots will complete their respective tasks. In any scheduling problem
involving waiting for resources, the risk of deadlock must be addressed.
In our case, a deadlock can occur when each robot is waiting for the
other robot to complete some path segment (see Figure 7.4(b)). Once
a deadlock situation has occured, the task cannot be completed, since
neither robot can proceed without danger of collision.

The deadlock situation in Figure 7.4(b) could have been avoided if
robot A had stopped earlier in its path to wait for robot B to get out of
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X

Figure 7.5

(a) The path of one robot represented by a straight line. The hash marks along the
line represent the setpoints computed by the path planner. The line segments
between the hash marks represent path segments. The line is parameterized by
progress along the path, not by time or position. (b)-(d) Positions of the robot as
selected by the crosses along the line in (a).

the way, such as in Figure 7.4(a). The trick is to determine how much
earlier in robot A’s path it has to stop.

7.3 The task completion diagram

We can develop a graphical depiction of the path segments and their
potential interaction. This graph will enable us to visualize the schedul-
ing problem before us and immediately suggest a means for avoiding
deadlock situations.

Imagine the path of robot A represented by a straight line. The points
along the line represent the configurations of the robot as it progresses
along the path. In Figure 7.5(a), the dots along the line are the setpoints
determined by the path planner; the line segments between the setpoints
represent the path segments we've been talking about. As the robot
proceeds along its path, we can further imagine a parameter, similar
to a computer’s program counter, which increases along this line. Note
that distance along the line does not represent time or duration in any
meaningful way, since the line represents the path, not the trajectory, as
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we have defined those terms earlier. Neither does the parameter directly
represent position of the robot in either Cartesian or configuration space,
except with reference to the path that the path planner produced.

Let a be the parameter which indicates how far along its path robot
A is in its execution of the path. The line becomes a coordinate axis,
with ¢ as it’s variable. Then a path defines a function q = A(a) which
specifies the robot’s configuration, q, as a function of this parameter.
A trajectory defines a function a = T'(¢t) which specifies the path pa-
rameter, a, in terms of time, t. The setpoints, numbered 0 through m,
are represented by path parameter values ag,...,a,,. We denote a path
segment by A;, which is the portion of the path between the parameter
values a; and a;41, or, formally,

Ai={ga=A(a)|a; <a<ai1} (7.3.1)

Note that both limiting joint configurations are included in the segment.
This has important consequences, as we will see later. We denote the
set of points in physical space occupied by the robot as it sweeps along
the path segment by SV(A4,).

The distance between setpoints, a;+1 — a;, on the “path line” is not
meaningful, and is arbitrary. (We will see later that we can use distance
to encode assumptions about the time duration of segments, and use that
in further analysis, but such encoding has limited relation to reality. In
the figures in this chapter, we use the distance between setpoints to
represent the “size” of the motion in the segment—it is the maximum
angle any of the joints must move in that segment. We must emphasize
that this is a convenience, and does not affect the multi-robot planner’s
algorithm in any way.)

We next place two of these lines at right angles to make a coordinate
system—one axis corresponds to each robot. We form a grid using the
setpoints; each grid rectangle, which we denote by R;;, represents a
pair of path segments, A; and Bj;, one from each robot’s path. A point,
{a,b), within the diagram represents a configuration, (q 4,qg), of the
two robots, where each robot is in the configuration corresponding to
the coordinates of the point on the two axes: q4 = A(a), qg = B(b)
(see Figure 7.6). We can define R, ; formally as:

R;; ={(94,95) | 94 € Ai and qp € B;} (7.3.2)

We call this diagram a task completion diagram, or TC diagram.
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Figure 7.6

(a) The task completion diagram corresponding to our example. The axes are
“straight line representations” of the paths of each of the two robots. Each grid
rectangle corresponds to a pair of path segments, one from each robot. (b)-(d)
Positions of the two robots as selected by the crosses in the TC diagram. Robot A4
is on the right; robot B is on the left.

o—
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Figure 7.7
A schedule in a TC diagram. The curve (monotonically increasing in both
coordinates) represents a sequence of configurations taken by the two robots.)

7.3.1 Schedules

As each robot proceeds along its planned path, its coordinate in the
TC diagram monotonically increases. (As we noted above, the coordi-
nate has no physical meaning other than an indication of how far along
the path the robot is.) The coordinate pairs generated by the particular
trajectories taken by the robots trace out a locus in the TC diagram (see
Figure 7.7). We call this curve in the TC diagram a schedule. The
schedule defines two functions relating the path coordinates for the two
robots: a = f(s), and b = g(s), 0 < s < 1. Since both robots begin at
their starting setpoints and end at their goal setpoints, the two ends of
a completed schedule must be at the lower left and the upper right
corners: ag = f(0), bo = g(0), a, = f(1), and b, = g(1). The schedule
curve must always begin at the lower left corner and proceed up and
to the right; that is, we do not allow the robots to back up: f’(s) >0
and ¢'(s) > 0 for all s. (See Section 7.6.6 for discussion of relaxing this
requirement.)
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Figure 7.8

The “colored” TC diagram for our sample paths. The shaded grid rectangles
represent forbidden regions of the diagram through which a safe schedule must not
pass.

It is plain that there are an infinity of possible schedules, depending
on the particular sequence of configurations the robots pass through.
Obviously, not all schedules are safe, since the robots will collide. Our
next step is to characterize all safe schedules.

7.3.2 Collision regions

A pair of path segments A; and B; will potentially collide if the robots
would occupy the same physical space during the segments, SV(A;) N
SV (B;) # 0. We “color” the corresponding TC diagram grid rectan-
gle R; ;. (Figure 7.8 shows the colored TC diagram for our example.)
We call the colored rectangles collision regions. As we have seen, si-
multaneous execution of potentially colliding segments must be avoided.
Thus, given a colored TC diagram, we can characterize all safe schedules
as those that do not pass through any part of a collision region. Free
areas of the TC diagram, by definition, represent non-colliding configu-
rations of the two robots. Schedules which stay within these areas, then,

ONE
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represent safe motions for the robots. Any schedule which ventures into
a collision region represents simultaneous execution of potentially col-
liding segments, which we forbid.

It is important to note that the boundaries between collision regions
and neighboring non-collision rectangles are safe. (This is a consequence
of Equation 7.3.1.) For example, consider the left boundary of a colli-
sion region, which is the same coordinate, a;, as the right boundary of
the neighboring rectangle. The setpoint represented by that coordinate,
q; = A(a;), belongs to both rectangles, so if there were a collision at
that setpoint both rectangles would represent path segments which po-
tentially collide. Both rectangles would have to be labelled as collision
regions. Thus, since the left-hand rectangle is safe, the configuration
q; at the right boundary of that rectangle is necessarily safe. Formally,
since SV (4;-1) N SV(B;) = 0 and q; € A;_1, it must be the case that
SV({A(a))}) N SV(B;) = 0.

Special considerations at the boundaries of the TC diagram
The left and bottom edges of the TC diagram represent the beginnings
of the paths of the robots. Before the paths begin to be executed, the
robots are stationary in their initial configurations: A(a) = A(ag) for
a < ag, and B(b) = B(bg) for b < byg. Any potential collisions with the
initial positions of the robots must be represented in the TC diagram
by collision regions. Since we can consider the initial configuration of
the robot as existing “for all time” before the motion, these collision
regions could be displayed as infinite rectangles extending beyond the
boundaries of the TC diagram, acting as impenetrable walls. This argu-
ment applies equally well the the top and right edges of the TC diagram,
where the robots’ paths end. In practice, it is much simpler to add path
segments at the beginning (and end) of each robot’s path with no actual
motion, duplicating the initial setpoint. In the TC diagram, this adds
a row of rectangles just at the boundaries to represent the initial posi-
tions of the robots, and indicate the collision regions in these rectangles.
These rectangles represent a path segment that includes no motion—the
initial and final setpoint of the segment are the same point. It must be
understood that these “edge” rectangles conceptually extend to infinity.
We introduce them as an artifact to be able to represent collisions at
the initial setpoint of the path, distinct from collisions during the initial
segment of the path.
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This interpretation of the edges of the TC diagram is important in
the understanding of the boundaries of the collision regions, which are
safe from collision, as mentioned above. Since a collision region at the
edge of the TC diagram actually extends to infinity, the displayed edge
in the diagrams is not safe (except for the origin and goal, both of which
are assumed safe).

7.3.3 Deadlock and SW-closure

Qur approach to multiple robot path scheduling was based on a tech-
nique for concurrency control in databases developed by Yannanakis,
Papadimitriou and Kung [84], and illustrated in [69]. The key similarity
to database scheduling is the concept of a critical region controlling
access to a particular record in the database system, and access to a
particular region of space in the robot control system. In the database
system, when one party begins a transaction with a particular record,
say adjusting a bank balance after a deposit, that record is locked, pre-
venting any other party from accessing it until the first transaction has
completed. This enforces a consistency in the bank’s records. In the
robot control system, whenever a robot begins to execute a portion
of its path, the region of space through which that robot will pass is
“locked,” preventing other robots from entering it until the first robot
has completed execution of that portion of its path.

