
Handey: A Robot System that Recognizes, Plans, and Manipulates

Tomas Lozano-PCrez, Joseph L. Jones, Emmanuel Mazer-, Patrick A. O’Donnell, W. Eric L. Grimson
MIT Artificial Intelligence Laboratory, USA

Pierre Tournassoud
INRIA, France

Alain Lanusse
E.T.C.A., Arcueii, France

On leave from LIFIA, Grenoble, France.

Abstract. We describe a robot system capable of locating a par t in an unstructured pile of objects, choose a grasp on the
part, plan a motion to reach the part safely, and plan a motion to place the part at a commanded position. The system
requires as input a polyhedral world model including models of the part to be manipulated, the robot arm, and any other
fixed objects in the environment. In addition, the system builds a depth map, using structured light, of the area where
the part is to be found initially. Any other objects present in that area do not have to be modeled.

1. Introduction

The word robot should conjure up the image of a system with
(at least) three generic capabilities:

The ability to perceive its environment and to locate objects
of interest.

rn The ability to act on its environment.
The ability to plan actions to achieve its goals.

Surprisingly, very few systems in the, admittedly short, history
of robotics have possessed all of these capabilities in non-t,rivial
form. Most of the ones that have had this combination of capa-
bilities have been mobile robots, for example, Shakey [Nilsson
691, and Hilare [Giralt et a1 79). In the area of manipulation,
some early systems possessed these capabilities, for example, the
Stanford Hand-Eye System [Feldman 69; Paul 721, MIT Copy
Demo [Winston 721, Edinburgh’s Freddy [Ambler et a1 19751,
and a very few recent systems, for example, [Ikeuchi, et a1 861.
In all cases, these systems operated in a very restricted domain
of objects and their component modules were tailored t o specific
tasks.

In this paper, we describe a new integrated robot system,
called Handey, under development a t MIT. Handey’s domain is
tha t of simple assembly of (mostly) planar-faced objects. The
user s tar ts by building accurate object models for all the parts to
be manipulated. The user then specifies a sequence of MOVE
commands, each of which specifies an object and its destina-
tion. Handey locates each part on its worktable, chooses how to
grasp it, and takes it to the destination. The unique features of
Handey are its ability to operate on a wide class of objects and
to operate in a cluttered environment. Also, Handey’s modules
are designed to be reasonably general purpose; they are not tai-
lored to a specific task. Figure l illustrates a sample plan found
by Handey; the task consists of picking up one of the L-shaped
objects and placing it on top of the other so that they form a
block.

Handey consists of the following major modules:

rn Object modeling: Handey can model a fairly general class
of polyhedral objects, including an interactive facility for
defining object models from depth data.

Range finder: Handey uses a triangulation range-finder based
on projected laser planes.
Model-based object localization: Handey can locate known
p~lyhedral objects in complex scenes that may involve ob-
scuration of the target object.
Collision-free path planning: Handey can plan motions for
a six degree of freedom revolute manipulator in cluttered
environments.
Grasping: Handey can choose grasping positions on objects
in cluttered environments and plan regrasping motions if
necessary.
Ro6ot Control Handey uses a traditional trajectory con-
troller capable of joint-interpolated or Cartesian motions.

Handey’s current limitations are: the lack of any capability for
planning or executing compliant motions, the inability to post-
pone decisions, and its limited ability t o deal with errors. Elim-
inating these limitations is the the subject of ongoing work.
Before proceeding t o a description of Handey, we must answer
an important question: “What is to be learnt by building an in-
tegrated robot system such as Handey?” There are several good
reasons. The first is to uncover problems in the interaction be-
tween the modules. The second is to stress-test the modules;
the use of module within a system tends to uncover hidden as-
sumptions in the design. The third is that the resulting system
can be a tool in investigating high-level planning in Artificial
Intelligence.

2. An overview of Handey

The basic command for Handey is of the form: MOVE object
T O destination. In this section we describe briefly the steps
Handey must go through to execute a single MOVE command.
Subsequent sections will focus on the individual steps in more
detail.

