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Abntract.  This  paper discusses how local measurements of three- 
dimensional  positions  and  surface  normals recorded by  a  set of 
tactile sensors may be used to  identify  and  locate  objects,  from 
among  a  set of known objects.  The  objects  are modeled as polyhedra 
having  up to six degrees of freedom relative to the sensors. w e  
show that inconsistent hypotheses about  pairings between sensed 
points  and  object surfaces can be discarded  efficiently  by Using 
local constraints on: distances between faces, angles between face 
normals,  and  angles  (relative to the  surface  normals) of vectors 
between sensed points. We show by simulation that  the number of 
hypotheses  consistent  with  these  constraints is small. w e  also show 
how to recoyer the position and  orientation’of  the  object from the 
sense data. 

1. The Problem and the Approach 

The  presence of significant uncertainty  about  the  identities 
and  positions of objects in the  workspace of the  robot is a  central 
characteristic of advanced  applications in robotics,  and  makes 
msing of the  external  environment  an  essential  component of 
robot  systems. The process of sensing can  be loosely divided  into 
two stages: the  measurements of properties of the  objects in the 
environment,  and the  interpretation of those  measurements.  In  the 
present  paper, we concentrate on the  interpretation of sensory data, 
from tactile sensors. In investigating  this  problem, we make only 
a few, simple assumptions  about available sensory measurements, 
rather  than  considering specific details of a  particular sensor. As 
a consequence, the  interpretation  technique  that is developed here 
should be applicable to a wide range of sensing modalities, and 
may have  implications for the design of three-dimensional sensors. 

1.1. Problem Definition 

The specific problem we consider in this  paper is to identify 
an object from among a set of known  objects  and to  locate  it 
relative to  the  tactile sensor. The  object sensed is assumed to 
be a single, possibly non-convex, polyhedral  object (for which we 
have an  accurate  geometric model). The  object  may  have  up to 
six degrees of freedom relative to  the sensor (three  translational 
and  three  rotational).  The  tactiie  sensor is assumed to be capable 
of providing  three-dimensional  information  about  the position and 
local surface  orientation of a small set of points  on  the  object.  Each 
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sensor is processed obtain: 
1. Surface  points - On  the basis of .sensor readings, the 

positions of some points on the sensed object  can  be 
determined to lie within some small volume relative to 
the sennor. 

2. Surface  normals - At the sensed points, the surface 
normal of the object’s surface can  be recovered to within 
some cone of uncertainty. 

- Our goal is to use local infarmation  about sensed points to 
. determine the set of positions  and Orientations of an  object that  are 
consistent  with  the sensed data. If there  are  no  consistent positions 
and  orientations, the object is excluded from the  set of possible 
objects. 

In this  paper we do  not discuss how surface points  and  normals 
may be obtained from actual sensor data, since this process is highly 
sensor-dependent (for references to  existing  measurement  methods 
see Section 1.3). Our  aim is to show, instead, how such data may 
be used in conjunction  with  object models to recognize and localize 
objects. The method, in turn, suggests criteria  for  the design of 
sensors and sensor-processing strategies. 

Our only assumption  about the  input  data is that fairly 
accurate  positions of surface points are  obtainable from the sensor, 
but  that significant  errors  exist in determining  normal  information. 
This  assumption  reflects  the  type of data  obtainable  from  tactile 
sensors. 

1.2. Approach 

A  recent  paper [SI introduced a new approach  to  tactile 
erecognition  and localization for polyhedra  with  three degrees of 
positional freedom (twu translational  and one rotational).  The 
present  paper generalizes that approach to polyhedra  with six 
degrees of positional freedom. A more complete  and  detailed 
exposition of this generalization may be found in 191. 

The  inputs to the recognition process are: a  set of sensed 
points  and  normals, and a  set of geometric  object models for  the 
known objects. The recognition process, as outlined in the earlier 
paper, proceeds in two steps: 

1. Generate Feasible Interpretations: A  set of feasible inter- 
pretations of the sense data is constructed.  Interpretations 
consist. of pairings of each sensed point  with some object 
surface of one of the known objects.  Interpretations 
inconsistent  with local constraints  (derived from the 
model) on the sense data  are  discarded. 

2. Modef  Test: The feasible interpretations  are  tested  for 
consistency with surface equations  obtained  from  the 
object models. An interpretation is legal if it is possible 
to solve  for a  rotation  and  translation that would place 
each sense point on an  object  surface.  The sensed point 
must lie inside the  object face, not. just on the surface. 
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The first step is the key to this process. The  number of possible 
interpretations given s sensed points  and n surfa.ces is n'. Therefore, 
it is not feasible to carry  out  a model test on all possible 
interpretations.  The goal of the recognition algorithm is to  exploit 
the local constraints MI the sensed data so as to minimize the 
number of interpretations  that need testing.  This  approach is an 
instance of a classic paradigm of artificial intelligence: generate  and 
test; see for  example 151. 