A graphical interpretation of database locking schemes, presented in
[69], inspired the multi-robot planner. The task completion diagram is
used to schedule the trajectories of the robots to avoid both collision
and deadlock and to guarantee a completed task.

It is fairly clear that safe schedules ensure that there are no collisions.
It is not so clear, at least immediately, how to find safe schedules in a
TC diagram. One simple algorithm could be described as follows:

Step 1 Start at the origin.

Step 2 If you've reached the goal of the TC diagram, then stop. You
have a complete, safe schedule.

Step 3 Proceed diagonally until you reach the boundary of a collision
region or the edge of the TC diagram.

Step 4 If you're at the edge of a collision region, proceed along the

edge (either horizontally or vertically) until you can continue on
the diagonal. Return to step 2.

F

e
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(a) (b)

Figure 7.9
(a) A partial schedule that leads to a deadlock. (b) SW-closure of collision regions
is shown lightly shaded.

Step 5 If you've reached the top or right edge of the TC diagram, con-
tinue horizontally or vertically. If you reach a collision region while
doing so, stop. The schedule has failed.

This algorithm, which we might call the “Greedy Scheduler” tries to
move both robots together as much as possible. It prevents the schedule
from entering any collision regions. However, as can be seen in Fig-
ure 7.9(a), the algorithm can run into a situation where it cannot pro-
ceed. Since the schedule is monotonic in both axes, it can only move up
or to the right (but see Section 7.6.6). When the algorithm cannot move
in either of these directions it has reached a deadlock or impasse. This
corresponds to a situation in which neither robot can proceed along its
path without the other arm getting out of its way (recall Figure 7.4(b)).
Any continued motion would result in a potential collision.

We can modify the TC diagram such that the Greedy Scheduler always
finds a deadlock-free, as well as collision-free, schedule. Notice that
deadlocks can only occur at a concave corner facing the origin of the
TC diagram. An origin-facing concave corner is a pair of setpoints
(a;,b;) such that R, j, Ri_1,5, and R; ;_; are all collision regions. Only in
such a corner can the Greedy Scheduler fail to move (in the TC diagram)
either to the right or up. We can eliminate these concave corners by
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filling them with pseudo-collision regions (see Figure 7.9(b)). These
regions act exactly like collision regions, in that we don’t allow our
scheduler to enter them, but they do not arise from collisions between
the moving robots. The collision regions with the filled-in origin-pointing
concavities are collectively known as the SW-closure [69] (for South-
West closure) of the collision regions. We can now define a safe,
deadlock-free schedule as any schedule which does not enter the SW-
closure of the collision regions.

(Once again, the edge of the TC diagram requires special treatment.
Since the edges of the TC diagram are not safe (see Section 7.3.2), any
collision region touching the top or right-hand edge creates an origin-
pointing concavity which must be filled for the SW-closure.)

Once the SW-closure of the TC diagram is taken, a safe, deadlock-free
schedule exists if and only if both the origin and the goal are each not
part of any collision region or SW-closure. Clearly, if there is a collision
at the goal, the task cannot be completed; similarly for a collision at
the origin. Also, if the origin is included in the SW-closure of some
collision region, then there is an unavoidable deadlock, and again, a safe
schedule is impossible. To show the converse, assume that the origin
and goal are both clear. For there to be no schedule, there would have
to be a connected collision region (including SW-closure) cutting across
the entire TC diagram. But, it’s clear that such a region must include
the origin, since it touches either the right-hand or top edge of the
TC diagram. Put another way, the safe areas including the goal and the
origin must be connected.

Let us assume, for the moment, that the origin is contained in a SW-
closure, and thus there is unavoidable deadlock. By replanning part of
the path of one robot using the swept volume of the other robot as an
obstacle, assuming that we can find a new path to avoid this obstacle,
we can guarantee that we can find a schedule to complete the task. This
technique is described in greater detail in Section 7.6.1.

In some of the analysis of the TC diagram, it is convenient to also
compute the NE-closure. This is similar to the SW-closure, but, as the
name implies fills in concavities open to the northeast direction. These
portions of the TC diagram are inaccessible to any schedule (because of
the monotonic nature of a schedule), and it is simpler to just include
them in the set of collision regions.
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7.4 Generating the TC diagram

The preceeding sections described the motivation for the design of the
multi-robot planner and TC diagrams. This section describes in more
detail the construction of a TC diagram and its use. The two key steps
in the multi-robot planner are:

1. Detect pairs of path segments which represent potential collisions
between the robots.
2. Compute the SW-closure of the TC diagram.

The collision regions and the SW-closure guarantee finding a collision-
free, deadlock-free schedule, if one exists. The rest of the multi-robot
planner adds minor features and optimizations.

7.4.1 TFinding the collision regions

Finding collision regions in the TC diagram is straightforward. For each
pair of path segments, A; and Bj;, one simply compares the volumes of
space swept out by the robots, the swept volumes. If those volumes
intersect, SV (4;) N SV(B;) # §, then there is a potential collision and
we have a collision region. Figure 7.10 shows an example of this com-
putation. This test is performed for every pair of segments from each
robot, and all the collision regions in the TC diagram are found. The
multi-robot planner explicitly generates a representation of the swept
volumes of the path segments, then tests these volumes for intersection.
Note that we do not need to actually compute an intersection of the
swept volumes; we only need to test whether they intersect. (In Sec-
tion 7.4.6 we mention other work which can detect collisions on path
segments without these explicit intersection tests.)

We have been saying that a collision region implies a potential colli-
sion between the two robots. The intersection of a pair of swept volumes
does not imply that a collision will occur if the segments are executed
simultaneously. It only implies that a collision may occur. The intersec-
tion of the swept volumes does not generally involve the whole of either
swept volume; the collision would only occur if the controllers for the
two robots brought them both to the area of physical intersection at the
same time. Other timings could, in fact, avoid the intersection and thus
avoid the collision. However, since we assume that the controllers are
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(a) (b)

Figure 7.10

(a) Our TC diagram, indicating the row and column corresponding to the path
segments being tested for collision. (b) The swept volumes of the path segments
being tested. Since they collide the grid rectangle shown in (a) will be colored.

not perfectly controlled, we cannot hope that they will serendipitously
choose a timing which avoids collision. (We will see in Section 7.4.6 that
the swept volumes we compare are actually approximations; the true
swept volumes may not even intersect.)

7.4.2 Finding the SW-closure

It is quite simple to generate the SW-closure. An algorithm in [69] will
compute it taking time proportional to the number of collision regions
in the TC diagram. A slightly less efficient but much simpler algorithm
is described here.

We start at the goal of the TC diagram, and proceed down the each
column. At each rectangle, R, ;, if the rectangle above, R; j11, to the
right, R;11,;, and to the upper right, R;1 11, are all collision re-
gions, then make the current rectangle a pseudo-collision region. (It
is a pseudo-collision region because it does not represent a potential
collision, but the rectangle must be avoided anyway to prevent dead-
lock.) The procedure is then repeated for the next rectangle down.
(Note that pseudo-collision regions also spawn further pseudo-collision
regions if they create origin-pointing concavities.) When each column is
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completed in this way, we proceed to the next column to the left. (As
mentioned before, since the edges of the TC diagram are considered not
safe, a collision region on the top (j = n) or right (¢ = m) edge will force
the addition of a pseudo-collision region.)

7.4.3 Optimizations

It is not actually necessary to compute the entire TC diagram. There
are several ways to avoid some of the computation; this section discusses
two of those ways.

Schedules which are predominantly diagonal naturally include more
motion with both arms moving simultaneously. Schedules which are pre-
dominantly horizontal and vertical include more serial operations with
one robot moving, then the other. Clearly, diagonal schedules are pre-
ferred. If we assume that there is a safe schedule near the main diagonal
of a TC diagram, then we can save time by only testing for collision
regions near the diagonal. We treat any part of the TC diagram which
has not been tested as a pseudo-collision region. If no safe schedule
can be found in this limited search, we continue testing areas farther
away from the diagonal until a schedule can be found or until the whole
TC diagram has been completed.

Limiting the testing and construction of the TC diagram is a very
potent method to speed up the operation of the multi-robot planner.
The test for potential collision is, in general, expensive, and it is the
key operation in the inner loop of generating the TC diagram. Any
heuristic which avoids intersection testing will save much work. Limiting
the search for a schedule to be as close to the diagonal is one such
heuristic. Another is incrementally computing the NE- or SW-closure
of the TC diagram.