Handey requires tha t a metrically-accurate polyhedral model
of the object be available. The object is assumed to be located
in arbitrary pose within the field of view of the range sensor.
The destination will typically be outside of the field of view.

CH2413-3/87/0000/0843$01.00 0 1987 IEEE
843

Figure 1. A plan found by Handey. The first image is on the top
left; it shows the initial position of the part identified by the edge
matcher. The final position of the part, specified by the user, is on
the bottom right.

Handey executes the following steps in fixed order:

Locate the object: A depth map is built of the area under
the range sensor’s view. The recognition module locates the
object within the scene and returns a transformation that
describes the object’s position relative t o robot’s coordinate
system.
Choose Q grasp on the object: The grasping module searches
for a grasp on the object that is both stable and can be
reached by the robot at both the origin and destination.
Choosing a grasp will require taking into account the ob-
stacles present in the depth map and in the world model.
If such a grasp is not possible, then choose a legal grasp for
the object’s original position; regrasping will be necessary.
Approach the grasp location and grasp the part: Plan a
collision-free path from the robot’s current position to the
chosen grasp position. Grasp the part.
Regrasp the object: If regrasping is necessary, plan a se-
quence of regrasping motions that will enable the robot to
reach a grasp that is legal at the destination. An empty
area of the worktable is used to perform these motions.
Plan an approach path t o the destination: Plan a collision-
free path from the robot’s current position to a point near
the destination.

Place the object at the destination: Generate a force-guarded
motion to place the object at the destination. In a future
version of the system, a compliant motion strategy should
be used.

Subsequent sections explain the operation of the different mod-
ules and how they are used to carry out these steps,

3. Locating the object

The first step in executing a MOVE command is localizing the
object using depth information obtained from a range sensor.
The range sensor is a light-striping triangulation sensor, It is
used to produce a depth map of a small region on the worktable.
The object to be MOVE’d is assumed to be present in this area.

.4fter the depth map is constructed (Figure 2) , the map is
processed as if it were an image, except that “brightness” cor-
responds directly to elevation above the worktable. .r\ st,andard
“edge” operator [Canny 86j is run over the image and extended

linear segments are identified in the resulting array. Kote that
this process identifies 3D edge segments: not just their projec-
tion in an image.

The method used for object localization is a simple hypothesize-
verify algorithm based on matching linear segments in the depth
map to edges in the polyhedral model of the part. This method
is a variation of the method described in ILozano-Perez and
Grimson 861, using edge data instead of face data. The basic
step in the matcher is to take two edges in the .node1 and con-
sider all possible assignments of these edges to pairs of datza

844

Figure 4 shows examples of the matcher in operation, using
edges extracted from depth maps similar to that in Figure 2.

Figure 2. A very simple depth map

edges. If the pairs of model edges are non-collinear, such an
assignment of data edges to model edges is sufficient t o solve for
at most four transformations that map the model coordinate
system into the data coordinate system. The ambiguity in the
transformation arises due to the possible assignment of direc-
tion vectors to the edges. Given such a transformation, we can
predict the location of other model edges in the data and verify
their presence. The assignment that predicts the location of the
most data edges is chosen.

The matcher at tempts to consider only a few assignments
of data edge pairs to model edge pairs. To reduce the set of such
assignments it exploits two basic geometric constraints. First,
a data edge should match a model edge only if their lengths
are compatible: that is, if the length of the da ta edge is less
than or equal to that of the model edge. Second, a pair of da t a
edges can be matched to a pair of model edges if the parameters
describing the relative pose of the edges in the pairs are consis-
tent, taking into account the measurement error. Exploiting
these constraints significantly reduces the number of matches
that need to be considered.

We can describe the relative pose of two 3D edges using
the following parameters (Figure 3): oi - the angle between
the lines supporting the edge segments; d - the length between
the lines measured along the common perpendicular to the lines;
al and a2 - the distance from the base of the common perpen-
dicular to the nearest end of the edge. Note that we only know
the line on which a data edge lies; to obtain a vector we would
need to know an additional sign. Therefore, there is a potential
ambiguity in the parameters arising from the missing sign. This
has to be treated carefully when testing whether two pairs are
consistent.