Figure 1. An  example of the  approach 

Consider a simple example of the  approach,  illustrated in 
Figure 1.  The model is a  right  triangle,  with  edge sizes of 3, 4, and 
5 respectively. From this model, we can  construct a table of ranges 
of distances between pairs of points on the edges. The  table is as 
follows: 

Distance Ranges Between Edges 
I 

1 ! 2 3 
1 

IO,31 A ~ , 5 1  i0,41 2 
[0,41 [O ,5] [0,31 

1 3 I [0,41 1 [0,3] 10~51 1 
Now, suppose we  know the positions of the  three sensed points, 
PI through P$! shown in Figure 1. The measured  distances 
between those  points are dist(P1,P2) = 3.5, dist(Pl,P3) = 4.4, 
dist(PZ,P3) = 0.8. From this we see that any  interpretation of the 
sensed points  t,hat assigns PI and Pz both  to edge 1 is inconsistent 
with the model. Similarly, assigning PI and P2 to edges 2 and 3 is 
not  consistent. Many other pairwise 'assignments of points to edges 
can be discarded simply by comparing the measured  distances to 
the  ranges in the table. Note that  the sensed positions,are  subject 
to  error, so that a  range of actual  distances is consistent  with 
the measured positions. I t  is these  distance  ranges that  must be 
compared  against  the  ranges  in  the  table. For this  example, only 
6 of the 27 possible assignments of the  three  points to the  three 
model edges  are legal. 

Of the  six  interpretations  consistent  with  the  distance ranges, 
the two shown in  Figure 1, are complcte!y consistent  once the 
line equations  of the edgeti are  taken  into  account.  Each of these 
interpretations  leads to a solution for the position and  orientation 
of the  triangle  relative to the sensor. Furthermore,  these  positions 
and  orientations of the  triangle place the  measured  points  inside 
the  finite edges, not  just on the infinite line. 

This  paper discusses both  steps of the  recognition process, 
focusing first on the  generate  step  and  then  considering  the  model 
testing  stage. We  show, by simulation,  that  the  number of feasible 
interpretations  can be reduced  to  manageable  numbers by the use 
of local geometric  constraints. In particular, we investigate the 
effectiveness of the different local constraints  and  the  impact of 
measurement  errors on their effectiveness. We further show that  the 
few remaining feasible interpretations  can efficiently be subjected to 
an explicit model test,  generally  resulting in a single interpretation 
of the sense data  (up to symmetries). 

1.3. Three Dimensional h s i n g  

Sensors can be roughly  divided  into two categories: non-contact 
and contact. Non-contact sensing, especially visual sensing, has 
received extensive  attention in the robotics  and  artificial intelligence 
literature.  Contact sensing, such  as  tactile  or  haptic sensing, playe 
an equally important  role  in  robotics,  but  has received much 
less attention. In this paper, our aim is to develop a sensory 
interpretation  method  that  is  applicable  to  data from both  contact 
and non-contact sensors, although we concentrate on the case of 
contact sensors. 

While two-dimensional sensing, for example  silhouette or 
binary vision, may be adequate for restricted  situations such a8 
problems  with t h e e  degrees of freedom in positioning, the  general 
localization and  recognition problem requires  three-dimensional 
sensing. Throughout  this  paper, we  will concentrate  on  the six- 
degree of freedom  recognition  and  localization problem and  the 
use of three-dimensional  sensing.  Restrictions of the  method to the 
simpler case of three degrees of freedom  are  straightforward. 

1.3.1. Previous Work in Tactile Sensing 

Contact sensors measure the locus of contact  and  the forces 
generated when in contact  with an object. We make  the  distinction 
between tactile sensors, which  measure forces over small  areas, such 
as  a  fingertip,  and force sensora, which measure the  resultant forces 
and  torques on some larger  structure, such as a  complete  gripper. 
A micro-switch, for example,  can serve as a simple tactile sen6or 
capable of detecting  when  the force over a  small  area, e.g. an 
elevator button, exceeds some  threshold. The most  important  type 
of tactile sensors are  the matrzz tactile senuors,.composed of an 
array of sensitive points. The simplest  example of a  matrix  tactile' 
sensor is an  array of micro-switches. Much more  sophisticated  tactile 
sensors, with  much higher spatial  and force resolution,  have been 
designed; see [lo] for a review and 112, 18,  21, 22, 231 for some 
recent designs. 