Let us assume for the moment that we test for collision regions column
by column from left to right (increasing 7), and in each column, we test
rectangles from bottom to top (increasing j). Consider now a situation
in which we are about to test a rectangle which would be part of the NE-
closure of the partial TC diagram we have already computed; that is, the
rectangles below, to the left, and diagonally below-left are all collision
regions. There is no schedule which can enter the current rectangle, so
there is no need to actually test the rectangle. We can simply tag it
as a pseudo-collision region just as if it were in the NE-closure. (If we
generate the TC diagram in the opposite direction, from the goal to the
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start, we can perform the same optimization—incrementally computing
the SW-closure.)

Another useful heuristic to limit the portion of the TC diagram to
be tested is the NE-closure of another type of pseudo-collision region—
regions generated due to explicit synchronization constraints between
the robots.

7.4.4 Synchronization between robots

When multiple robots work together in a common workspace, they fre-
quently are required to interact in such a way that their operations must
be synchronized. For example, one robot may grasp an object that the
other robot has put down in a temporary location—the first robot can-
not perform the grasp before the second one has placed the object down.
Such synchronization requirements constrain the possible schedules that
we can execute to perform the required task. Although a TC diagram
with collision regions and NESW-closure will guarantee that all safe
schedules are collision- and deadlock-free, it does not guarantee that all
safe schedules actually perform the desired task.

We can add pseudo-collision regions to enforce a priori synchroniza-
tion constraints which are imposed by the task itself. These new regions
will have the effect of blocking out entire sections of the TC diagram,
since, in the example just mentioned, the first robot cannot execute any
of its path subsequent to the grasp until the second robot has executed
its path up to the point of ungrasping the part at its temporary location.

Let us say that robot A ungrasps a part during segment A, and robot
B then grasps that part during segment B;. Then robot B cannot ex-
ecute segment B; (or any subsequent segment) until robot A has com-
pleted segment A;. We capture this constraint by introducing pseudo-
collision regions at R; ;, for each ¢’ such that 0 <4’ <. This prevents
any safe schedule from allowing the waiting robot to proceed beyond the
point where it must wait for the event (see Figure 7.11).

7.4.5 Three-dimensional robots

Although we have been illustrating this discussion with a situation
involving planar robots, there is nothing in the TC diagram which
depends on the physical structure or degrees-of-freedom of the robots.
For two robots, the TC diagram will always be two-dimensional, and
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Figure 7.11

Pseudo-collision region representing an a prioré synchronization constraint between
two robots. Since robot B cannot proceed past by until robot A has completed its
motion up to ay, the pseudo-collision region blocks all schedules from allowing that
possibility. The NE-closure completes the representation of the constraint.

will be constructed in the manner described above. The only portion
of the multi-robot planner which depends on the physical robots is the
comparison of the path segments for detecting collisions, specifically, the
computation of the swept volumes and the test for intersection of those
volumes. The swept volume code is completely separable from the rest
of the multi-robot planner (and as mentioned in Section 7.4.6, could be
replaced with a functionally equivalent module that does not explicitly
compute the volumes).

In Right-Margin Movie 3, we demonstrate an entire task planned and
executed using the multi-robot planner. (See the description of the
Margin Movies in “On the Margins,” page xvi.) The task was to build
a short stack of parts representing a common assembly. The parts all
arrive (as if delivered on a conveyor) at a specific point in the workspace
accessible only to robot A (on the right). They do not arrive in the order
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Figure 7.12

Collision regions in the TC diagram for a three-dimensional robot coordination
problem. The potential collisions cluster around those portions of the robots’ paths
which lead them into the common area of the workspace. There are wide avenues
where each robot is working in its “own” portion of the workspace. The swept
volumes corresponding to the indicated collision region are shown in Figure 7.13.

necessary to be assembled, so some of them are placed in temporary
holding locations. The two robots cooperate in assembling the parts.
The paths for these robots were planned using the gross motion and
grasp planners of HANDEY, and the two paths were coordinated using
the multi-robot planner. The TC diagram for the task is also shown in
the movie, along with the schedule used to coordinate the robots. As
the task proceeds, the line representing the schedule is drawn.

Figures 7.12-7.16 depict the TC diagram corresponding to the task.
Figure 7.12 shows just the actual collision regions representing true po-
tential collisions. Note that there are several segments in robot A’s path
which cause many potential collisions with robot B. These particular
motions of robot A are large sweeping motions through the common
workspace, near robot B. The swept volumes for one such motion is
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Figure 7.13

Swept volumes for one particular collision region in the TC diagram in Figure 7.12.
The large motion of the right-hand robot into the common work area causes several
potential collisions. A better path would reduce the number of potential collisions,

and thus increase the potential parallelism in the task.

shown in Figure 7.13. In Section 7.6.5, we will discuss one method for
alleviating some of the effects of these motions.

Figure 7.14 shows the SW- and NE-closure of the collision regions. A
schedule in this TC diagram would be safe and deadlock free.

Figure 7.15 shows the synchronization constraints in the task. Two of
the parts in this particular example are handled by both robots. Robot A
transfers the parts from the “conveyor” to a temporary holding location,
then robot B carries them to the final assembly once the parts which will
support them have arrived. For both these parts, robot B cannot pick
them up until robot A has placed them in their temporary locations.
This accounts for two of the synchronization constraints. The other
three occur as a result of the stacking assembly: no part can be added
to the stack until the part below it has been correctly placed.

Finally, Figure 7.16 shows the complete TC diagram as computed by
the multi-robot planner. One of the possible schedules is shown—the one
computed by the Greedy Scheduler. It is this schedule shown in Right-
Margin Movie 3. Notice in this diagram the SW-closure preventing
robot B from proceeding very far before having to wait. If it were to
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Figure 7.14
The same TC diagram as in Figure 7.12, with the SW- and NE-closure.

Figure 7.15

The synchronization constraints for the three-dimensional example. Two different
types of synchronization are represented. Two parts are handled by both robots,
requiring the second one to wait for the first one to ungrasp the part before
grasping it (the synchronization constraints labelled a and c. Since the robots are
stacking parts, each part must be placed on the stack before the one above it can
be placed (the constraints labelled b, d, and e).
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Figure 7.16
The final TC diagram for the three-dimensional example, including a possible
schedule.

continue (avoiding collisions), it would reach a point where it was waiting
for robot A to place the first part to arrive at its temporary holding
location (the first synchronization constrant). Robot A, however could
not proceed without colliding with robot B. The SW-closure prevents
this deadlock and several others like it in this diagram.

7.4.6 Computing swept volumes

Our approach requires that we be able to detect potential collisions
between path segments. That is, we need to identify which R;; in
the TC diagram need to be shaded. This is readily accomplished by
computing the volume swept out by each manipulator while execut-
ing segment A; and segment B; and testing these volumes for intersec-
tion.

In HANDEY, we explicitly compute a representation for the swept vol-
ume. There are other collision-detection methods which do not require
forming an explicit geometric model of the volume. Canny [9] describes a
method of collision detection which uses a purely algebraic formulation
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Figure 7.17
Steps in computing the swept volume of one link of a manipulator: (a) Link
vertices, (b) bounding box, (c¢) sweep, (d) final result.

of the constraints between a moving polyhedron and obstacles. The
solution of these algebraic constraints identify the potential collisions
between the object and the obstacles. This method could be adapted
to our current problem. The exact method of detecting the potential
collisions is immaterial; this module can be replaced with another which
is functionally equivalent.

In general, it is hard to compute the exact volume swept out by the
robot during a move, since it is non-convex and contains curved surfaces.
In our implementation, we only compute an approximation of the volume
swept out by an approximation to the links of the manipulator. In
practice, this approximation works out very well.
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Let us consider robot A and assume for the moment that only one
joint is moving during segment A,. For each link of the manipulator
distal to the moving joint, we compute a rectangular bounding box for
the link in the coordinate system of the moving joint. The problem
now reduces to finding the swept area of a two-dimensional rectangle in
the zy-plane of the moving joint, and sweeping the resulting polygon
between the z-coordinates of the bounding box.

Figure 7.17 illustrates this procedure. Link 3 of a Unimation Puma
robot is shown being swept through 74 degrees of rotation of joint 2.
The vertices of the polyhedral model of the link are projected onto the
zy-plane of the coordinate system for joint 2. The bounding box for
these projected points is computed, then a polygonal approximation to
the swept area of that rectangle is found. The final diagram shows the
entire swept volume for links 2-6.

It is clearly possible to approximate the true swept volume of the
bounding box of the link arbitrarily closely. It is also possible to im-
prove the algorithm so as to approximate the actual link arbitrarily
closely, and thus compute a polyhedral approximation to the swept vol-
ume with better and better accuracy. However, detecting collisions
between the swept volumes takes time proportional to the product of
the number of edges and faces of the polyhedra, so unless there is
an overriding reason to use very accurate swept volumes, it is benefi-
cial to use simpler polyhedra (rougher approximations) to save time in
collision detection.

