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Abstract. Many robot applications require using sensors 

to locate objects whose initial pose is constrained but not 
exactly known. Most techniques for object localization as- 
sume that the object’s pose is completely unknown. This 
paper describes a simple method for localizing known ob- 

jects in a scene. We describe how an off-line computation 
that exploits constraints on the object’s expected pose can 

be used to reduce the expected time for the on-line compu- 
tation to localize the object. The objects treated here are 
modeled as polyhedra that, in principle, can have up to six 

degrees of positional freedom relative to the sensors. 

the object. An important subgoal is that both the on-line 
and off-line methods should be simple enough to be easily 
implemented. 

The method described here can be applied to both two- 
dimensional and three-dimensional sensing situations. In 
the two-dimensional case, objects have only three degrees 
of positional freedom relative to the sensor (two transia- 
tional and one rotational). In this case, the sensors (and 

their pre-processors) are assumed to compute edges, that is, 
line segments in the scene. In the three-dimensional case, 

objects have up to three translational and three rotational 
degrees of .freedom. In this case, the sensors (and their 
pre-processors) are assumed to compute planar patches in 
the scene. We do not deal with the general case in which 
only two-dimensional data is available but the object has 

more than three degrees of freedom. For the sake of brevity, 
we limit our discussion to the three-dimensional case; the 
specialization to two-dimensions is straightforward. 

0. Introduction 

The problems of object recognition and localization have re- 
ceived a great deal of attention (see [Jain 86, Grimson and 
Lozano-Perez 84,851 for reviews of the literature). Most 
approaches to recognition assume that the object’s pose is 

entirely unconstrained. In most practical robotics applica- 
tions, however, the uncertainty in part location is bounded 
to relatively small ranges. These constraints may come 
from knowledge of the feeding mechanisms or the physics 
of part stability. In most recognition systems, it is difficult 
to incorporate these type of constraints on the initial object 

pose. There have been a few systems where such informa- 
tion is readily incorporated, but the methods themselves 
have tended to be fairly complex [Belles 76, Brooks 81, 

Goad 83, Baird 85, Faugeras and Hebert 831. Nevertheless, 
the approach described here was significantly influenced by 

these previous methods, especially Goad’s excellent paper. 
The localization algorithm described here is quite simple 

as is the mechanism for incorporating any available con- 
straints on object pose. In the absence of any global con- 
straints, the algorithm will still work, albeit more slowly. 

The specific problem considered in this paper is how 
to locate a known object in a cluttered scene using sensors 
that provide dense position information. We assume that 
worst-case bounds on the pose of the object are available, 

as well as bounds on sensor measurement error. Our goal 
is to exploit the known bounds on object pose so as to re- 
duce the amount of on-line computation required to localize 

We assume that the objects of interest can be modeled 
as sets of planar faces. Only the individual plane equations 
and dimensions of the model faces are needed. No face, 
edge, or vertex connectivity information is required; the 
model faces do not even have to be connected. Because 
of this, the method can be applied to curved objects that 
are readily approximated by planar patches. Of course, 
such planar approximations are not adequate for all cases, 
for example, objects of high curvature or multiply curved 
surfaces. 

We assume the availability of a sensor and pm-processor 

that can compute the planar patches present within some 
given rectangular sub-window of the scene. A great deal 
of work in computer vision has been dedicated to solving 

this problem of obtaining depth from two-dimensional vi- 
sual data (see [Horn 861 for a representative sample). Other 
less computationally-intensive methods exist for obtaining 
the required patches, notably range sensing (see [ Jarvis 831 
for a review). We will not address this problem further. 

In section 1, we present the basic on-line localization 
method. in section 2, we describe the of&line computations 

required for the on-line method. In section 3, we discuss 
the method and point out areas for further work. 
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1. A simple on-line localization algorithm 

The process of localization is carried out in three steps: 

. The first step is to identify possible assignments of 
sensed data to model faces consistent with a set of mea- 
surements derived from the model. This is the crucial 
step. 