Figure 3 . Definition of the four parameters that define the relation-
ship between two edge segments.

ning the Canny edge detector on a depth map. (b) The projected
object model located by the edge matcher superimposed on the edge
fragments. This example corresponds to Figure 1.

4. Planning collision-free motions

At a number of points in the operation of the system, a collision-
free path is required from one specified location to another.
Handey uses a simplified version of the path planner described
in [Lozano-PCrez 861. This path planner uses the robot's joint
space as the configuration space.

The obstacles are mapped into a quantized version of this
configuration space by a simple numerical method illustrated in
Figure 5 for a two-link manipulator. Given a value for 61, we
can compute the range of forbidden values of 6'2 due to each of
the obstacles. The set of forbidden ranges of 6'2 for each value of
6'1 comprise an approximation to the exact configuration space.
This space can then be searched for a path. For a manipulator
with three joints, the process described above (applied to joints
two and three) is repeated for all possible (quantized) values of
the first joint angle.

The version of the path planner used by Handey never com-
putes configuration spaces of dimension greater than three, but
it allows motions requiring six degrees of freedom. Essentially,
we assume that a path from the start to the goal exists such

2 x I I

Figure 5. (a) The configuration space obstacles for a two-link ma-
nipulator are built by quantizing 81 and finding forbidden ranges of
8 2 . (b) A sample configuration space with a path obtained by the
path-planning algorithm.

~-

845

that the last three joints of the arm retain their starting values
until some intermediate point where they are changed to their
values a t the goal and never changed after that. It is easy to
construct cases where this assumption will fail, but it works in
a large percentage of actual cases.

The actual planning proceeds as follows: An approximate
arm model is built in which the last three links are replaced
by a box. This box must be large enough to enclose the last
three links, the hand, and any object in the hand, not only at
their start and goal positions but also at intermediate positions
between the two. The three-dimensional configuration space for
this model can then be built. We then find the closest free points
in this configuration space to both the start and goal positions.
A path is found between these two free points. Note tha t t he
complete robot is guaranteed to he safe along this path, for the
whole range of values of the last three joints between the start
and the goal. Therefore, we can simply interpolate the values
of the last three joints between the start and goal values. Then,
we plan a path using the original model of the robot between
the free point closest to the start and the start itself. We also
plan a path from the free point closest to the goal to the goal
itself. In these two paths, the values of the last three joints are
fixed. The concatenation of these three paths form the desired
path.

8. Grasping

The most intensive interaction between perception, planning
and action in Handey happens in grasping. After the target ob-
ject's location has been determined, Handey must choose a pair
of features, such as a pair of parallel faces: for grasping. Then,
i t must choose a path to reach those features that avoids any
nearby objects. In addition to any known objects in the model,
the hand must avoid colliding with any obstacles detected in the
depth map, even if their identity is unknown.

A grasp that is suitable for picking up the object may not
be suitable for placing it at the destination. Handey attempts
t o find consistent with both states. If there is not a single grasp
suitable for both, then a sequence of grasps and intermediate
motions may be necessary.

We model the hand by two opposing rectangular fingers
which can close on an object by sliding along a crosspiece. A

Figure 6. The different groups of approach directions and grasp
classes for a particular orientation of an L-shaped object, heuristi-
cally ranked by desirability.

legal grasp has each finger in contact with a grasp feature on
the object. The feasible grasp feature pairs are: two parallel
faces of the object, or a face and a parallel edge, or a face and
a vertex. The current version of Handey limits its attention to
pairs of parallel faces.

The criteria for a legal grasp are as follows:

0 The grasp must be stable. That is, the location and magni-
tude of the forces and torques exerted by the fingers must
produce a balanced system of forces and be sufficient to
overcome the effect of gravitational forces on the grasped
object.

0 The grasp must be reachable, both at the pickup point and
the putdown point. That is, there tnust be a clear path
to achieve contact with the chosen grasp features a t the
original location of the grasped object. Also, the grasp
must not produce a collision when the object is placed at
its destination.

