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Abstract. We describe  a  robot  system  capable of locating a par t  in an  unstructured pile of objects,  choose a grasp  on  the 
part,  plan  a  motion  to reach the  part safely, and  plan a motion  to  place  the  part  at a commanded  position.  The  system 
requires  as  input a polyhedral  world  model  including  models of the  part  to  be  manipulated,  the  robot  arm,  and  any  other 
fixed  objects  in  the  environment.  In  addition,  the  system  builds  a  depth  map,  using  structured  light, of the  area  where 
the  part  is  to  be  found initially.  Any  other  objects  present in that  area  do  not  have  to be  modeled. 

1. Introduction 

The word  robot  should  conjure  up  the  image of a system  with 
(at  least)  three generic  capabilities: 

The  ability  to perceive its  environment  and  to  locate  objects 
of interest. 

rn The  ability  to  act  on  its  environment. 
The  ability  to  plan  actions  to achieve  its  goals. 

Surprisingly, very  few systems  in  the,  admittedly  short,  history 
of robotics  have  possessed all of these  capabilities  in  non-t,rivial 
form.  Most of the ones that  have  had  this  combination of capa- 
bilities  have  been  mobile  robots,  for  example,  Shakey  [Nilsson 
691, and  Hilare  [Giralt  et a1 79). In the  area of manipulation, 
some  early  systems  possessed  these  capabilities,  for  example,  the 
Stanford  Hand-Eye  System  [Feldman  69;  Paul 721, MIT Copy 
Demo  [Winston 721, Edinburgh’s  Freddy  [Ambler  et a1 19751, 
and  a very  few  recent  systems,  for  example,  [Ikeuchi,  et a1 861. 
In all cases,  these  systems  operated in a very restricted  domain 
of objects  and  their  component  modules were  tailored t o  specific 
tasks. 

In this  paper, we describe  a new integrated  robot  system, 
called  Handey,  under  development a t   MIT.  Handey’s  domain is 
tha t  of simple  assembly of (mostly)  planar-faced  objects.  The 
user s tar ts  by building  accurate  object  models  for all the  parts  to 
be manipulated.  The user  then  specifies  a  sequence of MOVE 
commands,  each of which  specifies an  object  and  its  destina- 
tion. Handey  locates  each  part  on  its  worktable,  chooses how to  
grasp  it,  and  takes it to  the  destination.  The  unique  features of 
Handey are  its  ability  to  operate on a wide  class of objects  and 
to  operate in  a  cluttered  environment.  Also,  Handey’s  modules 
are  designed  to  be  reasonably  general  purpose;  they  are  not  tai- 
lored to a specific task.  Figure l illustrates a sample  plan  found 
by Handey;  the  task  consists of picking  up  one of the  L-shaped 
objects  and  placing  it  on  top of the  other so that they  form  a 
block. 

Handey  consists of the following  major  modules: 

rn Object modeling: Handey  can  model  a  fairly  general  class 
of polyhedral  objects,  including  an  interactive  facility  for 
defining  object  models  from  depth  data. 

Range  finder: Handey  uses a triangulation  range-finder  based 
on projected  laser  planes. 
Model-based  object  localization: Handey  can  locate  known 
p~lyhedral  objects  in  complex scenes that  may involve  ob- 
scuration of the  target  object. 
Collision-free  path  planning: Handey  can  plan  motions  for 
a six degree of freedom  revolute  manipulator  in  cluttered 
environments. 
Grasping: Handey  can  choose  grasping  positions  on  objects 
in  cluttered  environments  and  plan  regrasping  motions if 
necessary. 
Ro6ot Control Handey  uses  a  traditional  trajectory  con- 
troller  capable of joint-interpolated or Cartesian  motions. 

Handey’s  current  limitations  are:  the lack of any  capability  for 
planning  or  executing  compliant  motions,  the  inability  to  post- 
pone  decisions,  and  its  limited  ability t o  deal  with  errors.  Elim- 
inating  these  limitations is the  the  subject of ongoing  work. 
Before proceeding t o  a  description of Handey, we must  answer 
an  important  question:  “What is  to  be  learnt by building  an  in- 
tegrated robot system  such  as  Handey?”  There  are  several  good 
reasons.  The  first  is  to uncover  problems in the  interaction be- 
tween the  modules.  The second  is  to  stress-test  the  modules; 
the use of module  within a system  tends  to uncover  hidden  as- 
sumptions in the  design.  The  third is that  the  resulting  system 
can  be  a  tool  in  investigating  high-level  planning in  Artificial 
Intelligence. 