. The second step is to identify the pose of the object 
from each of these assignments. 

. The third step is to pick the solution that best matches 
all the available data. 

At this level of description, the method is similar to the in- 
lerpretation tree method described in (Grimson and Lozano- 
Perez 84, 851 and draws results from that earlier method. 
The method described in this paper differs in the first of 
these steps, while the earlier method does not do any hy- 
pothesis verification, the method described here goes very 
early into a hypothesize/verify cycle. 

The current method is geared to situations where the 
set of possible matches of data patches to model faces can 

be constrained a priori. The goal is to reduce the combi- 
natorics of the matching process in the earlier methods by 
exploiting the global position and orientation constraints. 

1.1 Sensor Input 

The on-line algorithm uses as input a list of the planar 
patches present in each of a set of windows specified by 
the off-line planner (see section 1.2). The patch must be 
completely within the window to be elegible. Each patch 
obtained by the sensor is characterized by a list of points 
and a plane equation in the form n .x = c, where n is the 
unit normal to the plane. All the points are required to be 

inside the same face of the object. We represent patches by 
a set of points, instead of polygons, so as to simplify the 
processing and to accommodate a wide variety of sensors, 
including sparse sensors such as tactile sensors. 

It is possible to use information about any patch fea- 

ture, such as, size, color, reflectivity, and texture, to limit 

the possible model faces that a patch could match. The 
availability of these measurements can significantly reduce 
the combinatorics of the matching process. This is straight- 
forward extension and we do not discuss it further. 

1.2 Constraints from the off-line planner 

The information from the off-line planner is used to reduce 
the combinatorics of the matching process. There are three 
sorts of constraints that are useful for this purpose: (1) 
restrictions on the data patches that can be involved in 
match a given model face, (2) restrictions on the model 
faces that can be involved in a solution, and (3) a ranked 

list of legal initial hypotheses. In particular, the off-line 
planner provides the following information for the on-line 
matching algorithm: 

A list of windows - each data patch is assigned to one 
or more rectangular windows in the scene. 

A list of matching constraints for each model face - 
each face requires that the patch that is matched to 
it be drawn from a specific window, furthermore there 
are constraints on the normal of the matching data 
patch. 

Ranges of possible measurements between pairs of model 
faces - these are used to check the consistency of as- 
signments of patches to model faces. 

A list of visible face lists - these lists are indexed by 

the face pairs in the initial hypotheses and describe the 
faces visible if a particular hypothesis is correct. 

An ordered list of face pairs - these pairs are used to 

form initial hypotheses as to the object pose; they are 
ordered by size of the faces. 

The windows could, in principle, be used to restrict the 
application of the sensor pre-processing to subsets of the 
scene. The windows, however, may overlap arbitrarily. In 

the general case, it is preferable to apply the sensor pre- 

processing to the whole scene and then assign the data 
patches to the corresponding windows. That is the strategy 
we have used. In simple situations where only a few win- 
dows are needed, it makes sense to limit the pre-processing 
to these windows. In any case, the main purpose of the 
windows is not to reduce the sensory pre-processing but to 
reduce the combinatorics of the matching process. 

The key information computed by the off-line planner 
are the constraints on face assignments. Each face is re- 
stricted to matching a patch from a specific window. In 
fact, the windows are actually computed as the loci of par- 
ticular model faces. The windows enforce the position con- 

straints on faces derived from the global pose constraints. 

Associated with each face are constraints on the data patch 
normal that can match that face. This constraint is ex- 
pressed as a list of cones, that is, center vectors and a min- 
imum value for the cosine of the angle between the patch 
vector and the specified vector (see section 2). Also associ- 
ated with each face is a window where the matching data 
patch must appear. 

The off-line planner identifies those pairs of model faces 
that can appear in some view of the object consistent with 
the pose constraints. Of these pairs, the ones with signifi- 
cantly different orientation can be used to obtain an initial 
solution for the object’s orientation. It is these pairs that 
drive the initial phase of the matching algorithm described 
in section 1.3. 