In the current implementation of Handey we use very simple
heuristics to guarantee stability. Our rationale is t,hat, for small
objects and strong fingers, almost all grasps are stable. Since
we limit ourselves to pairs of parallel faces, the forces are au-
tomatically balanced. Furthermore, we require that there be a
user-specified minimum area of contact between the fingers and
one of the grasped faces.

In general, to guarantee the stability of a grasp one must
compute the forces and torques generated by the fingers, includ-
ing the frictional forces and torques, and compare them to the
gravity forces and torques acting on the object. Only if the ap-
plied forces and torques can balance the gravitational forces and
torques will t,he grasp be stable. A procedure for computing the
forces and torques for a particular grasp is given in [Barber et al
86.1. Future versions of Handey will incorporate a more careful
stability test.

We have placed more emphasis on guaranteeing reachabil-
ity. There are three phases in computing a reachable grasp. The
first phase is choosing the grasp features and a gross orientation
for the hand. The second is planning the detailed grasping rno-
tion. The third is regrasping, when necessary. The following
sections examine these phases in t,urn.

5.1 Choosing a grasp

Before attempting a detailed plan of the grasp, Handey examines
different classes of candidate grasps and evaluates their feasibil-
ity both at the pickup point and the putdown point. A grasp
class is characterized by a choice of object surfaces. Within a

k 4.6

grasp class, there are qualitatively different ways of approach-
ing the grasp. Handey splits the approach directions into groups
determined by which edge of the grasp face is crossed first when
approaching the face. Figure 6 shows the different groups of ap-
proach directions and grasp classes for a particular orientation
of an L-shaped object. The grasps are sorted by a measure of
how vertical the fingers are. Note that the grasps shown here are
representative elements of the range of approach directions that
Handey considers; they are not an exhaustive List of approach
directions.

The feasibi1it.y of one of these grasp groups is investigated
as follows:

e An inverse kinematic solution for the center of the grasp
group is performed. If all the feasible solutions are too
close to a joint limit, then the grasp group is discarded.

e Assuming that the fingers have penetrated into the face
by the minimum amount to guaranlee a stable grasp, check
Lhe range of feasible rotations of the hand about that point.
The two endpoints of such an angular range are shown in
Figure 7 . When computing this range one must consider
potential contacts between the hand and the object to be
grasped and the table, both at the pickup and putdown
position. These two sets of constraints can be treated si-
multaneously by transforming the obstacles at the putdown
position into the pickup position using the inverse of the
transformation relating the putdown to the pickup pose
(see Figure 8). The range of legal angles can be computed
using a submodule of the path planner [Lozano-PCrez 861.

Figure 7 . The extrema of the legal rarge of hand orientations at a
particular grasp point.

Figure 8. The obstacles at the putdown pose are transformed into
pickup pose. A legal grasp in this environment is legal for both poses.

The highest ranked grasp group that passes these tests is used
to compute a grasping motion that considers obstacles in the
depth map. If a grasping motion cannot be found, a different
grasp group is tried.

5.2 Planning the grasping motion

When choosing a grasping motion, we must take into account
the presence of nearby objects as reflected in the depth map.
For this purpose we use a planner specialized for planning the
motion of the hand in the grasp plane. The grasp plane is a
plane parallel to the faces being grasped and midway between
them. When approaching a grasp the fingers remain parallel to
the grasp plane and centered about it but are otherwise free to
rotate and translate in the plane. The restriction to motion in
the grasp plane is intended to minimize the risk of collision with
the object to be grasped.

The planner uses a method loosely modeled on t.he po-
tential field method for obstacle avoidance [Khatib 851. The
straightforward potential field method, although applicable, is
not convenient in this situation because the obstacles are a large
number of points, rather than a few extended obstacles. Also,
the method described here is less likely to get stuck in local
minima of the potential field.

The grasp plane is bounded by a rectangle whose size de-
termines the range of motion allowed the hand during grasp-
ing. The rectangular volume the hand can sweep out while
constrained t o move in the grasp plane is the grasp volume. In
fact we must consider separately three grasp volumes - one for
each finger and one for the crosspiece. Only these volumes need
to be investigated for potential collisions.