For descriptions of previous work in tactile sensing, we refer 
the reader to two very thorough  surveys by Harmon [10,11]. A 
more  detailed discussion of previous work on tactile  recognition  can 
be found in 181. In  this section, we briefly survey the two  major 
alternative  approaches to tactile  recognition:  statistical  pattern 
recognition,  and description-building and  matching. 

Much of the  existing work on tactile  recognition has been  based 
on  statistical  pattern recognition or classification. Some researchers 
have used pressure  patterns on matrix sensors primarily [3, 171. 
Others have used the  joint angles of fingers grasping the object  as 
their  data 14, 16,  17, 251. A related  approach uses the  pattern of 
activation of on-off contacts placed on the finger links [14]. 

The range of possible contact  patterns between multiple  sensors 
and complex objects is highly variable and  seems to require  detailed 
geometric  analysis. Tactile recognition methods  based on statistical 
pattern  recognition  are  limited  to  dealing  with simple objects 
because they do  not exploit the rich geometric data available from 
object models. 

Several proposed recognition methods  build  a  partial  descriptiot 
of the  object  from  the sense data  and  match  this  description to 
the model. One  approach  emulates  the  feature-based  descriptions in 
vision systems, for example,  identification of holes, edges, vertices, 
pits,  and  burrs il, 12, 241. Another  approach is to build  surface 
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models, either  from pressure distributions on matrix sensors [18], 
or  from  the  displacements of an array of needlelike sensors [20, 
261. A related  approach  builds a representation of an object's cros8 
section [19]. 141. 

Description-based methods  are  more general than  statistical 
methods  but  must solve two formidable  problems:  building  accurate 
object  descriptions from tactile  data,  and  matching  the  descriptions 
to  the models. One  major difficulty is that existing sensors do 
not  have  the  spatial  or force resolution needed to build nearly 
complete  object descriptions. Furthermore,  there  are few methods 
for  matching  the  partial  descriptions  obtainable  from  tactile sensors 
to object models. In our opinion, part of the problem in tactile 
data  interpretation  has been the  tendency to  adapt  the techniques 
developed for vision, where dense data is readily obtainable, to 
tactile  data, which is naturally sparse. 

One lesson from the simulations  described  later is that some 
estimate of surface  normal is an  extremely powerful constraint 
on recognition  and localization. The  estimate need not  be  very 
tight  for  performance to improve  drastically.  There  has been 
little  previous  emphasis on measuring  surface  normals  with  tactile 
sensors. Accuracy in measuring  normals requires some attention to 
engineering tradeoffs in sensor design, especialiy the sensor stiffness. 
In a stiff sensor (one that deforms very little  under  contact), the 
normal to the sensor surface at the  point of contact  directly gives an 
estimate of the object's  surface  normal. So, a stiff sensor with high 
spatial resolution can be  used to measure  normals. In a soft sensor, 
the  pattern of forces can be analyzed to  determine  the  shape of 
the  object surface. So, a soft semor with good force measurement 
accuracy  can also be used. Today, it is probably easier to build 
stiff sensors with poor force resolution than soft sensors with good 
force resolution [24]. This argues that a stiff VLSI sensor (e.g. [22]) 
may  be  acceptable.  Another factor is that  the  method  used here, 
since it is based on local information, does not require large sensor 
areas; i t  can  function  better with many small sensors. 

The  approach used in this paper is an  instance of a description- 
based recognition method.  The basic departure  from  previous 
methods is the reliance on sparse three-dimensional positions and 
surface  normals  obtained a t  points (very different approaches to 
tactile recognition based on this type of data  are outlined in 16, 131). 
This  contrasts  with  the  dense area data needed in global feature- 
based or surface-based description methods.  The point-based data 
we use is more readily obtainable  from  simple  tactile sensors and 
the process of matching it to models is relatively straightforward. 
Therefore, the  method described here could be a powerful addition 
to approaches  based  on  more complete descriptions. 

Figure 2. Interpretation Tree 

2. Generating Feasible  Interpretations 

After sensing an  object, we have the positione of up to 8 

points, P,, known to be on  the surface of one of the rn known 
objects, O,, having n3 faces. The  range of possible pairings of 
sensed points and model faces for one  object  can  be  cast  in  the 
form of an interpretation  tree (IT) [SI. The  root  node of the ITj, for 
object O,, has n, descendants, each representing an interpretation 
in which PI is on a different face of 0,. There  are a total of s levels 
in the  tree, level i indicating  the possible pairings of P, with  the 
faces of object 0, (see Figure 2). Note that  there may be  multiple 
points on a single  face, so that  the number of branches  remains 
constant a t  all levels. 