2. An overview of Handey 

The basic command for  Handey is of the  form:  MOVE object 
T O  destination. In this  section we describe briefly the  steps 
Handey  must go through to execute  a  single  MOVE  command. 
Subsequent  sections will focus  on  the  individual  steps in more 
detail. 

Handey  requires tha t  a metrically-accurate  polyhedral  model 
of the  object be  available.  The  object is assumed  to  be  located 
in arbitrary pose  within  the field of view of the  range  sensor. 
The  destination will  typically  be  outside of the field of view. 
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Figure 1. A plan  found by Handey. The first image is  on the  top 
left;  it shows the  initial position of the part identified by the edge 
matcher.  The final  position of the  part, specified by the  user, is on 
the bottom right. 

Handey  executes  the  following  steps  in fixed order: 

Locate the  object: A depth  map is built of the  area  under 
the  range  sensor’s  view.  The  recognition  module  locates  the 
object  within  the  scene  and  returns  a  transformation  that 
describes the object’s  position  relative t o  robot’s  coordinate 
system. 
Choose Q grasp on  the  object: The  grasping  module  searches 
for a  grasp  on  the  object  that is both  stable  and  can  be 
reached by the  robot  at   both  the origin  and  destination. 
Choosing a grasp will  require  taking  into  account  the  ob- 
stacles  present in the  depth  map  and  in  the world  model. 
If such  a  grasp  is  not  possible,  then  choose  a legal grasp  for 
the  object’s  original  position;  regrasping will be  necessary. 
Approach  the grasp location  and  grasp  the  part: Plan  a 
collision-free path  from  the  robot’s  current  position to the 
chosen  grasp  position.  Grasp  the  part. 
Regrasp  the  object: If regrasping is necessary,  plan a se- 
quence of regrasping  motions  that will  enable  the  robot  to 
reach a grasp  that is legal at  the  destination. An empty 
area of the  worktable is used to  perform  these  motions. 
Plan  an approach  path t o  the  destination: Plan  a  collision- 
free  path  from  the  robot’s  current  position to a point  near 
the  destination. 

Place  the  object at the  destination: Generate a force-guarded 
motion  to  place  the  object  at  the  destination. In a  future 
version of the  system, a compliant  motion  strategy  should 
be  used. 

Subsequent  sections  explain  the  operation of the  different  mod- 
ules and how they  are used to  carry  out  these  steps, 

3. Locating the object 

The  first  step in executing  a MOVE command is localizing the 
object  using  depth  information  obtained  from a range  sensor. 
The  range  sensor is a light-striping  triangulation  sensor,  It is 
used to  produce  a  depth  map of a small region  on the  worktable. 
The  object  to  be  MOVE’d is assumed  to  be  present in this  area. 

.4fter the  depth  map is  constructed  (Figure 2) ,  the   map is 
processed as if it were  an  image,  except  that  “brightness” cor- 
responds  directly  to  elevation  above  the  worktable. .r\ st,andard 
“edge”  operator  [Canny 86j is run over the  image  and  extended 

linear  segments  are  identified in the  resulting  array.  Kote  that 
this  process  identifies 3D edge  segments:  not  just  their  projec- 
tion in an  image. 

The  method used for object  localization  is  a  simple  hypothesize- 
verify  algorithm  based  on  matching  linear  segments in the  depth 
map  to edges in the  polyhedral  model of the  part.  This  method 
is a  variation of the  method  described in ILozano-Perez  and 
Grimson 861, using  edge data  instead of face  data.  The  basic 
step in the  matcher is to  take  two  edges in the  .node1 and con- 
sider  all  possible  assignments of these  edges to pairs of datza 
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Figure 4 shows  examples of the  matcher  in  operation,  using 
edges  extracted  from  depth  maps  similar  to  that in Figure 2.  

Figure 2. A very simple  depth map 

edges. If the  pairs of model  edges  are  non-collinear,  such  an 
assignment of data  edges to  model  edges is sufficient t o  solve for 
at most  four  transformations  that  map  the  model  coordinate 
system  into  the  data  coordinate  system.  The  ambiguity  in  the 
transformation  arises  due  to  the  possible  assignment of direc- 
tion  vectors  to  the  edges.  Given  such  a  transformation, we  can 
predict  the  location  of  other  model  edges in the  data  and verify 
their  presence.  The  assignment  that  predicts  the  location of the 
most  data  edges is chosen. 