The off-line planner also computes all the sets of model 
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faces that can be simultaneously visible given the known 
pose constraints. These are used during the verification 

phase of the matching algorithm. 

The object model provided by the user is described by 
a set of planar faces. Each face is specified by a polygon, 
which may be non-convex, and a plane equation. This form 

of the model is not particularly useful to the matcher. The 

off-line planner computes from this model three tables de- 

scribed below. Let pi, pj and ni, nj be respectively points 
on and normals to faces i and j. 

the angle between their normals. Then, given a candidate 
pair of model faces, one can in constant time limit the data 
patch combinations to those whose angle is within the mea- 
surement error of the angle between the model faces. Only 
these data pairs need to be subjected to further testing. 

Having obtained the feasible matches to a model face 

pair, the next stage is to use them to obtain supporting evi- 
dence for particular combinations of visible faces. Note that 

the match of two data patch normals (ni, nj) to two inde- 
pendent model face normals (m;, mj) determines uniquely 
(up to a sign) the rotation matrix R, where Rx + p is the 

transformation that maps points, x, in the model coordi- 
nate system to vectors in the sensor coordinate system. 

l Distance - For each pair of model faces, i and j, the 

upper and lower bounds on distances between all pos- 
sible pairs of points pi and Pi. 

. Angle - For each pair of model surfaces, the angle 

between the face normals ni and nj. 

. Distance vector - For each pair of model surfaces, the 
upper and lower bound on the values (Pi - pi) -ni and 
(pi - pi) - nj, that is, the component along the face 

normals of vectors connecting the faces. 

In each case, the values in these tables take into account 

the error bounds on measuring both the patch normals the 
positions of points. Algorithms for computing these tables 
are found in (Grimson and Lozano-Pdrez 841. The combina- 

tion of these three types of measurements has been shown 
to be quite powerful in discarding invalid matches even in 
the presence of significant measurement error [Grimson and 
Lozano-P&ez 84, 851. 

1.3 The matching algorithm 

The matching algorithm is very simple and is based on the 
assumption that the set of data patches that can match a 
given model face is relatively small (this is up to the off-line 
planner to guarantee). The method works by considering 
each of the possible model face pairs determined by the off- 
line planner as suitable for constructing an initial hypoth- 
esis. The first step is to find all the pairs of data patches 

that can be matched to the face pair under consideration. 
The data patch pair must satisfy the following conditions: 

Using R we can compute for each potentially visible 
face on the object, the nominal data patch normal that can 
match that face. We must take into account measurement 
errors when matching the predicted normal to actual mea- 
sured normals. 

. Each data patch must come from the window specified 
by the off-line planner for the corresponding face. 

The match also constrains the translation vector, p, to 
be on a line determined by the planes of the two measured 
patches. The range of values of p can be determined as 
follows: Let the equation of the patch planes be of the form 
ni .X = ci and the equation of the model planes be of the 
form mi . x = di. Then we can write p as a one parameter 

family of vectors: 

. The measured normals for the data patches must be 

within one of the cones associated with the correspond- 
ing face. 

p = cxn, + /hj + r(ni X nj) 

where y is the free parameter and 

. The three sets of measurements (distance, angle, and 
distance vector) for the data patch pair must be con- 
sistent with those of the model face pair. 

a = (Ci - di) - (n; . nj)(cj - dj) 

1 - (lli . Xlj)' 

p = (Cj - dj) - (ni . nj)(G - 4) 

1 - (Iii . nj)’ 

We could find such data pairs by looking at all combina- The parameter -y can be constrained by requiring that all 

tions of patches, but that would be time consuming. It the points in the data patch be mapped by the resulting 

is straightforward to improve the expected performance by transformation to be inside the model face. In our imple- 

using hashing. Simply pre-process all pairwise combina- mentation, we compute bounds on 7 by considering the set 

tions of data patches and place them into buckets based on of translations that map the center of area of the patch onto 