A k-interpretation is any path  from  the  root node to a node 
at  level k in the IT; it is a list of k pairings of points and faces. The 
set of IT's contains  a.very  large number of possible s-interpretations 

=y(rbj)" 
J=1 

In an object  with  symmetries, of course, the I T  is highly redundant 
181. The m IT's, one for each known object,  represent  the  search 
space  for  the recognit,ion problem discussed here. 

2.1. Pruning  the I T  by Local Constraints 

Only a very few interpretations  in an I T  are  consistent  with 
the  input  data. We can  exploit  the following local constraints to 
prune  inconsistent  interpretations: 

1. Distance  Constraint - The  distance between each  pair 
of P,'s must  be a possible distance between the faces 
paired  with  them in an interpretation. 

2. Angle Constraint - The range of possible angles between 
measured  normals a t  each pair of Pt's must  include  the 
known angle between surface normals of the faces paired 
with  them in an  interpretation. 

3. Direction Constraint - The  range of values for the 
component of a vector between  sensed points (Pi H P J )  
in the direction of the senscd normal at P, and at 
P, must  intersect the range of components of possible 
vectors between points on the faces assigned to  P, and 
P, by the  interpretation. 

These  constraints typically serve to  prune  most of the non- 
symmetric  s-interpretations of the  data.  Other  constraints are 
possible (see, for example, 191). We will focus on  the  three 
constraints above, primarily because they  are simple to implement 
while being quite effective. In particular,  they can be  used to  prune 
k-interpretations, for k 2 2, thereby collapsing whole subtrees of 
the I T ,  without explicitly exploring all the nodes of that subtree, 
yielding a large computational savings. 

We consider each of the constraints in more detail below. 

2.1.1. Distance Pruning 

If an interpretation calls for pairing two of the sensed points 
with  two  object faces, the  distance between the sensed points  must 
be  within the range of distances between the faces (see  also (21). 
Note that  the distances between all pairs of sensed points  must 
be  consistent, i.e., there are three  distances between three sensed 
points,  and in general (i) distances between k sensed points. Because 
of this,  the  distance  constraint typically becomes more effective as 
more sensed points  are eonsidered. 

Given two faces on a three-dimensional object, we can  compute 
the  range of distances between points on the faces. The minimum 
distance  may  be  determined  as  the minimum of the  shortest  distance 
between all  pairs of edges and  the perpendicular  distances between 
vertices of one  face  and  the  plane of the  other face (when  the  vertex 
projects inside the face polygon). The  maximum requires examining 
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distances between pairs of vertices. Note that we can also compute 
the range of distances between points  on one face (zero Up to the 
diameter  of  the  face).  Sophisticated  algorithms may be used to 
reduce the complexity of these  computations,  but since they  are to 
be performed  off-line,  once  for  each model, their  efficiency  is  not 
critical to the approach. 

Since the distance  ranges between faces can be computed 
off-line, it is straightforward to implement  the  distance  constraint 
as  a  table  lookup.  In  this  manner,  a  pair of faces are  consistent 
with  a  pair of measurements if the  distance between the measured 
points lies within  the  range recorded in the  appropriate  entry of 
the  precomputed  table. 

We note  that  it may frequently  be the case, e.g. for a flat 
tactile sensor, t.hat the sensor makes contact along an  edge  or a t  a 
vertex,  rather  than  in  the  interior of a face. The  method described 
above would still work unchznged under  these circ,umstances. But if 
the sensor is capable of detecting that  contact is a t  a  vertex  or edge; 
then  tighter  constraints can be applied.  This is accomplished by 
constructing  tables of distance ranges between vertices and between 
edges  and  applying  the  pruning  algorithm  based  on  those  tables 
when appropriate. 

2.1.2. Angle Pruning 

Sensed points  are associated with  a  range of legal surface 
normals  consistent  with the sensory data. If an  interpretation calls 
for  pairing two of the sensed points (and  normals)  with two object 
faces,  the  range of angles between the sensed normals  must  include 
the angle between the  normals of the corresponding  object faces. 

To  implement  this, we use the following technique. If u1 
denotes the  unit sensed surface  normal a t  a sensed point PI, the 
range of possible values for  the  actual  surface  normal will be denoted 
by the  right  circular  cone 

{w I n l ‘ u ~  2 €1). 