The procedure above demonstrates the construction of the swept vol-
ume for one moving joint, and only for a revolute joint. The swept
volume of a prismatic joint is trivial to compute exactly. It is not
so clear how to extend the procedure to multiple moving joints. The
approach we have taken is to use the volumes swept out by distal
“virtual links” when
computing the swept volumes of the proximal joints. For example, if
both joints 2 and 3 are moving, we first compute the swept volumes
of links 3-6 due to the motion of joint 3. We then substitute these
polyhedra for the actual links 3-6 and compute the swept volume due
to joint 2.

This procedure for handling multiple moving joints is extremely con-

links due to the motion of the distal joints as

servative, as it computes a much larger volume than the robot is typi-
cally going to sweep out. But, this approximation is consistent with the
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mimimal assumptions we have made on the shape of the paths, namely,
that all joints stay within the limits specified by the endpoints of the
path segment. Strict coordination between the joints is not necessary.

Detection of a potential collision is achieved by simply testing whether
the polyhedral approximation to the swept volumes of A; and B; inter-
sect. The actual volume of the intersection does not need to be com-
puted. Since an intersection test between two arbitrary polyhedra can
be expensive, we have implemented several quicker tests to determine if
the full swept volume approximation needs to be used.

Before the actual swept volume is computed for A;, we compute a
bounding box approximation to the swept volume. This can be done
much more quickly than computing the full approximation. What is ac-
tually calculated is the bounding box in world coordinates of the bound-
ing box in joint n coordinates for the swept volume due to motion of
joint n. Only if there is some B; for which the bounding boxes intersect
is the full swept volume for A; computed, and the intersection test of
the full swept volume is only performed between those A; and B; for
which the bounding boxes intersect.

7.5 More on schedules

There are two general approaches to constructing a schedule, given a
TC diagram. One is a local method, such as the Greedy Scheduler
shown earlier. That particular scheduler assumes that there is a central
controller that initiates the motions for both manipulators. One can also
build a decentralized version of the greedy scheduler for the common
case of independently controlled robots. In that case each collision (or
pseudo-collision) region becomes a “lock,” that is, a variable that can
be indivisibly tested and set so that we can guarantee that only one
process “owns” the variable. Before executing a path segment, say A;,
robot A’s controller must grab the locks of the collision regions formed
with each of the path segments for robot B, Bj, for all j. Similarly,
before executing path segment B, B’s controller must grab the locks of
the collision regions for all 7. In this scenario, the locks corresponding to
collisions and to the SW-closure must all be obtained. (Of course, one
may actually aggregate adjacent locks in a column or row into a single
lock if desired.)
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An alternative approach to scheduling, which we can call global, in-
volves searching the TC diagram for a schedule that is “optimal” by
some measure, for example, the total execution time. This global search
can also guarantee finding a legal schedule if one exists without the need
to assume that the purely sequential schedules are safe. A schedule,
such as may be found by this search, corresponds to a fixed sequence of
activations for each of the path segments. A schedule can be character-
ized by the sequence of its crossings of the horizontal and vertical lines
that bound the path segments in the diagram. Crossing each line adds
to the schedule a command to wait for the completion of one segment
and then to initiate the next segment. Such a schedule can be imple-
mented in a centralized controller simply by marching down a list and
issuing the appropriate START and WAIT commands. A decentralized
implementation is also straightforward.

With either scheduling approach, global or local, an important point
must be made. The schedules we have been discussing have all specified
a precise relationship between the execution of the paths of the two
robots. In the notation of Section 7.3.1, the trajectories of the robots
are related by the formule ¢ = f(s) and b = g(s). Requiring strict
adherence to any of these schedules, however, violates two of the goals
we have set for the multi-robot planner: non-dependence on accurate
trajectory control of the individual manipulators and lack of precise
time coordination between the manipulators. In essence, these goals say
that we cannot specify the details of the functions f or g.

What we can specify is a series of synchronization points. (These
are not the same as the synchronization constraints which generate
pseudo-collision regions in Section 7.4.4.) These points in the TC di-
agram specify conditions which require one of the robots to wait until
the other robot has completed some portion of its path. This is very
similar to using the locks as described at the beginning of this section.

Another way of looking at synchronization points requires looking
more closely at how schedules and actual execution on the robots inter-
act. When we give a setpoint from a robot’s path to the robot controller,
we cannot predict the exact time course of the execution. The actual ex-
ecution will indeed be represented by some schedule in the T'C diagram,
but not one we can specify in advance. That schedule, however, will be
entirely contained in the rectangle formed with the current position of
the robots in the lower left corner and the new setpoints in the upper
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Figure 7.18

Schedules actually executed by the robot controllers cannot be predicted in
advance. Such schedules will be contained in the rectangle formed by the initial and
final setpoints of the segments being executed. By ensuring there are no collision
regions within such rectangles, we can be assured of safe schedules.

right corner.! We can supply setpoints to the robot controllers as long
as that rectangle does not contain any collision regions. That constraint
is sufficient to ensure that whatever actual schedule is produced by the
execution of the paths is safe, since no such schedule will enter a collision
region (see Figure 7.18).

To avoid collision regions with unpredictable schedules, we can pro-
ceed in two ways. (The two ways are essentially equivalent, but they
both provide interesting ways of understanding synchronization points.)
The first way is to use the locking scheme mentioned earlier. We have
already seen how that method prevents entry into collision regions. The
second way is to find the largest rectangle with the current position
at the lower left corner which is clear of collision regions. The upper
right corner of this large rectangle becomes a synchronization point.

1'We assume that the controller is capable of at least this: that it will not cause
any joint to overshoot its final joint angle in the goal setpoint, and that it will not
cause any joint to “back up” beyond the initial setpoint. This is a fair assumption,
though it should be noted that some control strategies may fail this assumption.
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Command the robot controllers to execute the paths up to the top and
right edges of this rectangle. Once the controllers have completed that
much of the paths, repeat the process from the new current point.

Variations on either of these two methods are possible. The locking
scheme is a local method, while the rectangle method is global. Various
combinations of the two result in hybrid methods.

The synchronization point concept can be generalized to allow in-
creased parallelism when one robot executes its path faster than the
other. Note that the TC diagram generally leaves a choice whether to
go “over” or “under” a given connected set of collision regions. Rather
than finding the largest rectangle which is clear of collision regions to
generate the synchronization point, we find the largest rectangle which
still leaves us a choice of which direction to go to avoid a connected set
of collision regions. Once we reach the synchronization point we can
choose the direction to proceed which will give the best possibility of
finishing the task quickly.

7.6 Other issues

This section discusses details that are not currently implemented in the
multi-robot planner, but which require mention to fully develop the con-
cepts introduced by this chapter. In particular, there are further manip-
ulations of the TC diagram which allow the parallelism in many tasks to
be improved, based on the results of the initial TC diagram construction.
We must address the issue of parts that are manipulated by the robots,
since they move around in the environment. The TC diagram can be
improved by adding constraints on the paths provided as input to the
multi-robot planner. We also discuss the implications of removing our
requirement that robots do not retrace any portion of their path, and
finally we describe how to extend our algorithm to enable coordination
of more than two robots.

7.6.1 Increasing parallelism

In the preceding discussion we have largely ignored the issue of the
time required to execute a schedule. In practice, time is crucial. In
what follows, we will assume that the axis parameters of the TC di-
agram are designed to correspond to expected execution time. Each
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path segment will have an expected time and this will determine its
dimension in the diagram. Given this TC diagram, we can search for
a schedule with the best expected execution time. The best possible
schedules tend to have a great deal of parallelism, that is, they are nearly
diagonal lines in the TC diagram. But, a particular TC diagram may
have many collision regions near its diagonal, forcing the “best” schedule
into the sequential execution of large segments of the path. The fault
is not in choosing the schedule but in the original choice of paths. If
the paths were chosen completely independently, there is no guarantee
that much parallelism is possible. It is possible, however, to take two
paths and to increase their parallelism by modifying some segments of
the paths.

One modification which is can achieve good results is to split segments
by introducing intermediate setpoints. If the potential collision results
from an intersection in only a small portion of the swept volume, then
this will create a new segment (or segments) with no collisions as well one
(or a few) which still have a potential collision. This would be especially
true if the path planner generated paths with large sweeping motions
(see Figure 7.13, page 190).

Another modification is to replan a portion of the paths of one or the
other robot. The resulting TC diagram will allow more parallelism but
the paths will generally be longer and may, therefore, increase the total
execution time. To increase the potential parallelism in a TC diagram,
we pick a collision region, or a larger region formed from the union of
several collision regions, such that:

1. the region is shaded because of a collision and not because of the
SW-closure operation,

9. it is near the main diagonal of the TC diagram, and

3. the region is large enough that it causes a significant increase in the
total time of the best schedule to go around it.