The rotation matrix R can be easily computed in the 
form Rot(r,B), where r is the axis of rotation and 6 is the 
rotation angle. The axis of rotation is the unit vector in 
the direction 

(II& - Iii) X (mj - nj) 

and the angle of rotation can be obtained from these two 
relationships 

case= l- 
1 - (ni * XX&) 

1- (r*Ili)(r*mi) 

sin0 = 
(r X I&) - mi 

1 - (r * ni)(r s m;) 

For a detailed derivation see [Grimson and Lozano-PBrez 
841. 
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each of the vertices of the face. 

Let each potentially visible face have plane equation 
mk - x = dk. Given the range of p we can compute not 
only the predicted normal, Ii%&, for a matching data patch 

but also the range of values of the offset c in the plane 
equation of the data patch: c = dk + (Rmk) . p, where p is 
parameterized by 7. 

We also know, from the off-line computation, the win- 

dow in which the data patch must appear. Thus, the ini- 
tial verification process consists of checking the windows for 
patches satisfying the position and orientation constraints. 
Of course, once a third independent patch is found, the 
position and orientation can be determined uniquely up to 

the sensing error. 

Once a feasible pairing of model faces and data patches, 
together with the corresponding object pose(s), is found 
there still remains a detailed verification process. This pro- 

ceeds in two steps: (I) check that the patch points are all 
mapped to the inside of the face polygon by the computed 
transformation and (2) check that the patches measured 
in each of the windows are consistent with the computed 
model pose, that is, that no data patch has been measured 

to be below where the model predicts a surface to be. Note 
that if a data patch is above a predicted surface then this is 
neutral evidence, since this situation could arise from occlu- 

sion. Nevertheless, one wants to ensure that a hypothesis 
accounts for a sufficiently large percentage of the object’s 

measured surface. 

The matching process described above should be car- 
ried out in “depth-first” fashion, verifying each hypothe- 
sis as it is generated, rather than in “breadth-first” fash- 

ion, finding all the hypotheses and then verifying each one. 
Doing the matching depth-first allows us to terminate the 
matching once an adequate match is found. Observe that 
if the object were completely visible, each and every initial 
hypothesis should lead to a complete and correct interpre- 
tation. This points out the redundancy of examining all 
the initial hypotheses. In practice, face occlusion requires 
that we be ready to examine all the possible pairings even 

though we seldom will. Note that in the depth-first mode 
the ordering of the hypotheses by likelihood of locating the 

faces can significantly reduce the expected time to verify 

the hypothesis. 

Let us quickly recap the flow of control in the on-line 
matcher. First, the sensing is done within a window guar- 
anteed to contain all the faces. All the data patches are 
found and allocated to any windows that completely con- 
tain the patch. The matcher then proceeds through its list 
of legal face pairs attempting to form initial hypotheses 

and then verify them. Once an acceptable hypothesis is 
found, the matching stops. For each face pair, the matcher 
looks for a patch pair that has the appropriate angle be- 
tween the normals. Each patch must be in the appropriate 

window for the matching face and satisfy the orientation 
constraint. Also, the assignment of the two faces to the 
two patches must pass all the pairwise constraints derived 
from the model. Only after all these test are satisfied does 

the matcher have a valid initial hypothesis. The next step 
is to verify the hypothesis. First, a potentially visible face 
is chosen, its orientation and range of displacements pre- 
dicted and then its presence verified. If a matching patch 
is located, the pose of the object can be computed and all 

the other face predictions checked. A completeness score 
(based on correctly predicted area) is computed for the hy- 
pothesis. 