A similar  cone  describes the set of possible surface  normals,  in  hand 
coordinates,  for  a second sensed  point P2. Then,  in  order  for faces 
i and k, with  associated  surface  normals  v,  and vk to be consistent 
with  these sensed points, it  must be the case that  

vi  ‘vk 6 {nl ‘n2 I nl ‘ ~ 1  2 €1, n2 ‘ U S  2 €2). (1) 
If cosal = €1, c o s a ~  = €2, a12 = a1 + a2 and cos712 = u1 . up, 
then  the  set of equation (1) is contained in the  set 

Figure 3 illustrates  this  result in two dimensions. 

Since we can now place  bounds  on the range of possible dot 
products between surface  normals,  a  table-lookup  implementation 
of angle  pruning  similar to that used for  distance  pruning  is now 
also possible. 

Figure 3. Angle  Ranges 

2.1.3. Direction  Pruning 

Consider  a  pair of sensed points PI and P 2  and  let u12 be 
the  unit  direction vector between them.  Suppose that  we know the 
measured  surface  normal a t  point PI to  within some cone of error, 
for example, the measured value is w1, and  the  range of possible 
values for the surface normal is 

(VI I V I  ‘ w1 L €1). 

Then  the  set of possible “angles” between the direction  vector and 
the  surface normal of the face is given by 

{VI . u12 I V I  . w1 2 €11. (3) 
In an  interpretation,  suppose that  point PI has been assigned 

to face i, with  normal n, in the model,  and we now consider possible 
faces k to assign to point P2. Let  the  range of possible unit vector6 
(directions)  from  face a to face k be denoted  by  the  cone 

{gik I lzk . t i k  2 bib). 

for some pair t i k  and 6ik. Figure 4 illustrates  this cone in a 
two-dimensional example.  This cone may be  comput,ed  from models 
of the  object faces. In the model, the  set of possible angles between 
legal directions  and  the  surface  normal is 

{n, . B,k I ~ $ 1 1  . t t k  2 6ik). (4) 

/--. 

Figure 4. Range of Directions  between Sensed Points 

Thus,  assume that  point Pl is on face i, with  normal ni, that 
we have measured w1, that  we know €1, and  that we have also 
measured  P2. A face k, whose direction  range from face i is given 
by the  pair  (ttk,6,k),  is a feasible face for point P2 if the  set in 
equation (4) intersects the  cone of equation (3). If cos7ik = 6,k, 
and  cos& = n, . t i k ,  .then the  set of equation (4) is contained  in 
the  set 

{ni . sik I COS(7ik + 4 i k )  I nt ’ Sik 5 coS(7ik - hk)}. 
Similarly, if cosa1 = €1 and cosw12 = v1 . u12, then  the  set of 
equation (3) is contained in the aet 

{Vl . u12 I cos(a1 + w12) I v1 . u12 I COS(cT1 - WlZ)}. 
Therefore, for the  pairings of Pi with  face i and P 2  with  face k .  
to  be  consistent  with the direction  constraint,  it  must  be  the  case’ 
that  the intersection of the numerical ranges of dot  products is not 
null, i.e., 

[COS(W - ~ 1 2 1 ,  COS(W + ~ 1 2 1 1  n [ ~ 0 ~ ( 7 i k  - b i k ) ,  CoS(7,k + +ik)l # 0 
The direction  constraint  can also be  implemented  in a form similar 
to that used for  distance  and angle pruning. 

Note  that  the  direction  constraint  is  not  symmetric,  as are 
the  distance  and  angle  constraints, so before  pairing P2 to face k, 
we must  repeat  the test  above  interchanging.the roles of i and k. 
Similarly, the  test  must be applied to each  pairing of sensed points 
and faces in an  interpretation. 
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The  constraint  described above limits the angle between a 
surface  normal  and  unit  vectors from one face to  another. We may 
also constrain the  magnitude of the  component  along  the  surface 
normal of the vector between the sensed points.  The  statement  and 
implementation of the  constraint is essentially  unchanged,  except 
that 11x2 and t ; k  are no longer unit  vectors but  the  actual  vector 
between the sensed points.  The effectiveness of the  constraint is 
in general  improved, however, since it now captures some distance 
and some angular  constraint.  The difference between this  extended 
direction  constraint  and  the simple direction  constraint is illustrated 
in Figure 5. Two  parallel faces (faces 1 and 2 in the figure) 
displaced  relative to each  other give rise to a  cone of directions, 
but a single value for the normal  component of vectors  connecting 
the faces. Note that an interpretatation that  assigns PI to face 1 
and P2 to face 3 is consistent  with  all the previously mentioned 
constraints  except for the extended  direction  constraint. The figure 
also illustrates  that  the  extended  direction  constraint does not 
subsume the  distance  constraint, since direction only constrains  the 
normal  component of distance. 