Consider a point specified by the depth map which lies
within or above a grasp volume. The point can be thought of as
the origin of a ray which extends downward through the table.
That portion of the ray which lies within the grasp-volume is
projected onto the grasp plane. Following this procedure for all
such points marks the portion of the grasp plane where objects
intrude into a grasp volume, that is, places where the hand can-
not go. For ease of computation the projected line segments are
discretized - becoming filled cells in a grid imposed on the grasp

lane.
We establish grasp points on the face of the object to be

grasped and on the finger which will contact it. The goal of the
grasp motion planner is to bring these two points as close to-
gether as possible without causing a collision between the hand
and other objects. In the absence of intervening filled grid cells
in the grasp plane the motion of the hand would be a simple
translation along the vector connecting the finger and object
grasp points. We call the unit vector in this direction the free
motion vector.

Surrounding the hand at some distance and moving with
it are bump lines. A bump line is a line segment on the grasp
plane which is checked each iteration to see if it crosses a filled
grid cell. A bump vector is a unit vector perpendicular to a
bump line pointing away from the hand (see Figure 9). Also
associated with each bump line is a multiplier used for limiting
motion along its bump vector. This multiplier is related to the
distance between the hand and the bump line.

After investigating all the bump lines for collisions with

filled cells we construct a unit circle and map onto it the bump
vectors and free motion vector. In Figure 9, we show the product
of the bump vectors and their multipliers. For non-colliding