1.4 Complexity 

The matching method described above can be used with a 
single window and no off-line computation. In that case it 

has a worst-case complexity O(n3n3) where n is the num- 
ber of faces in the model and m is the number of data 
patches in the scene. This naive bound is simple to de- 
rive: The outer loop considers all n2 permutations (with 
repetition) of the n model faces, for each such pair it tests 
for consistency all m(m - 1)/2 pairwise patch combina- 
tions (without repetition). In the worst case, each pair of 
these O(n2m2) combinations needs to be examined further. 
The further computation requires checking for each of the 
n faces of the model, each of the m data patches. 

This bound for matcher performance is for the very 
worst case. The angle bucketing described above should 
improve the expected performance. In this version of the 
algorithm, one still has the O(n2) outer loop, but one ex- 
pects significantly fewer than m(m - I)/2 data patches will 
have to be considered. Having found a pair of model faces 
and data patches, they can be tested for consistency with 

the distance, angle, and distance vector constraints. This 
will further reduce the combinatorics of the method. Of 
course, the actual performance will depend on the object 
model and the measured data. The worst performance will 
be for a very symmetric object such as a cube. 

Thus far, we have not considered the effect of hav- 

ing a priori bounds on the object pose. In the absence of 
such bounds we are limited to using coordinate-frame inde- 
pendent constraints, such as angles between pairs of faces. 
Once we know bounds on the pose of the object, we can con- 
strain individual matches. For example, suppose we knew 
that the object was in some particular stable pose on a 
horizontal table, then the .z component of each face normal 
is known within the measurement error. Given a candi- 
date model face, only data patches whose normals have z 
components in the appropriate range need be considered as 

matches. This reduces the effective number of data patches 
to be the expected number of data patches with the same 
2 component. 
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The matching algorithm described in section 1.3 is 

aimed at exploiting this type of constraint. The windows 
enforce global position constraints and the angle cones as- 
sociated with each model face enforce global orientation 
constraints. The purpose of these constraints is to mini- 
mize the number of data patches that can match a model 
face. In the ideal case, only a single patch can match each 
face and the whole algorithm boils down to finding three 
visible data patches. 

These constraints, therefore, affect only the inner loop 
of the matcher; there still remains a potentially O(n’) outer 
loop. The algorithm attempts to reduce the expected num- 

ber of initial hypotheses that need to be verified in two 
ways. The pre-processing of the pairs of model faces serves 
to capture other global constraints such as the fact that par- 
allel faces cannot be used for the initial hypothesis and that 
not all pairs of faces can be visible simultaneously. These 
constraint tend to reduce the number of initial pairs well 
below the n2 value. The constraints derived from the model 
(distance, angle, etc.) are used to prune out those initial 
hypotheses that remain before any detailed prediction and 
verification is done. 

1.5 Example 

Here, we consider a simple example of the matching algo- 
rithm; figure 1 outlines the stages of processing. Figure 

1A shows three-dimensional depth data of a very cluttered 

I 

1 Figure 1. 

scene obtained with a structured light range sensor, fig- 
ure 1B shows the model of the target object given by the 
user, figure 1C shows the result of pre-processing the depth 
values to obtain planar patches, figure 1D schematically 
suggests the matching process of patches to faces, and fig- 
ure 1E shows the resulting localized object superimposed 
on the original scene. 

Note that the matching algorithm can operate with no 
bounds on the pose of the input object. In that case, there is 
a single window within which all data patches can be found, 
also, there are no global constraints on the orientation of 
matching patches. The constraints that remain in effect are 

the pairwise matching constraints derived from the model, 
the pairwise visibility constraints, and the constraint that 
face pairs for the initial hypothesis have independent nor- 
mals. Under those circumstances, the algorithm finds 865 
legal initial hypotheses in the scene shown in figure 1. Re- 
call that an initial hypothesis is an assignment of a pair of 
model faces to data patches that satisfy all the constraints. 

Note that for this example n = 12 and m = 30, so the 
worst case is 62,640 potential hypotheses. This illustrates 
that even in the absence of global pose constraints, the 
coordinate-frame independent constraints are quite power- 

ful. 