The  matcher  at tempts  to consider  only a few assignments 
of data  edge  pairs  to  model  edge  pairs. To reduce  the  set of such 
assignments  it  exploits  two  basic  geometric  constraints.  First, 
a  data  edge  should  match  a  model  edge  only if their  lengths 
are  compatible:  that  is, if the  length of the   da ta  edge  is  less 
than or equal  to  that of the  model  edge.  Second,  a  pair of da t a  
edges  can  be  matched to a  pair of model  edges if the  parameters 
describing  the  relative  pose of the edges in the  pairs  are consis- 
tent,  taking  into  account  the  measurement  error.  Exploiting 
these  constraints  significantly  reduces  the  number of matches 
that  need to  be  considered. 

We can  describe  the  relative pose of two 3D edges  using 
the following parameters  (Figure 3): oi - the  angle  between 
the  lines  supporting  the  edge  segments; d - the  length  between 
the  lines  measured  along  the  common  perpendicular  to  the  lines; 
al  and a2 - the  distance  from  the  base of the  common  perpen- 
dicular to the  nearest  end of the  edge.  Note  that we only  know 
the line on  which a data  edge  lies; to  obtain  a vector we  would 
need to  know an  additional  sign.  Therefore,  there is a potential 
ambiguity in the  parameters  arising  from  the  missing  sign.  This 
has to be  treated  carefully  when  testing  whether  two  pairs  are 
consistent. 

Figure 3 .  Definition of the four parameters that define the relation- 
ship between two edge  segments. 

ning the Canny edge detector on a depth  map.  (b)  The projected 
object model located by the edge  matcher  superimposed on the edge 
fragments.  This example corresponds to Figure 1. 

4. Planning collision-free motions 

At a  number of points in the  operation of the  system, a collision- 
free  path is required  from  one specified location  to  another. 
Handey  uses a simplified  version of the  path  planner  described 
in  [Lozano-PCrez 861. This  path  planner uses the  robot's  joint 
space  as  the  configuration  space. 

The  obstacles  are  mapped  into  a  quantized  version of this 
configuration  space by a  simple  numerical  method  illustrated in 
Figure 5 for  a  two-link  manipulator.  Given  a  value  for 61, we 
can  compute  the  range of forbidden  values of 6'2 due  to  each of 
the  obstacles.  The  set of forbidden  ranges of 6'2 for  each  value of 
6'1 comprise  an  approximation  to  the  exact  configuration  space. 
This  space  can  then  be  searched  for a path.  For a manipulator 
with  three  joints,  the  process  described  above  (applied  to  joints 
two  and  three)  is  repeated for  all possible  (quantized)  values of 
the first joint  angle. 

The version of the  path  planner used by Handey  never  com- 
putes  configuration  spaces of dimension  greater  than  three,  but 
it allows motions  requiring six degrees of freedom.  Essentially, 
we assume  that  a  path  from  the  start  to  the  goal  exists  such 

2 x  I I 

Figure 5. (a)  The configuration space  obstacles for a two-link  ma- 
nipulator are built by quantizing 81 and finding forbidden  ranges of 
8 2 .  (b) A sample configuration space  with  a  path  obtained by the 
path-planning  algorithm. 

~- 
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that  the  last  three  joints of the  arm  retain  their  starting  values 
until  some  intermediate  point  where  they  are  changed to their 
values a t   the  goal and never  changed  after  that.  It  is  easy to 
construct  cases  where  this  assumption will  fail,  but  it  works  in 
a  large  percentage of actual  cases. 

The  actual  planning  proceeds  as follows:  An approximate 
arm  model is built  in  which  the  last  three  links  are  replaced 
by a  box.  This  box  must  be  large  enough  to  enclose  the  last 
three  links,  the  hand,  and  any  object in the  hand,  not  only  at 
their  start  and goal  positions  but  also at  intermediate  positions 
between the  two.  The  three-dimensional  configuration  space for 
this  model  can  then  be  built. We then find the  closest  free  points 
in  this  configuration  space  to  both  the  start  and goal  positions. 
A path is found  between  these  two  free  points. Note tha t   t he  
complete  robot is  guaranteed  to  he  safe  along  this  path, for the 
whole  range of values of the  last  three  joints  between  the  start 
and  the  goal.  Therefore,  we  can  simply  interpolate  the values 
of the  last  three  joints  between  the  start  and  goal  values.  Then, 
we plan  a  path  using  the  original  model of the  robot  between 
the  free  point  closest  to  the  start  and  the  start  itself. We also 
plan a path  from  the  free  point  closest  to  the goal to  the goal 
itself.  In  these  two  paths,  the  values of the  last  three  joints  are 
fixed. The  concatenation of these  three  paths  form  the  desired 
path.  