Having chosen one or more of these regions, new paths can be planned
to conmnect the initial and final points of robot A’s segments, but using
as obstacles the volume swept out by robot B as it moves through its
segments.

A safe path may not exist but, if it does, this means that the region in
the new diagram will no longer need to be shaded. Of course, the new
path may introduce collisions with some segments that may not have
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Figure 7.19

An example illustrating the increase of parallelism in a schedule, obtained by
clearing a collision region. Segment A4 in the left diagram has been replaced by a
new three-segment path in the right diagram. Note that the new path for A has
longer expected time, but the increased parallelism results in a schedule that is
somewhat faster overall.

previously collided. Fortunately, such collisions will be off the diagonal
and therefore will not be likely to affect the desired schedule. Also, the
new path will generally be longer than the original path since there are
new obstacles to be avoided. On the other hand, the impact of clearing
one collision may be greater than just clearing one small region due to
the impact of the SW-closure.

The process of increasing parallelism by replanning paths is illustrated
by the simple example in Figure 7.19. Note that by focusing on the
collisions near the diagonal, we are engaging in a crude form of space-
time planning. We focus on just the combination of segments that we
want to be executed at the same time (to achieve the desired parallelism).
This is very different from, and substantially better than, the trivial
strategy of using the volume swept out by one robot over its complete
path as an obstacle while planning the path for the other robot.

7.6.2 Dealing with variable segment times

Earlier, we indicated that in many applications, the execution times
for path segments cannot be predicted reliably, especially in situations
involving sensing or variable-time processes. What is the impact of the
change in length of one of the path segments? The crucial impact is
that it may change the choice of the best schedule, for optimal planning.
Geometrically, the stretching of a segment may move some new collision
region into, or out of, the path of the best schedule (Figure 7.20).
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Figure 7.20

The effect of delay in the TC diagram is to move collision regions on or off the
diagonal. This figure shows the effect on the schedule of increasing the time for
segment Bg between the left and the right figures.

One simple strategy when faced with a significant delay is simply to
redo the coordination of the remainder of the schedule in the modi-
fied diagram. It may be possible, however, to characterize the possible
changes to the schedule brought about by different changes in the execu-
tion times of the various segments and to construct a decision tree that
can be used on-line. We will be investigating this option in the future.

7.6.3 Changing the task

When there are substantial delays in the execution of one or more seg-
ments, it may be desirable to change the allocation of tasks from one
manipulator to the other. In the preceding discussion, we have assumed
that the task assignments are fixed, but this need not be the case.

Consider a task where four parts are to be taken from an input pal-
let, processed and taken to an output pallet. There are two processing
stations, each with its own robot. The initial assignment has each robot
doing two of the objects. What happens if robot A becomes delayed
waiting at the first processing step, perhaps waiting for human interven-
tion? Usually, we would like robot B to take over the processing of the
other three parts.

Assume that the robots start each cycle in a standard position, so the
last motion of a cycle is to return to that position; this assumption can
be relaxed later. Then, we construct the TC diagram assuming that
each robot will carry out the complete task, that is, process all parts.
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This expanded diagram contains all the combinations of assignments of
task steps to the different robots. Furthermore, in this TC diagram,
schedules can jump from the end of one part cycle to the beginning of
another one that may not be adjacent to it in the diagram. This jumping
around is made possible by our assumption that the endpoints of each
cycle are the same. If they were not, we would have to plan the transfer
motions between each pair of cycles separately, but this does not present
a fundamental problem.

The method outlined above has the drawback of requiring separate
planning of each part cycle, including its interactions with all other
possible cycles. In practice, cyclical tasks tend to be mostly the same
motions except for a few path segments, such as when picking up a new
part from its own pallet location. We can construct a “generic” cycle
path that represents the union of the path segments for all the cycles.
This path union can be used to compute the swept volume of the robots
over all instances of the cycle for different parts. We can then do the
planning for the possible interactions of the two robots as if they were
each executing only the generic path. For tasks in which the actions
performed in each “cycle” are very different, one must consider each
cycle separately using the expanded diagram suggested above.

7.6.4 Carried (moving) objects

As we have stated before, the multi-robot planner considers only moving
robots and fixed obstacles (and these only through the path planner).
However, when multiple robots are cooperating to perform some task,
they will be moving other parts around the workspace. These moving
parts, though under the control of the robots, nevertheless create some
problems for the path planner and for the multi-robot planner.
Consider a simple case where robot A carries part P from point X to
point Y. For the robots to safely complete their task, they must both
avoid colliding with the part while the part is at point X, while it is
being carried by robot A, and while the part is at point Y. While it is
being carried, we can simply treat it as part of robot A while testing
for potential collisions, and the multi-robot planner will ensure a safe
schedule with respect to robot B. We must, however, avoid collision with
the part while it is sitting idle (and the robots are going about other
business). We cannot simply include it as an obstacle for the main path
planner module: do we place the part at point X or at point Y? Since
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the robot’s paths are planned independently, there is no way to predict
where the part is going to be during any particular path segment for
either robot. (Both robots may manipulate the part during the task.)

The multi-robot planner does not implement a solution for this prob-
lem. One potential solution, as far as the multi-robot planner is con-
cerned, is to consider all the manipulated parts as “links” of another
robot, to be avoided just as all the “normal” robots are. The TC di-
agram which represents the scheduling task will be constructed using
the geometrical descriptions of the parts and their locations as they are
moved about. Appropriate synchronization constraints will be necessary
to coordinate the manipulation of the parts by the regular robots.

7.6.5 Path planning considerations

Throughout this chapter, we have maintained that the paths for the
robots are planned independently, without taking into account the lo-
cation or motion of any of the other robots in the workspace. If we’re
willing to forego some of this independence, we can take advantage of our
global knowledge of the task to greatly improve the parallelism available
in the robot’s motions to speed the ultimate safe schedule’s execution. In
particular, if we prevent or inhibit one robot’s path from entering space
where the other robot is likely to be, the potential for collision can be
greatly reduced, and the TC diagram will have few collision regions.
This allows the multi-robot planner much greater freedom to identify
safe, parallel schedules.

Stationary links as obstacles One portion of the workspace which
we want to prohibit a robot from entering is that portion occupied by
stationary links of the other robot. If we sweep a link of robot A through
the base of robot B, then robot B will never be able to get out of the
way, and the task cannot be completed. (This would manifest in the
TC diagram by a collision region stretching from top to bottom.) We
prevent this situation in HANDEY by including the base of robot B as
an obstacle while planning the path for robot A (and vice versa).

Near the base of a robot is a region of space which the robot is almost
always occupying, even if it will sometimes be moved away. By including
a phantom obstacle surrounding this region during the path planning
for the other robot, we can once again reduce the likelihood of potential
collisions, and keep the TC diagram emptier.
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Since most robots can reach a given point in Cartesian space in
more than one configuration of joint angles, we can further reduce
the potential collisions by requesting that the path planner choose
configurations which are less likely to collide. Unlike the phantom
obstacles just mentioned, which depend only on the design of the robot
being avoided, choosing good configurations requires knowledge of the
relative positions of the robots and their likely motions. This further
requires some knowledge of the tasks the robots will be asked to perform.
In practice, if we simply try to choose configurations which keep each
robot’s links furthest from the other robot, we succeed in minimizing
the number of potential collisions. Note that unlike simply adding
obstacles for the path planner to avoid, we would now be requiring
more of the path planner. This would reduce the interoperability of the
multi-robot planner with path planning modules which one might wish
to try in HANDEY. Fortunately, the added interface requirements are
not necessary for the multi-robot planner to work—they only improve
its performance.

Task considerations While we're creating a wish list for the path
planner, let us consider one more feature. The portion of the workspace
which is most likely to create potential collisions is the common assembly
area, which both robots will need to enter during their operation. It is
quite clear that there will be many potential collisions here, and most
of them cannot be avoided by clever path planning. However, if we
can prevail upon the path planner to avoid the common assembly area
except when it must be entered, then we limit the potential collisions to
the barest minimum. In other words, we try to keep the robots from
“just passing through” the assembly area on their way somewhere else.
This could be achieved in a path planner by “gray” obstacles—objects
that are avoided unless a path cannot be found without entering them.

)

7.6.6 Backing up on a path

In the preceeding sections of this chapter, we have assumed that ex-
ecution of the robots paths were strictly one-way. In our coordinate
notation, we have required that f'(s) > 0 and ¢'(s) > 0. By using this
assumption, we have used the SW- and NE-closure to simplify analysis
of the TC diagram, and we have been able to provide simple definitions
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Figure 7.21
(a) A fragment of a TC diagram where backing up on robot A’s path would be
helpful. (b) The SW-closure of the TC diagram in (a).

of safe and deadlock-free schedules. This assumption is warranted by the
one major goal of the multi-robot planner—to perform tasks faster by
increasing the parallelism available by using multiple robots to perform
a task. Forcing the robots to retrace a portion of their path to achieve
the task is counterproductive to this goal. Nevertheless, we will now
examine what it would mean to our analysis if we were to relax this
assumption—if we were to allow the robots to go backwards on their
paths.