847


~~~ 

lIIII 
Figure 9. The  grasp  approach  planner  algorithm. 

bump lines the  multiplier is 1, for  colliding  bump  lines I t  IS 0 .  
Not  shown  are  bump  lines  which  surround  the  hand at  a  greater 
distance;  they  may  have  collision  multipliers  greater than 1. 

There  are  several  possible  ways  to  combine  these  vectors  to 
pick a  direction  to move the  hand.  One way is  simply  to  move 
along  the  non-zero  bump  vector  closest in direction  to  the  free 
motion  vector.  (This however leads  to  stairstep  motion of the 
hand.)  Another way is  to move along  the  free  motion  vector 
as far  as is allowed by the  scaled  bump  vectors,  choosing  the 
former  procedure  only if latter  computed  no  motion. 

The  bump lines  also  provide a convenient way of computing 
a “torque”  to  rotate  the  hand. Any  colliding bump  line  produces 
a  torque  whose  magnitude  is  proportional  to  the  cross  product 
of the  bump  vector  and  a  vector  connecting  the finger grasp 
point  and  the  center of the  bump  line.  The  total  torque  on 
the  hand is just  the  sum of torques  generated by each  colliding 
bump line. 

In each iteration  the  distance  between  the finger and  the 
object  grasp  points is checked. If this  distance  drops below a 
preselected  threshold  the  grasp  motion  planner  stops  and  re- 
turns  the  path it has  discovered.  However,  as  this  method  may 
fail to find a suitable  grasp,  the  planner  must  be  terminated 
after  a  certain  number of iterations  in  any  case.  Even  after  such 
a termination  a  grasp is legal  only if the finger and  the  grasp 
object  face  overlap  sufficiently. 

An  example of planner  output is shown  in  Figure 10. 

Figure 10. The  grasp  approach planner in operation 

5.3 Regrasping 

In regrasping,  one  wants  to find a sequence of pickup  and  put- 
down  motions  that will reorient  the  object so that  it  can  be 
placed at  the  destination  without collision. The  regrasping  al- 
gorit.hm  used  in  Handey is described  in  jTournassoud,  Lozano- 
Pirez,  and  Mazer 871. 

6. Calibration 

The  operation of Handey  requires  having  accurate  calibrations 
between  several  coordinate  frames.  The key systems  that  main- 
tain  their own coordinate  frame  are  the  range  sensor  and  the 
modeling  system. We are  interested in the  mapping  between 
these  coordinate  frames  and  the  Cartesian  frame  supported by 
the  robot  controller.  This  section  describes  the  calibration of 
the  range sensor  frame  relative  to  the  robot  frame. 

The  calibration  procedure  assumes  that  the z axis of the 
range  sensor’s  frame is parallel  to  the z axis of the  robot’s  frame 
and  that  the height  of the  table is known  in  both  reference 
systems.  These  assumptions  are  enforced by the  mechanical 
construction of the  range  sensor. So the  calibration  problem is 
a two  dimensional  problem  consisting of computing  a  rotation 
about  the z axis  and  a  linear offset  in the x-y plane. 

Phase  one:  Computing  the d a t i o n .  A cube is placed  in 
the  robot’s  gripper so that  the  cube is aligned  with  the  gripper, 
but  its  position  relative  to  the  gripper is arbitrary.  The  robot is 
commanded  to move the  cube  in  the field of view of the  range 
sensor.  Let ( z w l ,  y w l )  be the  coordinates of the  robot  wrist in 
the x-y plane of the  robot  frame  and (zwl,yvl) be  the coordi- 
nates of the  centroid of the single  face of the  cube visible to  the 
range  sensor  (the t value is not  used). 

Then,  the  robots moves to  (zrl + dx, yrl) without  changing 
orientation. dz is chosen so that  the  cube  remains in the field of 
view of the  range  sensor, ( m Z ,  yvz) are  the new coordinates of 
the  face  centroid given by the  range  sensor.  The vector (xu2 - 
zwl, yvz - yul) is parallel  to  the x axis of the  robot  frame,  this 
allows  us to  compute  the  rotation between the sensor  frame  and 
the  robot  frame  as: R = R o t ( i , a t a n 2 ( 2 ~  - zvl,ywz - yvl)), 
where Rot(v, 0) is the homogeneous  transformation  representing 
a rotation by B radians  about  the  vector v. 

Phase two: Computing  the oflset .  Since  nothing is assumed 
concerning  the  relative  location of the  wrist  and of the cen- 
troid of the  cube  face,  let ( f z , f y )  be the  projection of this 
vector  in  the  z-y  plane of the  robot  frame.  The goal of the 
next  motion is to  compute f z  and f y .  The  robot is com- 
manded  to  rotate  the  hand  about  the  robot  frame’s t axis by 
an  angle of K ;  while  keeping the  wrist  position  fixed.  There- 
fore,  the  cube face’s centroid moves to  the  opposite end of a 
circle  centered  on  the  projection of the  wrist.  Call  the new 
centroid  location (zv3,yv3). We can now write:   (fz,fy) = 