8. Grasping 

The  most intensive  interaction  between  perception,  planning 
and  action  in Handey happens  in  grasping.  After  the  target  ob- 
ject's  location  has  been  determined,  Handey  must  choose  a  pair 
of features,  such  as  a  pair of parallel  faces:  for  grasping.  Then, 
i t   must choose  a  path  to  reach  those  features  that  avoids  any 
nearby  objects. In addition to any  known  objects in the model, 
the  hand  must  avoid colliding with  any  obstacles  detected  in  the 
depth  map,  even if their  identity  is  unknown. 

A grasp  that is  suitable  for  picking  up  the  object  may  not 
be  suitable  for  placing  it at   the  destination. Handey attempts 
t o  find  consistent  with  both  states. If there is not  a  single  grasp 
suitable  for  both,  then  a  sequence of grasps  and  intermediate 
motions  may  be  necessary. 

We model  the  hand by two  opposing  rectangular  fingers 
which  can  close  on  an  object by sliding  along  a  crosspiece. A 

Figure 6. The different groups of approach directions and grasp 
classes for a particular orientation of an L-shaped object, heuristi- 
cally ranked by desirability. 

legal  grasp  has  each  finger in contact  with  a  grasp  feature on 
the  object.  The  feasible  grasp  feature  pairs  are:  two parallel 
faces of the  object, or a face  and  a  parallel  edge, or a  face  and 
a vertex.  The  current version of Handey  limits  its  attention  to 
pairs of parallel  faces. 

The  criteria for a  legal grasp  are  as follows: 

0 The  grasp  must  be  stable.  That  is,  the  location  and magni- 
tude of the forces and  torques  exerted by the fingers must 
produce  a  balanced  system of forces  and  be  sufficient  to 
overcome  the  effect of gravitational forces  on the  grasped 
object. 

0 The  grasp  must be  reachable,  both  at  the  pickup  point  and 
the  putdown  point.  That is, there  tnust  be  a  clear  path 
to achieve  contact  with  the  chosen  grasp  features a t   the  
original  location of the  grasped  object. Also, the  grasp 
must  not  produce  a collision  when the  object  is  placed  at 
its  destination. 

In the  current  implementation of Handey we use very simple 
heuristics to guarantee  stability. Our rationale is t,hat,  for  small 
objects  and  strong  fingers,  almost  all  grasps  are  stable.  Since 
we limit  ourselves  to  pairs of parallel  faces,  the  forces  are  au- 
tomatically  balanced.  Furthermore,  we  require  that  there  be  a 
user-specified minimum  area of contact  between  the  fingers  and 
one of the  grasped  faces. 

In general,  to  guarantee  the  stability of a  grasp  one  must 
compute  the  forces  and  torques  generated by the fingers,  includ- 
ing the  frictional  forces  and  torques,  and  compare  them  to  the 
gravity  forces  and  torques  acting  on  the  object.  Only if the  ap- 
plied forces  and  torques  can  balance  the  gravitational  forces  and 
torques will t,he grasp  be  stable. A procedure  for  computing  the 
forces  and  torques  for  a  particular  grasp is given in [Barber  et al 
86.1. Future  versions of Handey will incorporate a more  careful 
stability  test. 

We have  placed more emphasis  on  guaranteeing  reachabil- 
ity.  There  are  three  phases in computing  a  reachable  grasp.  The 
first  phase  is  choosing  the  grasp  features  and  a gross orientation 
for the  hand.  The second  is  planning  the  detailed  grasping rno- 
tion.  The  third is  regrasping,  when  necessary.  The following 
sections  examine  these  phases  in  t,urn. 