Continuing the example, assume that the target ob- 
ject’s pose is constrained so that all the patches are within 
a smaller window (say with m = 15). This constraint re- 
duces the number of potential initial hypotheses by roughly 

a factor of four (15,120). Furthermore, assume two specific 
faces can be constrained to smaller sub-windows (see figure 
2), each with at most five patches in it (m = 5). Then, 

Figure 2. 

the upper bound on the legal number of initial hypotheses, 

even without considering the other geometric constraints 
is cut by approximately a third (10,540). We can also ex- 
ploit the fact that the two front faces and two back faces 
can never be simultaneously visible, similarly the two top 
faces and the bottom face. This eliminates an additional 
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1260 possible hypotheses. All of these numbers address the 
worst case bound; as shown above the actual number of 
hypotheses is typically substantially less. In the example 
shown above, of the 865 legal pairwise interpretations, 642 
satisfy the window constraints described above. 

In addition to the window constraints, there are global 

face orientation constraints that reduce the expected num- 
ber of patches that can be assigned to the faces. These 

constraints will effectively reduce the value of m within the 
windows. As we saw above, reducing m produces large 
reductions in the possible number of hypotheses. For ex- 

ample, if the expected value of m can be uniformly reduced 
to 5, then the upper bound on the hypotheses (without 
the visibility constraint) is only 1040. The visibility con- 

straint prunes an additional 120 potential hypotheses. The 

actual implementation actually had to consider 266 initial 
hypotheses. 

2. The off-line planner 

The efficiency of the off-line planner is not as crucial as that 
of the matching algorithm. Accuracy is not essential either; 

the only requirement is that the bounds be conservative. 
Therefore, we have adopted essentially brute-force sampling 
techniques for all the computations of the off-line planner. 

2.1 Windows for the faces 

Windows can be computed as rectangular bounds on the 

loci of the face’s vertices over the range of legal poses. That 
is, the legal orientations of the object are sampled and the 
position of each face’s vertices are computed. An enclos- 
ing rectangle is computed for the vertices of each face and 
updated so as to include all the point positions. This rect- 

angle is then swept over the range of legal z, y translations 
of the object (also a rectangular range). 

This computation generates a rectangular window for 

each face. Windows that overlap by some large fraction 

of their area are merged to form a single window. This is 
done to reduce the amount of computation that the sen- 
sory pre-processor needs to do when it assigns patches to 
windows. A window that contains all the other windows is 
also computed; this window bounds the area where sensor 

processing needs to be done. 

2.2 Face orientation constraints 

The global orientation constraints on the faces are repre- 
sented as a set of cones for ease of testing. This can also 
be computed while sampling the range of object orienta- 
tions. We proceed by tesselating the Gaussian sphere into 
the faces of an icosahedron. This gives us twenty uniformly 

distributed orientation buckets, represented as cones whose 
center vectors are. the normals of the iscosahkdron’s faces. 
As we sample the orientations of the object, we keep track 
of which of these buckets the normal of each face falls in. 
This list of buckets is a conservative representation of the 
constraint on the orientation of the- data patch that can 
match a face. 

2.3 Visible faces 

Potential visibility is determined by examining the sign of 
the component of the face normal along the sensing direc- 
tion. This is what is known in graphics as “back face” 
elimination, rather than a full visible surface computation. 

The combinations of visible faces are also computed as the 
orientations of the object are sampled. 

2.4 Face pairs 

The planner constructs the list of all pairs of simultaneously 
visible faces whose normals make an angle greater than a 

predefined threshold (z/6 in our case). The list is ordered 
so that .pairs involving large faces are at the front of the 

list. These are the most likely faces to be visible in spite of 
occlusion. 

2.5 Pairwise geometric constraints 

See [Grimson and Lozano-Perez 841 for a description of how 

these constraints can be computed for polyhedral models. 