It should be clear that relaxing this assumption will complicate the
analysis of the TC diagram to some degree. To justify the extra work,
we should try to identify situations in which backing up might be useful.
Figure 7.21 shows a fragment of a TC diagram in which backing up allows
us to find a schedule which would not otherwise be possible. In fact, if
we were to generate the SW-closure of the diagram (Figure 7.21(b)), the
rectangles traversed by the schedule would be pseudo-collision regions.

It should be clear that in any SW-closed TC diagram it would never
be necessary to back up, though it may be the case that no safe sched-
ule exists. Without the SW-closure, there may exist safe schedules that
didn’t exist before, but, because of deadlock, we cannot use any local
method to find the schedules. Global methods would be able to avoid
deadlock, and, in fact, the problem of finding schedules in such a TC di-
agram becomes one of finding a path for two-dimensional mobile robot
among obstacles.
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Side effects prevent back-up Now that we have motivation for al-
lowing a robot to back up in its path, let us examine the feasibility of
the robot actually doing so. The paths of the robots have been planned
taking into account the obstacles of the environment. As long as the
environment has not changed during the forward execution of the path,
the backward execution should be completely safe. If some side effects
have occured (such as a grasping or ungrasping operation by the robot),
then the backward execution would not be the same as that which was
planned, and would be susceptible to collisions. Thus, any backing up
planned by the multi-robot planner must be restricted to portions of the
paths which contain no side effects.

(Of course, if we undo whatever side effects are performed in forward
execution in the backward execution, the time-reversal should be suffi-
ciently equivalent to forward time that the planned path will suffice.)

Some optimizations no longer valid When we allow schedules to
be non-monotonic, we may no longer generate the SW- and NE-closures
of the TC diagram. Of course, this means that we may not compute
incremental closures of the TC diagram, and that collision tests may not
be entirely avoided in this way. Other optimizations, such as diagonal
searching, may still be implemented.

It must be emphasized here that the NE-closure of synchronization
constraints must still be computed and obeyed. It does no good to
wait for the other robot to reach a particular point in its path before
proceeding if we then allow it to back up to before the point we required
it to reach.

Fall-back analysis Allowing the robots to back up makes analysis of
TC diagrams more difficult and it requires suppression of some useful
optimizations. These disadvantages may be deferred in normal operation
by generating the normal TC diagram as discussed in preceeding sections
and only turn to the more involved analysis if a suitable schedule cannot
be found.

By using backing-up as a fall-back heuristic we can still compute SW-
and NE-closures incrementally. Then, if necessary, we can proceed to
test the skipped rectangles for collisions as necessary to find a back-up
schedule, in much the same way as we would incrementally test more
distant rectangles in the diagonal search optimization.
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7.6.7 Handling more than two robots

The TC diagram as we have described it will only allow the multi-robot
planner to schedule two robots. The basic technique, however, is not at
all limited to only two robots, and can be extended to any number of
robots. This section describes two different methods to accomplish this.

Three-dimensional and higher TC diagrams It is possible to ex-
tend the concept of the TC diagram to more than two dimensions. Each
axis of the multi-dimensional TC diagram represents the path planned
for one of the robots. The grid structure extends trivially, though the
representation of collision regions needs a little explanation.

The robots and their paths are tested pairwise for potential colli-
sion. Collision regions are generated in the two-dimensional subspaces
corresponding to the pairs of robots. These collision regions extend in-
definitely in all other dimensions. The physical interpretation of one of
these collision regions is that whenever the pair of robots are simultane-
ously executing the particular path segments which potentially collide,
they potentially collide no matter where the remaining robots are in their
paths. As before, any safe schedule must remain outside all the collision
regions. One can visualize a three-dimensional TC diagram as a room
with bars running between opposite walls. Finding a safe schedule is
done by determining a three-dimensional path between the start corner
and the goal corner avoiding all the bars.

Deadlock avoidance is accomplished by the higher-dimensional ana-
logues to the SW-closure. Once again any origin-pointing concavities
must be eliminated by filling them with pseudo-collision regions. Syn-
chronization constraints between manipulators also extend analogously.

A serious disadvantage of multi-dimensional TC diagrams is the great
computation cost required to find and process the collision regions. All
pairs of robot paths must be compared, so the time required to test
them grows as the square of the number of robots. Some analyses of the
resulting TC diagram grow exponentially with the number of robots.

Compound manipulators Another way to handle more than two
manipulators is to build “compound manipulators.” For example, if
we start with three six-degree-of-freedom manipulators, A, B, and C,
we construct a two-dimensional TC diagram for the paths planned for
A and B. We then select a safe, deadlock-free schedule for those two
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robots. By selecting such a schedule, we can, in effect, force a particular
timing between the two robots. We can treat them as a single twelve-
degree-of-freedom manipulator, since their joint angles are specified with
respect to each other. We can then construct another two-dimensional
TC diagram with the first axis representing the path for the compound
manipulator and the second axis representing the path for robot C. A
safe schedule in this TC diagram is then safe and deadlock-free for all
three robots.

The time required to find such a safe schedule using these compound
manipulators only grows linearly with the number of robots. Unfortu-
nately, by selecting a single schedule from each of the TC diagrams along
the way we are eliminating some flexibility in finding parallelism in the
task. We are also forcing ourselves to require some time-coordination
between the robot controllers, contrary to our original goals.



8 Conclusion

We have presented the HANDEY system as it exists today. However,
like most research systems, HANDEY was not designed in its current
form. Rather, it evolved into that form through a series of iterations,
each motivated by limitations uncovered during experimentation with
the previous version.

8.1 Ewvolution

As originally conceived, HANDEY (whose name derives from the words
“hand” and “eye”) was to be a much simpler system than the one pre-
sented here. We had access to a recognition system capable of locating
polyhedral objects in depth maps of cluttered three-dimensional scenes
[25] and a motion planning program [47] capable of planning gross mo-
tions for revolute manipulators with six or (preferably) fewer joints. The
HANDEY project started out as an attempt to “connect” these two sys-
tems. In particular, it was to accomplish the following task:

1. use a laser scanner aimed at a limited, fixed area of the table to locate
a modeled object among clutter,

2. grasp the object without colliding with the clutter, and

3. move the object to a specified pose.

Clearly, additional software, especially a grasp planner, was needed to
complete the system.

After the object recognition system module had located the object to
be moved, this elementary grasp planner was to plan the grasping oper-
ation including a short motion for the gripper from a starting point near
the object to the grasp point. While the existing gross motion planner
was capable of performing the latter of these operations it was felt the
approach motion step more properly belonged in the grasp planner for
two reasons:

1. The motions required to approach and depart an object during grasp-
ing are not gross motions. The required resolution to plan these motions
would have made our gross motion planner too slow to be practical.

2. The gross motion planner had no direct way of using clutter infor-
mation from the laser scanner; it required polyhedral models of the
obstacles.
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The key design decisions for the first version of the grasp planner were
as follows:

e Iterate over pairs of anti-parallel object faces.

e Constrain the gripper motion to be parallel to the chosen grasp face
pair.

e Project the “clutter” in the laser depth map into the plane of motion
and use it during gripper motion planning.

e Select a starting point for the motion plan by using a generate-and-
test strategy.

e Representing free space with a grid, find the target grasp point by
shrinking mutually clear cells on the grasp faces to a point.

e Use a pseudo-potential method to plan small motions of the gripper
(only).

e Verify that the gripper-based grasp plan was feasible by checking for
arm collisions at pickup, robot collisions at putdown, and by checking
that a continuous kinematic solution existed for the planned path. If a
problem is found, try a different grasp face pair.

We knew that this approach was susceptible to a number of possible
failures since it considered the putdown pose only in the verification step,
not during the choice of the grasp, and it totally neglected kinematic
constraints during choice of grasps. What we did not know was how
common the failure cases would be in practice. We started out with the
philosophy of trying the simple solution first.