0.5R-’(zvz - xw3,yvz - yw3), The offset  between the origin of 
the  robot  frame  and  the origin of the  sensor  frame is given  by: 
(oz ,oy)  = (zrZ,yrz) + ( f z , f y )  + R-’(xv2,yvz)). If h, is the 
height of the  table in the  robot  frame  and h,  and  the height in 
the  sensor  frame  then o, = h, - h, is  the z offset  between the 
two  frames. 

Finally  the  transform  that  maps  points in the  sensor  frame 

848 



to  points in the  robot  frame  can be written  as: Trans(o,, oyr o,)R-‘, 
where Trans (x ,  y,  z )  is the  homogeneous  transformation  corre- 
sponding  to a translation of the  origin  to (x, y, z ) .  

7. Discuss ion  

Building  Handey  has been quite  difficult.  This  reflects  the  usual 
difficulty of building  large  systems. We feel that  it was  feasible 
a t  all due  to  the use of very simple  and  robust  algorithms  for  the 
constituent  modules,  such  as  the  path  planner  and  recognition 
module. 

The  most  significant lesson we have  drawn  from  our  ex- 
perience so far  with Handey  is the  need for a  systematic  and 
efficient  way of dealing  with  the  number of options  available 
while  constructing  a  plan.  It  is  instructive  to  consider  the  num- 
ber of geometrically  different  ways  one  could go about  stacking 
two  blocks.  Consider  the block symmetries,  the  hand  symme- 
tries,  multiple  kinematic  solutions,  multiple  grasp  points,  and 
multiple  paths. In most  cases we don’t  care which  solution is 
chosen but,  unfortunately,  many of the  possible  solutions  can be 
impossible  due  to  the  presence of nearby  objects  or  limitations 
in the  robot’s  joint  angles,  etc.  Handey  simply  lists  all  possible 
solutions,  ranks  them  heuristically,  and  tries  them  sequentially 
until  one  works.  While  adequate in the  short  term,  this  strategy 
leaves  much  to be desired. In earlier  work [Lozano-PCrez and 
Brooks 851,  we have  considered  the  use of constraints  as a mech- 
anism for making  these  decisions.  Constraint  propagation  and 
satisfaction,  however,  can  be  extremely difficult and  computa- 
tionally  expensive.  This  area  requires  a  great  deal of further 
work. 

Future work  on  Handey  will  also attempt  to  expand  its  ca- 
pability  to  do  sensor-guided  assembly  and  to  do  meaningful  error 
detection  and  recovery. 

Acknowledgmen t s  

This work  was  funded  primarily by the Office of Naval Re- 
search  under  contract N00014-85-K-0214. Additional  support 
was  provided by an  NSF  Presidential  Young  Investigator  Award 
(Lozano-PCrez)  and  the  French  CNRS  (Mazer).  The  visits of 
Lanusse  and  Tournassoud  to  MIT  were  funded by their  home 
organizations in France: E. T .  C. A.  and  INRIA  respectively. 

Bibliography 

A. P. Ambler, H. G.  Barrow,  C. M. Brown,  R. M. Burstall,  and 
R. J .  Popplestone,  “A  versatile  system for computer-controlled 
assembly.” Artificial  Intelligence, Vol 6,  1975,  pp 129-156. 

J. Barber,  R. A. Volz, R.  Desai,  R.  Rubinfeld,  B.  Schipper, 
and J. Wolter,  “Automatic  two-fingered  grip  selection,” in Proc. 
IEEE  Conf.  Robotics and Automation, San  Francisco,  1986,  pp. 
890-896. 

J .  Canny,  “A  Computational  Approach  to  Edge  Detection,” 
IEEE Trans. on PAMI ,  Vol 8 ,  No 6,  1986,  pp  679-698. 

G.  Giralt,   R. P. Sobek, R. Chatila,  “A  multilevel  planning 
and  navigation  system  for a mobile  robot: A first approach  to 
Hilare,” in Proc.  6th  IJCAI, Tokyo,  1979. 

K. Ikeuchi, H. K .  Nishihara,  B. K .  P.  Horn, P. G .  Sobal- 
varro, S. Nagata,  “Determining  grasp  configurations  using  pho- 
tometric  stereo  and  the  PRISM  binocular  stereo  system.” Robotics 
Research, Vol 5,  No 1, 1986,  pp 46-65. 

0. Khatib,  “Real-time  obstacle  avoidance  for  manipulators 
and  mobile  robots,” in Proc. IEEE  Conf.  Robotics  and  Au- 
tomation, St.  Louis,  1985,  pp. 500-506. 

T. Lozano-PCrez, “A Simple  Motion  Planning  Algorithm 
for General  Robot  Manipulators,” in Proc.  5th A A A I ,  Philadel- 
phia,  1986,  pp. 626-631. 

T. Lozano-PCrez and R. A.  Brooks,  “An  Approach  to  Au- 
tomatic  Robot  Programming,” MIT AI Lab.,  AIM  842,  1985. 

T. Lozano-PCrez and  W.  E. L. Grimson, “Off-line planning 
for on-line  object  localization,” in Proc. of FJCC., Dallas,  1986. 

N. Nilsson,  “A  mobile  automaton:  an  application of artifi- 
cial  intelligence,” in Pmc.  1st   IJCAI,  1969,  pp. 509-520. 

R. P. Paul,  “Modeling,  trajectory  calculation,  and  servoing 
of  a  computer  controlled  arm,”  Stanford AI Lab.,  AIM  177, 
1972. 

P.  Tournassoud,  T.  Lozano-Pbrez,  and E. Mazer,  “Regrasp- 
ing,” in Proc. IEEE  Conf.  Robotics and Automation, 1987. 

P. H.  Winston,  “The  MIT  Robot,” in Machine  Intelligence 
7, Edinburgh  University  Press,  1972,  pp 431-463. 

849 