- 

Figure 5. Extended  Direction  Constraint 

3. Model Testing 

Once the  interpretation  tree  has been pruned by the local 
constraints,  there will be some  set of possible interpretations of the 
sensed data, each  one  consisting of a  set of triples (p;,nlr f;), where 
pt is  the vect.nr representing  the sensed positian, n, is the vector 
representing the sensed  normal,  and ,ft is the face assigned to  this 
sensed data for that  particular  interpretation. In the model test 
stage of the processing, we want to 

1. determine  the  actual  transformation from model coor- 
dinates to sensor coordinates,  corresponding to  the 
interpretation, 

2. check that  under this transformation,  not only are  the 
sensed points  transformed  to lie on the  appropriate 
planes, but moreover, that  the sensed points  actually lie 
within  the  bounds OT the assigned faces. 
We  will assume t h a t  a vector in the model coordinate  system 

is transformed  into  a  vector in the sensor coordinate system by the 
following transformation: 

v s  = fim +vo 
where R is a  rotation  matrix,  and vo is some translation  vector. 
We need to solve for R and VO. We note  that  a  solution could be 
obtained using a  least-squares  method,  such  as is used by [i']. This 
type of solution  can  be  computationally expensive, however, and in 
the following sections, we develop an  alternative  method. 

3.1. Rotation  Component 

We consider first the rotation  component of the transformation. 
Consider the first triple of a  particular  interpretation,  (pi,ni,f;). 
The sensed normal is given by v, and corresponding to face ,ft is a 
face normal  mi. For R to be a  legitimate  rotation,  it should take 
the normal m,  into n, (ignoring issues of error in the  measurements 
for now). 

Now, any  rotation  can be represented  by  a  direction  about 
which the  rotation  takes place, and an angle of rotation  about 
that direction. What is the  set of possible directions of rotation  r 
consistent  with  n,  and m,? Any unit  rotation vector r taking mi 
into  n,  must lie on the  perpendicular bisector of the line connecting 
n, to m;. Similarly, it  must also lie on  the  perpendicular bisector 
of the line connecting mj to m,.  Since the  rotation is the  same, 
it  must lie in the intersection of the two perpendicular bisector 
planes,  as above, and  hence is given by the  unit  vector 

(mi - ni) X (m, - n,) 
to within  an  ambiguity of 180'. 

If there were no  error in the sensed normals, we would be done. 
With  error  included in the measurements, however, the computed 
rotation  direction r could be slightly wrong. One way to reduce the 
effect of this  error is to compute a l l  possible rtj as i and j vary over 
the faces of the  interpretation,  and  then  cluster  these  computed 
directions to determine  a value for the direction of rotation r. 

Once we have computed  a direction of rotation r, we  need to 
determine  the angle 0 of rotation  about  it.  It is straightforward to 
show that (see, for  example, [15] p. 473) 

m,=cos0n,+(1-ccos8) (r .n , )r+s in0(r~ni ) .  

Simple algebraic  manipulation, using the  fact  th& r .  m, = r .  n,, 
yielda 

case = 1 - 1 - (ni . m,) 
1 - ( r  . n,)(r.  mi) 

Hence, given r, we can solve for 0. Note that if sin0 is zero, there 
is a  singularity in determining 8, which could be either 0 or K. In 
this  case, however, r lies in the  plane  spanned by ni and m, and 
hence, only the .9 = ?I solution is valid. As before, in the presence 
of error, we may want to cluster the r vectors,  and  then  take the 
average of the  computed values of 8 over this  cluster. 

Finally, given values for  both r and 0, if r z , r y , r r  denote the 
components of r9 then  the  rotation  matrix R is given by 

r I  r,ry r,r, 0 -r. ry 

where I is the 3 x 3 identity  matrix.  Note  that  in  computing  the 
rotation  component of the  transformation, we have ignored the 
ambiguity  inherent in the  computation.  That is, there  are  two 
solutions to the  problem, (.,e) and (-r, -0). We assume that a 
simple convention concerning  the sign of the  rotation is used to 
choose one of the two solutions. 

3.2. Translation  Component 

Next, we need to solve for the  translation  component of the 
transformation. We know that  vs = Rv, + VO, where vm is a 
vector  in model coordinates,  v, is the corresponding vector in Bensor 
coordinates,  and R has been computed  as above. Given a  triple 
(p,,  n,, f,) from the  interpretation,  let m, be the  normal of face fi, 
with offset d,, that is, the face is defined by the  set of vectora 

{v I v . m, = d,} .  