5.1 Choosing a grasp 

Before  attempting  a  detailed  plan of the  grasp, Handey examines 
different  classes of candidate  grasps  and  evaluates  their feasibil- 
ity  both  at  the  pickup  point  and  the  putdown  point. A grasp 
class is characterized by a  choice of object  surfaces.  Within  a 
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grasp  class,  there  are  qualitatively  different  ways of approach- 
ing  the  grasp.  Handey  splits  the  approach  directions  into  groups 
determined by which  edge of the  grasp  face is crossed  first  when 
approaching  the  face.  Figure 6 shows  the  different  groups of ap- 
proach  directions  and  grasp  classes for a  particular  orientation 
of an  L-shaped  object.  The  grasps  are  sorted by a  measure  of 
how vertical  the  fingers  are.  Note  that  the  grasps  shown  here  are 
representative  elements of the  range of approach  directions  that 
Handey  considers;  they  are  not  an  exhaustive List of approach 
directions. 

The feasibi1it.y of one of these  grasp  groups is investigated 
as follows: 

e An inverse  kinematic  solution for the  center of the  grasp 
group  is  performed. If all the  feasible  solutions  are  too 
close to a joint  limit,  then  the  grasp  group  is  discarded. 

e Assuming that  the fingers have  penetrated  into  the  face 
by the  minimum  amount  to  guaranlee  a  stable  grasp, check 
Lhe range of feasible  rotations of the  hand  about  that  point. 
The  two  endpoints of such an  angular  range  are  shown in 
Figure 7 .  When  computing  this  range  one  must  consider 
potential  contacts  between  the  hand  and  the  object to be 
grasped  and  the  table,  both  at  the  pickup  and  putdown 
position.  These  two  sets of constraints  can  be  treated si- 
multaneously by transforming  the  obstacles at the  putdown 
position  into  the  pickup  position using the  inverse of the 
transformation  relating  the  putdown  to  the  pickup pose 
(see  Figure 8). The  range of legal angles  can  be  computed 
using  a  submodule of the  path  planner [Lozano-PCrez 861. 

Figure 7 .  The  extrema of the legal rarge of hand orientations at a 
particular grasp  point. 

Figure 8. The obstacles at  the putdown pose are  transformed  into 
pickup pose. A legal grasp in this environment is legal for both poses. 

The  highest  ranked  grasp  group  that  passes  these  tests  is used 
to  compute a grasping  motion  that  considers  obstacles in the 
depth  map. If a grasping  motion  cannot be found, a different 
grasp  group is tried. 

5.2 Planning the grasping motion 

When  choosing  a  grasping  motion, we must  take  into  account 
the  presence of nearby  objects as reflected in  the  depth  map. 
For this  purpose we use a planner  specialized for planning  the 
motion of the  hand in the  grasp  plane.  The grasp plane is  a 
plane  parallel to  the faces  being  grasped  and  midway between 
them.  When  approaching  a  grasp  the  fingers  remain  parallel to 
the  grasp  plane  and  centered  about it but  are  otherwise  free to 
rotate  and  translate in the  plane.  The  restriction to motion in 
the  grasp  plane is intended  to  minimize  the risk of collision with 
the  object  to be grasped. 

The  planner uses a  method loosely modeled  on t.he po- 
tential field method for obstacle  avoidance  [Khatib 851. The 
straightforward  potential field method,  although  applicable, is 
not  convenient in this  situation  because  the  obstacles  are a large 
number of points,  rather  than a few extended  obstacles.  Also, 
the  method  described  here is  less  likely to  get stuck  in local 
minima of the  potential field. 

The  grasp  plane is bounded by a rectangle  whose size de- 
termines  the  range of motion allowed the  hand  during  grasp- 
ing.  The  rectangular  volume  the  hand  can  sweep  out  while 
constrained t o  move in the  grasp  plane is the  grasp  volume. In 
fact we must  consider  separately  three  grasp  volumes - one for 
each finger and  one  for  the  crosspiece.  Only  these  volumes  need 
to  be  investigated  for  potential  collisions. 

Consider  a  point specified by the  depth  map which  lies 
within or above  a  grasp  volume.  The  point  can  be  thought of as 
the  origin of a ray  which  extends  downward  through  the  table. 
That  portion of the  ray  which lies within  the  grasp-volume  is 
projected  onto  the  grasp  plane. Following this  procedure for all 
such  points  marks  the  portion of the  grasp  plane  where  objects 
intrude  into a grasp  volume,  that  is,  places  where  the  hand  can- 
not go. For ease of computation  the  projected  line  segments  are 
discretized - becoming filled cells in a grid imposed on the  grasp 

lane. 
We establish  grasp  points  on  the  face of the  object  to  be 

grasped  and  on  the finger  which  will contact  it.  The goal of the 
grasp  motion  planner is to  bring  these two points  as  close to- 
gether  as  possible  without  causing  a collision between  the  hand 
and  other  objects. In the  absence of intervening filled grid cells 
in the  grasp  plane  the  motion of the  hand would  be a simple 
translation  along  the  vector  connecting  the finger and  object 
grasp  points. We call  the  unit  vector in this  direction  the  free 
motion  vector. 