The first live tests with the initial version of HANDEY were a rev-
elation. QOur test case was a simple L-shaped polyhedron. We found
that, as long as the test involved grasping the part in a relatively un-
cluttered environment and moving the part parallel to the table, the
system worked reasonably well. However, it was essentially impossible
to construct an interesting test case that involved substantial clutter or
substantial re-orientation of the part. The key problems, not surpris-
ingly, involved precisely the constraints that we had neglected during
choosing a grasp: interactions at the putdown pose, arm kinematic fail-
ures and arm collisions. This led us to adopt the obstacle backprojection
strategy (described in Section 5.4.1) and to incorporate a test for kine-
matic feasibility and arm collisions into the inner loop of the potential
path planner (described in Section 5.4.2).
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The more careful treatment of kinematics and pickup/putdown inter-
actions sharply expanded the range of pick-and-place problems that the
system could handle. Nevertheless, the limited range of wrist motion of
the robot combined with the limited stable states and limited grasp faces
of the part combined with the limitations in the grasp planner made it
essentially impossible to flip the part over between different stable states.
In order to deal with this problem the regrasp planner was developed.
The regrasp planner could, given an initial gripper/object affixment and
a required object placement, compute a series of grasps and placements
(occurring at a fixed spot on the table) which would terminate with a
grasp compatible with the commanded putdown pose.

The regrasp planner was not completely self contained. FEach motion
that reoriented the gripper on the object required the grasp planner
to plan the motion from the approach or departure point to the grasp
point. A slightly different version of the grasp planner was required for
this operation. The regrasp planner selected its own grasp point whereas
the grasp planner had been designed also to select a grasp point. A
modified version of the grasp planner was constructed that started with
a given grasp point and moved the gripper away to a point which didn’t
leave the fingers overlapping the face. This method was used both for
planning the departure of a gripper from a grasp and, by reversing the
path after planning, to approach a given grasp point from a user-specified
starting point. Also, the gross motion planner had to be called to plan
the motions from the terminal point of one grasp to the starting point
of the next. This required planning motions with the gripper close to
the part and close to the table. This presented a number of challenges
to the gross motion planner (see Section 8.2.2).

While the regrasp planner was able to compensate for most incom-
patible pickup/putdown choices the grasp planner might make, it took
substantial time to plan the regrasping operations. Furthermore, the
sequence of regrasping steps tended to increase the uncertainty of the
object’s position, increasing the likelihood that the operation would fail.

Tt was our perception that the excessive constraints introduced by the
grasp planner forced unnecessary regrasps that motivated a complete
redesign of the grasp planner along the lines described in Chapter 5.
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8.2 Path planning

The initial testing also revealed limitations in the path-planning strate-
gies, both in the potential-field approach and in the configuration-space
search method.

8.2.1 Local minima

It is well known that motion planners based on potential fields are sus-
ceptible to capture by local minima in the potential. Our potential-field
grasp planner for the gripper proved no exception. As long as there
was a nearly straight path, with small deviations, from the start to the
goal everything worked fine. But, if the straight line between the start
and the goal crossed a substantial obstacle, the odds of navigating the
corners were small since as the repulsive force changed directions near a
corner, the attractive force and the repulsive force tended to align and
cancel each other.

The fact that we were operating in a known, static environment, sug-
gested a variation to the traditional potential method for generating
the translational part of the path. This was accomplished by borrow-
ing a technique from 2-D vision—the area of free cells connecting the
starting point and grasp points were shrunken to a filament (described
in Section 5.4.3). The potential-field method was then used only to
compute the rotation of the gripper and small deviations from the fil-
ament path. The attraction point was moved along this path, repul-
sion forces generated rotations of the gripper about its reference point
and small displacements. Left-Margin Movie 2 shows a path found by
this planner.

8.2.2 Resolution problems

The configuration-space-based gross motion planner also ran into a
number of problems in the course of experimentation. They all had
to do with the problem of choosing the resolution at which to sam-
ple the configuration space. The initial version of this planner con-
structed a configuration space for the three-dimensional robot and parts
at a fixed sampling resolution over the workspace. When the reso-
lution was chosen to allow the robot to move with its gripper near
the grasp part and the table, the computation time was unbearable.
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When the resolution was chosen to lead to reasonable computation
times, the robot could not approach near enough to grasp parts in
cluttered environments.

This problem led to a number of extensions to the gross-motion plan-
ner (described in Section 4.3):

e two-dimensional approximations to robot and parts,
e incremental refinement of the configuration-space map, and
e caching of previously computed maps.

The resulting planner was, on average, several order of magnitudes
faster than the initial version particularly on the most common, rela-
tively simple cases. In difficult cases, the computation time rises quickly,
but this is tolerable.

8.3 Experimentation

Another area where we had anticipated problems and where we were
not disappointed was in calibrating our geometric and kinematic mod-
els with our experimental apparatus. Our initial experiments were with
poorly modeled objects, made of wood and Styrofoam, which exacer-
bated the calibration difficulties. We required models to be accurate to
about 1 millimeter over an area about 1 meter in radius. Our biggest
problem was calibrating the table relative to the robot. Once that was
done, all the parts resting on the table could be modeled reasonably well
in the ry-plane, either by having the robot place them at their modeled
locations or by the use of a pre-calibrated camera. Later experiments
with machined objects and accurate table surfaces reduced the calibra-
tion problem to a manageable level.

8.4 What we learned

HANDEY was not intended to be a practical system used to program
commercial robots. It was intended to evaluate the current state of the
art in the technology for building task-level systems. Building the system
forced us to face many problems that we would have rather defined away
for the sake of intellectual cleanliness. Having gone through this process,
some general conclusions emerge:
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e The key difficulty in gross motion planning (Chapter 4) is not avoid-
ing large obstacles as much as moving close enough to small ones, for
example, during pickup and putdown.

e The parallel gross motion planner (Section 4.5) is exceedingly simple.
Its simplicity made it very easy to debug. The pre-computed primitive
maps insulated the planner from much of the problems of numerical
robustness that the serial gross motion planner needs to pay close atten-
tion to. The parallel planner does suffer from the need to quantize the
configuration space, and while it is very good at planning gross motions
in fairly empty space, care must be taken when trying to pass close to
obstacles—the quantization must be adjusted.

o The key problem in grasp planning (Chapter 5) is how to choose
grasps that enable successful completion of the whole task, not just the
initial grasp. This is in contrast to most of the existing literature on
grasping, which focuses on some particular aspect of grasping, such as
stability.

e The potential-field grasp planner (Section 5.4) proved to be more ef-
ficient than the C-space grasp planner when rotation is included. Unfor-
tunately, it proved more difficult to incorporate other constraints beyond
pure collision avoidance.

e The primary workspace of a robot is the range of positions where a full
range of gripper orientations is possible. The fact that most industrial
robots have an empty primary workspace is a substantial impediment
to efficient task-level planning. This kinematic limitation makes it very
difficult to combine planning in cartesian space with planning in the
robot’s joint space. It affects each of the planners that constitute HAN-
DEY: it invalidated some simple grasps and thus forced more and longer
regrasp operations (Chapter 6) than we expected. It was also very dif-
ficult to find reasonable cooperative tasks for two robots—the common
workspace was very small in which both robots could manipulate objects
with each robot staying reasonably out of the other’s way.

e The multi-robot planner (Chapter 7) proved to be better able to
achieve high levels of parallelism when the robot’s paths were planned
with the cooperative task in mind. Purely independent planning pro-
duced paths with many potential collisions and, thus, little possible par-
allelism.
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e Task-level robot programming in well-modeled workspaces is emi-
nently practical, especially in view of the dizzying rate of growth in
affordable computational power.

e HANDEY’s competence in solving real three-dimensional manipula-

tion problems, albeit limited, argues that these problems are ripe for
solution and that future work in motion planning should focus on three-
dimensional problems and away from the better understood and less
challenging two-dimensional problems.

e Task-level robot programming in workspaces with substantial uncer-
tainty still requires fundamental new research in planning with uncer-
tainty and planning for the use of sensors.
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for a circle, 43
for convex polygon,
translational, 48
*Lisp, 83 for convex polyhedra, 52
A for manipulator, 54
union of polygons, 51
C-surface, 56
normal, 52
caching, 41
calibration, 213

A matrices, 38
adjacency, 81
angular resolution, 75

ach
af:)s;(f)i;(ur’ation 22, 109 camera, 130, 213
point, 134 > Cartesian kinematics, 90
’ hoosing a grasp, 8
se, 113 ¢ ’
pg;iefion 127 clutter, 131, 209
fegion, 1’29 CM, see Connection Machine

collision, 61, 173
collision region, 179, 184
collision-free, 17
path, 3, 25
compatible grasp and placement, 144,
see polyhedral, approzimation 153, 156, 157, 160
arm collisions. 127 completgd schedule, 178
Asea. T8 ’ complexity measure, 72, 95, 99, 106
’ compliant motion, 12, 15
configuration, 42

approximation, 95
C-space obstacle, 77
configuration space, 53
planar, 78
polyhedral,

attraction point, 140

B configuration space, xiii, 35, 42, 57,
169, 170
backprojection, approximation, 53
see obstacle backprojection configuration space movie, xvii
bitblt-ior, 98 Connection Machine, 57, 83, 92, 95,
bitmaps, 83, 97 103
primitive obstacles, constrained grasp, 158, 159
see primitive maps, bitmaps constrained placement, 158, 159
boundary representation, 36, 119 contact angles, 62
bounding box, 194 contact point, 146
breadth-first search, 159, 162 convex hull, 148, 151
bump line, 136 cooperative task, 169
bump vector, 136 coordinate, 26, 169
Pe frame, 24

system, 68, 86

C-space, see configuration space transformation, 6, 38

C-space map, 41, 57, 119, 120, 127, coordinating paths, 169
129 critical region, 181

critical values, 80

C-space maps, cylindrical kinematics, 90

bitmap, 83
low-resolution, 78 D
precomputed,
see precomputed C-space maps deadlock, 33, 174, 182, 183, 205, 207
primitive, departure,
see primitive maps, C-space configuration, 109
C-space obstacle, 43, 51, 57, 61, 123 point, 130, 134
approximation, 54, 56, 77 pose, 113
boundary of, 46, 48, 49, 52, 60 position, 127

detailed, 77 region, 129
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depth map, 4, 130, 209, 210
domain, 97