Then  by  transforming p, to its corresponding  point  in model 
coordinates, the following equation holds 

(Rmi) . (PC - VO) 4. 
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This  equation  essentially  constrains  the  component of the  translation 
vector  in the direction of Rmi. 

Suppose we consider three  triplets from the  interpretation, 

m, . (m3 X mk) IS non-zero, (i.e. the  three  face  normals  are 
independent).  Then, we can  construct  three  independent  equations 
for the components of  vg in the direction of (Rm,),(Rmj)  and 
(Rmk). Hence, the  three  equations  together  determine  the  actual 
vector  vg,  as given by: . 

(~;,n, ,f ,) ,(~, ,n, ,f ,) ,   and.(pk,nk,fk) such that  the  triple  product 

[m, . (mj X mk)lvo =( (Rm, ) .  pi - d;)((Rmj) X (Rmk)) 
+ ( (Rm,) .  PI - d>)((Rmk) X ( f W )  + ( ( R m k ) .  ~k - &)((RmJ X (Rmj)) 

Aa in the case of rotation, if there is no error in the measurements, 
then we are done. The  simplest  means of attempting to reduce the 
effects of error  on  the  computation is to average vo over all possible 
trios of triplets from the  interpretation.  Note  that  for  numerical 
stability,  one  may  want to restrict  the  computation  to  triplets such 
that   mi .  (m3 X mk) is greater  than some threshold. 

Finally, we have computed the transform (R,vo) from model 
coordinates to sensor coordinates. To check a possible interpretation, 
we consider all triples (pt,n,,f;) in the  interpretation  and  compute 

R-'(p; - vo). 

We then check that this point lies within the bounds of face f, (to 
within some error  range). If it does not,  then  the  interpretation  is 
invalid, and may be pruned. If all such triples  satisfy  this check, 
the  interpretation is still valid. 

We have assumed above that  three  independent face normals 
have been measured. When only one normal is available, neither 
the  rotation  or  translation  can be determined.  When only two 
independent  normals  are available, the  rotation  can  be  determined 
as before, but only a direction of translation  can be determined, 
not  the  actual  magnitude of the  translation.  A  range of possible 
translations  can  be  determined, however, by interesecting the line, 
determined by the position of a sensed point  and the  translation 
direction,  with the face assigned to  the point by the  interpretation. 
Of course, further sensing along this line to discover the position 
of the edge would determine  the  actual  translation. 

After  the model test  has been applied to all leaves of 
the  interpretation  tree,  there may still be several interpretations 
remaining. Upon examination,  one  usually finds that  these 
interpretations differ only in  the  assignment of one or  two faces, 
all  other faces being identical. This  inability to distinguish between 
such nearly  identical  interpretations is a result of the error  bounds 
on the sensing. Thus,  as  a final stage, we cluster the  remaking 
interpretations  in  terms of their  computed  transformations, that  is, 
we cluster the  interpretations in terms of the computed  orientation 
of the  object in space. Here, we generally find very few such clusters. 
Indeed, in general  there is only one  computed  orientation  for the 
object,  (the  correct one), although occasionally two  or  more  clusters 
survive, usually corresponding to symmetric  interpretations of the 
sensed data. 

4. Simulation Data 

In  order to test  the &cacy of the  algorithm  in  pruning the 
interpretation  tree, we ran  a  large  number of simulations, which are 
reported in full in 191. Here, we describe  those  simulations  relevant 
to  the  problem of tactile sensing of objects  with  six degress of 
freedom. Our  gods  are first to demonstrate  that effective pruning 
of the  interpretation  tree is possible, a t  low computational  expense, 
and second to explore  the  sensitivity of the algorithm to error in 
measuring the surface  normal  and  the position of the sensed points. 

When considering the full three-dimensional problem of objects 
with  six degrees of freedom, we have run extensive  simulations on 
the models illustrated in Figure 6. The  diameters of these  objecta 

Figure 6. 3D Test  Models 

(that is the maximum  separation of two  points  on the object) were 
roughly 4 and 8 inches for the housing and  simple  hand respectively. 
We note  that  the simulated  sensitivity  in  distance  (as  recorded in 
the  tables below) is weli within  the  range of current  tactile sensors. 
The  positioning  accuracy of many current  manipulators is within 
0.01 inches,  and the  Purbrick  tactile sensor has  a  matrix  element 
separation of 0.06 inches, and  the Hillis sensor has  an  element 
separation of 0.025 inches 

I t  should  be noted-  that in all the following simulations, the 
efficiency of the  tree  pruning mechanism was improved by  sorting 
the sensed points. In particular,  rather  than using the sensory data 
in arbitrary  order,  the  points were sorted on the basis of pairwise 
separation,  with the more distant  points being ordered first. This 
sorting  on  distance  tends to place the most effective constraints  at' 
the beginning of the process. 