3. Discussion 

The algorithm presented in this paper is primarily based 
on a prediction/verification style: predicting the orienta- 

tion and positions of faces in the model and verifying the 
presence of consistent data patches. The hypotheses are 
driven off of pairwise matches of faces to patches and it is 
the number of possible matches at this level that determines 
the performance of the method. In the unconstrained case, 
the algorithm needs to examine a large number of initial 
hypotheses. By considering some simple constraints aris- 
ing from global constraints on the object pose, the num- 
ber of legal initial hypothesis is significantly reduced to a 
manageable number. Recall that the actual prediction and 
verification process is already reasonably efficient so that 

hundreds of hypotheses can be evaluated in a matter of 
seconds. 

Initial indications are that the method performs ex- 
tremely well when the pose of the object is tightly con- 
strained. As the range of possible poses grows, the per- 
formance reaches a plateau dictated by the performance of 
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the algorithm in the absence of constraints. Of course, this 

limiting performance is a non-linear function of the number 
of faces and number of data patches. Future work will at- 

tempt to derive better expected bounds on the performance 
of the algorithm. 

The main advantage of the method described here is 

its simplicity. The major limitation of the algorithm is its 
reliance on planar face approximations; extending the ap- 
proach to curved objects would not be straightforward. An- 

other disadvantage is the relatively weak coupling between 
the sensor processing stage and the matching. In principle, 

a tighter coupling could be implemented so that the amount 
of sensor processing could be reduced. On the other hand, 

the simplicity of the algorithm is due largely to the fact 
that the pre-processing is simple and uniform. 

The on-line matching algorithm described in section 

1 has been implemented on a Symbolics Lisp Machine; the 
off-line planner is currently being implemented. The testing 
of the on-line method has been done with simple window 

and orientation constraints specified by the uqer. 

Acknowledgments 

We thank Philippe Brou for kindly providing the laser rang- 
ing system with which we obtained the data reported in fig- 
ure 1. This report describes research done at the Artificial 

Intelligence Laboratory of the Massachusetts Institute of 
Technology. Support for the Laboratory’s Artificial Intelli- 
gence research is provided in part by a grant from the Sys- 
tem Development Foundation, and in part by the Advanced 
Research Projects Agency under Office of Naval Research 

contracts N00014-80-C-0505 and N00014-82-K-0334. 

Bibliography 

Baird, H. 1986. Model-based recognition. MIT Press, Cam- 
bridge, Ma. 

Belles, R. C. 1976. Verification vision within a pro- 
grammable assembly system. Stanford Artificial Intelli- 

gence Laboratory Memo 295. 

Brooks, R. A. 1981. Symbolic reasoning among 3d 
models and 2d images. Artificial Intelligence. 17(1-3):285- 

348, August. 

Faugeras, 0. D. and Hebert, M. 1983. A 3D recogni- 
tion and positioning algorithm using geometrical matching 
between between primitive surfaces. Proc. Eigth Inl. Joint 
Conf. on Artificial Zdelligence, Karlsruhe, W. Germany, 
996-1002, August. 

Goad, C. 1983. Special purpose automatic program- 

ming for 3d model-based vision. in Proceedings of DARPA 
Image Understanding Workshop. 

Grimson, W. E. L., and Lozano-Perez, T. 1984. Model- 
based recognition and localization -from sparse range or tac- 

tile data. Znt. J. Robotics Res. 3(3):3-35. 

Grimson, W. E. L., and Lozano-Pdrez, T. 1985. Recog- 
nition and localization of overlapping parts from sparse 
data in two and three dimensions. Proc. IEEE Conf. on 
Robotics and Automation, St. Louis, MO., 61-66, March. 

Horn, B. K. P. 1986. Machine Vision. MIT Press, 

Cambridge, Ma. 

Jarvis, R. A. 1983. A perspective on range finding 
techniques for computer vision. ZEEE Trans. on Pattern 

Analysis and Machine Intelligence. 5(2):122-139, March. 

Jain, R. 1986, Three-dimensional object recognition. 
Computing Surveys. 

144 