Surrounding  the  hand  at  some  distance  and  moving  with 
it  are  bump  lines. A bump  line is a line  segment  on  the  grasp 
plane which is checked  each iteration  to see if it  crosses a filled 
grid  cell. A bump  vector  is a unit  vector  perpendicular  to  a 
bump  line  pointing  away  from  the  hand (see Figure 9). Also 
associated  with  each  bump  line is a multiplier used  for limiting 
motion  along  its  bump  vector.  This  multiplier is related  to  the 
distance  between  the  hand  and  the  bump  line. 

After  investigating  all  the  bump lines for  collisions  with 

filled cells we construct a unit  circle  and  map  onto  it  the  bump 
vectors  and  free  motion  vector. In Figure 9, we  show the  product 
of the  bump  vectors  and  their  multipliers. For non-colliding 
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Figure 9. The  grasp  approach  planner  algorithm. 

bump lines the  multiplier is 1, for  colliding  bump  lines I t  IS 0 .  
Not  shown  are  bump  lines  which  surround  the  hand at  a  greater 
distance;  they  may  have  collision  multipliers  greater than 1. 

There  are  several  possible  ways  to  combine  these  vectors  to 
pick a  direction  to move the  hand.  One way is  simply  to  move 
along  the  non-zero  bump  vector  closest in direction  to  the  free 
motion  vector.  (This however leads  to  stairstep  motion of the 
hand.)  Another way is  to move along  the  free  motion  vector 
as far  as is allowed by the  scaled  bump  vectors,  choosing  the 
former  procedure  only if latter  computed  no  motion. 

The  bump lines  also  provide a convenient way of computing 
a “torque”  to  rotate  the  hand. Any  colliding bump  line  produces 
a  torque  whose  magnitude  is  proportional  to  the  cross  product 
of the  bump  vector  and  a  vector  connecting  the finger grasp 
point  and  the  center of the  bump  line.  The  total  torque  on 
the  hand is just  the  sum of torques  generated by each  colliding 
bump line. 

In each iteration  the  distance  between  the finger and  the 
object  grasp  points is checked. If this  distance  drops below a 
preselected  threshold  the  grasp  motion  planner  stops  and  re- 
turns  the  path it has  discovered.  However,  as  this  method  may 
fail to find a suitable  grasp,  the  planner  must  be  terminated 
after  a  certain  number of iterations  in  any  case.  Even  after  such 
a termination  a  grasp is legal  only if the finger and  the  grasp 
object  face  overlap  sufficiently. 

An  example of planner  output is shown  in  Figure 10. 

Figure 10. The  grasp  approach planner in operation 

5.3 Regrasping 

In regrasping,  one  wants  to find a sequence of pickup  and  put- 
down  motions  that will reorient  the  object so that  it  can  be 
placed at  the  destination  without collision. The  regrasping  al- 
gorit.hm  used  in  Handey is described  in  jTournassoud,  Lozano- 
Pirez,  and  Mazer 871. 

6. Calibration 

The  operation of Handey  requires  having  accurate  calibrations 
between  several  coordinate  frames.  The key systems  that  main- 
tain  their own coordinate  frame  are  the  range  sensor  and  the 
modeling  system. We are  interested in the  mapping  between 
these  coordinate  frames  and  the  Cartesian  frame  supported by 
the  robot  controller.  This  section  describes  the  calibration of 
the  range sensor  frame  relative  to  the  robot  frame. 

The  calibration  procedure  assumes  that  the z axis of the 
range  sensor’s  frame is parallel  to  the z axis of the  robot’s  frame 
and  that  the height  of the  table is known  in  both  reference 
systems.  These  assumptions  are  enforced by the  mechanical 
construction of the  range  sensor. So the  calibration  problem is 
a two  dimensional  problem  consisting of computing  a  rotation 
about  the z axis  and  a  linear offset  in the x-y plane. 