E

edge,
type A, see type A edge
type B, see type B edge
edge/edge contact, 70
edge/edge interactions, 62
edges, 36
end-test function, 159
error detection, 13

F
faces, 36
failure, 25

feasible grasp, 31
filament path, 140
filled grid cell, 119
final world, 25
finger frame, 110, 145, 152
forbidden angle range, 61, 63, 66, 71,
98
forbidden positions,
of gripper, 93
free motion vector, 136
free parameters, 54
free space, 43
free-space graph, 80

G

generate function, 159
generate-and-test strategy, 134, 210
geometric description,
of robot, 40
geometric model, 24, 35
goal, 25
goal slice, 73, 76
graph-search algorithm, 81
grasp, 3, 26, 109, 151, 160, 209
class, 144, 146, 157, 158, 165
configuration, 22, 109
face, 112, 113, 120, 144
face ranking, 120
feasible, see feasible grasp
feature, 109
frame, 145, 165
object, 133, 135
plane, 110, 117, 144, 146
planner, 41, 109, 209
point, 7, 134, 144, 146, 210
pose, 113
region, 129

stability, 112

stable, 17, 18

volume, 117, 132
grasp/placement problem, 158, 160
grasp/placement table, 154, 157, 165
grasping, 7
greedy scheduler, 182
grip surfaces, 111, 144
gripper, 24, 73, 91, 92, 101

left, see left gripper

orientation, 73

pose, 113

reference point, 144

second, 143

three-dimensional,

see three-dimensional, gripper
gross motion planner, 41, 53, 113, 127,
212

resolution, 212
gross motion planning, 57, 73
guarded moves, 15

H

half-spaces, 35
Hitachi, 78

1

in-edge constraint, 63, 65, 71
in-face constraint, 67
inclusive-or, 98

initial world, 25

intermediate placement, 143, 162
inverse kinematics, 24, 39

J

joint angle, 37, 38, 73
legal values, 60
joint angle limits, 38, 39
joint displacement, 37
joint limits, see joint angle limits
joint space, 55
joints, 37
prismatic, see prismatic joints

K

kinematic chains, 35
kinematic limits, 127
kinematic structure, 24
kinematically feasible, 17, 127, 129,
139, 144, 152, 158, 165, 210
kinematics, 37
inverse, see inverse kinematics
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L

laser range-finder, 130, 209

laser scanner, see laser range-finder
left gripper, 166

link coordinate frame, 38

link shapes, 39

links, 37

local minima, 139, 212

logical-or, 103

low-resolution C-space maps, 78

M

manipulation problems, 1
manipulator configuration, 17
massively-parallel computers, 82
Minimover, 78
model,

polyhedral, see polyhedral, model
motion constraints, 35, 41
move, 25, B7
movies, xvi
multi-arm coordination movie, xvii
multi-arm coordinator, 26
multiple robots, 169

N

NE-closure, 183

nearest-neighbor communication,
on CM, 103

non-simple polygon, 52

o

object recognition, 4
object recognition system, 209
obstacle, 4, 14, 40, 41

C-space, see C-space obstacle

cache, 80

configuration space,

see C-space obstacle

phantom, see phantom obstacle
obstacle backprojection, 135, 210
off-line (graphical) programming, 5
on-demand computation, 76, 95
oriented edges, 36
outward-pointing normal, 35

P

parallel,
algorithms, 83, 103
computers, 82

parallel motion-planner movie, xvi
parallel-jaw grippers, 31
parallelism, 103, 169, 199
part, 24
part model, 24
partial path, 82
path, 33, 57, 129, 170
collision-free, see collision-free, path
path planner, 57
path search, 80, 95
path segments, 173
phantom obstacle, 203
pick-and-place, xiii, 6, 17
constraints, 17
operation, 116
problems, 1
pickup, 22
location, 135
pose, 17, 125
placement, 148, 151, 160
class, 148, 157, 160
plane, 148
point, 148
stable, 144, 148, 211
plan, 25
planar,
computations, 78
gripper, 92
manipulator, 61, 84, 98
obstacle, 61
polar, 84
polyhedral,
approximation, 24, 41, 194
model, 35, 40, 41, 130
objects, 209
polyhedron, 35
pose, 17, 42
potential collision, 173
potential-field, 133, 136, 212
potential-field movie, xvi
precomputation, 84
precomputed C-space maps, 83
primary workspace, 214
primitive configuration space maps,
see primitive maps, C-space
primitive maps, 86
bitmaps, 98, 102, 103, 104
C-space, 83, 86
obstacle, 93, 95
for grippers, 91
three-dimensional, 94
primitive obstacles, 90, 91
prismatic joints, 37
processor grid, 103
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projection,
onto grasp plane, 132 S
pseudo-collision regions, 183
PSPACE-hard, 33 safe, 179
Puma, 39, 78, 83, 89, 97, 100 safe schedule, 179, 183
putdown, 22 deadlock-free, 183
pose, 17, 125, 139, 143, 156, 210 scan, 103, 105, 106
position, 135 scan lines, 119
configuration space, 123
Q Scara kinematics, 90
schedule, 33, 172, 178
quad-tree, 102, 119 completed, 178
R deadlock-free, 183
safe, see safe schedule
reachability, 31, 81 search, 80
recognition system, 130, 209 sensors, 215
record/playback, 4 sensory system, 130
reference, sequential search, 83, 95
coordinate system setpoints, 172
of part, 40 shortest path algorithm, 81
line, 42 shoulder offset, 89
point, 42, 111 SIMD computer, 92, 103
regrasp, 26, 143 similar problem, 162
location, 157 six-degree-of-freedom C-space, 95
movie, xvii slice parameter, 54
planner, 211 slice projection, 53, 56, 57, 60, 73, 74,
problem, 156 83, 120, 165
sequence, 156, 159, 160, 211 polygonal links, 61
regrasping, xiv polyhedral links, 67
using two grippers, 166 slices, xvii
regrasping problem, 151, 154 spherical, 89
regrasping step, 153, 211 spherical kinematics, 90
reorientation slice, 73, 76 spherical wrist, 94
representation, stability, 31
boundary, 119 stable, 17
grid cell, 119 start slice, 73, 76
quad-tree, 119 state space, 170
resolution, 95 Styrofoam, 213
revolute joints, 37 superposition, 83
Rhino, 78 support face, 148
robot, 24, 35 support table, 144
kinematics, 37 SW-closure, 183, 185, 207
model, 35, 37, 40 swept volumes, 184, 192
robot programming, synchronization, 187
graphical, 5 synchronization points, 196
off-line, 5 synchronizing robots, 169
record /playback, 4 T
task-level, 4
textual, 5

target frame, 149
multiple, 151
target point, 148
task completion diagram, xvii, 176,
181
multi-dimensional, 207

rotational symmetry, 84, 86
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task-level robot system, 3
TC diagram,
see task completion diagram
textual programming, 5
Thinking Machines Corporation, 57,
83
thinning, 130, 140
three-dimensional,
gripper, 94, 107
manipulators, 67, 107
primitive maps, 90, 94
robot, 86
TMC, see Thinking Machines Corpo-
ration
trajectory, 33, 170
type A C-surface, 63
type A contact, 68, 69
type A edge, 50, 62
type B C-surface, 63, 69
type B contact, 67, 68
type B edge, 50, 62
type C contact, 68, 70

U

uncertainty, 11, 215
Unimation. 39, 78
unit change, 81

Vv

vertex, 47

vertex/edge contact, 62
vertex/edge interaction, 66
vertex/face contact, 68, 69
vertices, 36

virtual processor ratio, 103
virtual processors, 103
vision, 4, 130

w

wood, 213

world, 24

world coordinate system, 40
world model, 24, 35, 40
wrist, 91, 92, 95, 101

wrist frame, 152

wrist joints, 73
wrist-decoupled robots, 83, 92

Y

Yasukawa Motoman, 78
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