Phase  one:  Computing  the d a t i o n .  A cube is placed  in 
the  robot’s  gripper so that  the  cube is aligned  with  the  gripper, 
but  its  position  relative  to  the  gripper is arbitrary.  The  robot is 
commanded  to move the  cube  in  the field of view of the  range 
sensor.  Let ( z w l ,  y w l )  be the  coordinates of the  robot  wrist in 
the x-y plane of the  robot  frame  and (zwl,yvl) be  the coordi- 
nates of the  centroid of the single  face of the  cube visible to  the 
range  sensor  (the t value is not  used). 

Then,  the  robots moves to  (zrl + dx, yrl) without  changing 
orientation. dz is chosen so that  the  cube  remains in the field of 
view of the  range  sensor, ( m Z ,  yvz) are  the new coordinates of 
the  face  centroid given by the  range  sensor.  The vector (xu2 - 
zwl, yvz - yul) is parallel  to  the x axis of the  robot  frame,  this 
allows  us to  compute  the  rotation between the sensor  frame  and 
the  robot  frame  as: R = R o t ( i , a t a n 2 ( 2 ~  - zvl,ywz - yvl)), 
where Rot(v, 0) is the homogeneous  transformation  representing 
a rotation by B radians  about  the  vector v. 

Phase two: Computing  the oflset .  Since  nothing is assumed 
concerning  the  relative  location of the  wrist  and of the cen- 
troid of the  cube  face,  let ( f z , f y )  be the  projection of this 
vector  in  the  z-y  plane of the  robot  frame.  The goal of the 
next  motion is to  compute f z  and f y .  The  robot is com- 
manded  to  rotate  the  hand  about  the  robot  frame’s t axis by 
an  angle of K ;  while  keeping the  wrist  position  fixed.  There- 
fore,  the  cube face’s centroid moves to  the  opposite end of a 
circle  centered  on  the  projection of the  wrist.  Call  the new 
centroid  location (zv3,yv3). We can now write:   (fz,fy) = 
0.5R-’(zvz - xw3,yvz - yw3), The offset  between the origin of 
the  robot  frame  and  the origin of the  sensor  frame is given  by: 
(oz ,oy)  = (zrZ,yrz) + ( f z , f y )  + R-’(xv2,yvz)). If h, is the 
height of the  table in the  robot  frame  and h,  and  the height in 
the  sensor  frame  then o, = h, - h, is  the z offset  between the 
two  frames. 

Finally  the  transform  that  maps  points in the  sensor  frame 
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to  points in the  robot  frame  can be written  as: Trans(o,, oyr o,)R-‘, 
where Trans (x ,  y,  z )  is the  homogeneous  transformation  corre- 
sponding  to a translation of the  origin  to (x, y, z ) .  

7. Discuss ion  

Building  Handey  has been quite  difficult.  This  reflects  the  usual 
difficulty of building  large  systems. We feel that  it was  feasible 
a t  all due  to  the use of very simple  and  robust  algorithms  for  the 
constituent  modules,  such  as  the  path  planner  and  recognition 
module. 

The  most  significant lesson we have  drawn  from  our  ex- 
perience so far  with Handey  is the  need for a  systematic  and 
efficient  way of dealing  with  the  number of options  available 
while  constructing  a  plan.  It  is  instructive  to  consider  the  num- 
ber of geometrically  different  ways  one  could go about  stacking 
two  blocks.  Consider  the block symmetries,  the  hand  symme- 
tries,  multiple  kinematic  solutions,  multiple  grasp  points,  and 
multiple  paths. In most  cases we don’t  care which  solution is 
chosen but,  unfortunately,  many of the  possible  solutions  can be 
impossible  due  to  the  presence of nearby  objects  or  limitations 
in the  robot’s  joint  angles,  etc.  Handey  simply  lists  all  possible 
solutions,  ranks  them  heuristically,  and  tries  them  sequentially 
until  one  works.  While  adequate in the  short  term,  this  strategy 
leaves  much  to be desired. In earlier  work [Lozano-PCrez and 
Brooks 851,  we have  considered  the  use of constraints  as a mech- 
anism for making  these  decisions.  Constraint  propagation  and 
satisfaction,  however,  can  be  extremely difficult and  computa- 
tionally  expensive.  This  area  requires  a  great  deal of further 
work. 

Future work  on  Handey  will  also attempt  to  expand  its  ca- 
pability  to  do  sensor-guided  assembly  and  to  do  meaningful  error 
detection  and  recovery. 
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