The  set of simulations  reported below have  been  run  using 
a sensing strategy  consistent  with  tactile sensors, mounted  on  a 
multi-fingered hand.  Consider  a  set of three  mutually  orthogonal, 
directed  rays, which intersect a t  a  point.  Suppose  this  point is 
taken  to be some arbitrary  point (z, y ,  0), chosen on  the z - y 
plane  (note  that  by  the  definition of the  object models, this  plane 
will interect  the  object).  Each ray is traced  along  its  preferred 
direction,  (with decreasing H component),  until  either the  object or 
the  support  plane was contacted.  This  operation was repeated  for 
several different approaches, using randomly  generated values of z 
and y, until between 7 and 9 different contact  points were made on 
the  object.  Tables I, II and IiI summarize the results of running seta 
of simulations,  using sensory data generated in this  fashion.  Table 
I lists  statistics of a  histogram of the number of interpretations 
remaining the in the tree  after local pruning,  Table I1 lists similar 
statistics  after  tbe  interpretations  have  been  subjected to a model 
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test,  and  Table 111 lists  similar  statistics when the  results of Table 
I1 are  clustered on the basis of their  computed  transformations. In 
this  particular case, two transformations  are considered the same, 
if their  directions of rotation differ  by less than 1.5'. 

Table I - No. of Interpretations  After  Local  Pruning 

Obiect  Normal I B s t  1 Min i 50th i 90th 1 Max I Faces 

I 1 .05 I 1 ! 32 1 164 1 377 I 34 I 

In the  tables above, the normd column  lists the radius of 
the  error cone about  the  measured  surface  normal;  the dist column 
lists the  error  range of the distance sensing; the min and maz 
columns list  the minimum and  maximum  number of interpretations 
observed; the 50th column lists the median  point of the  set of 
simulations; the 90th column lists  the S O f h  percentile of the set of 
simulations;  and  the fuces column lists the  number of faces in the 
model. 

The effectiveness of the local constraints  in  reducing  the 
number of feasible interpretations is clearly demonstrated, since 
the average number of interpretations  tends  to be very close to 
1. The  fact  that occasionally additional  interpretations  are  still 
possible results in part from the following situation.  With the 
exception of one  projecting  portion, (see Figure 6), the housing 
is essentially a symmetric  object, with respect to two different 
axes. As a consequence, if the sampled  data  points  do  not lie on 
this  distinguishing  projection,  there could be several consistent, 
symmetric, interpretatiop of the  data. In the case of sensory 
sampling on a  regular  grid of points, it  is likely that  at  least 
one  point will lie on this projection,  and  the  symmetric ambiguity. 

will not  arise. In the case of fewer sample  points,  generated  by 
random  approaches to the  object,  it is much  more likely that  the 
feasible transformations will reflect this  symmetry,  and  thus  be 
higher in number. For an  object such as  the  simple  hand,  the 
complete  rotational  symmetry of the  object forces a t  least  two 
distinct  interpretations of the sensory data, for  any  set of sensed 
points. 

In cases of ambiguity in interpretation, for example,  when 
several orientations of the  motor housing are  consistent  with the 
sensed data,  due to a  partial  symmetry of the object, it  would be 
useful to have effective means for distinguishing between the possible 
solutions. A straightforward  method would be to add sensory pointa 
generated at  random  until only one  interpretation is consistent. 
This, of course, could be very inefficient, since it could take  the 
addition of several points before a  solution is found. In the case 
of the  motor  housing, for example,  one would need to consider 
additional sensory points  until one lying on the  projecting lip of the 
housing is recorded. A more effective solution is to use the difference 
in feasible interpretations  to find directions along which the  points 
of contact of the different interpretations  are widely separated.  Such 
directions  then  constitute good candidates for generating  the  next 
sensed point [8 ] .  Extensions of the  method to  the six degree of 
freedom  problem  are  currently  under  investigation. 

5. Discussion 

It is important to note  that  the  algorithm described in this 
paper  has  quite low computational  cost.  The  pruning  algorithm 
is particularly efficient. The  range  tables  store  all  the model 
information needed and  pruning is done by simply comparing the 
ranges of values measured  (plus or minus  error  estimates)  with 
those in the tables.  Therefore,  no  arithmetic is done  during  pruning 
(except for indexing  into  tables).  It is only the model test  that 
requires  any significant computation  and,  therefore,  the desire to 
minimize the number of times  it  must be performed. 

To  illustrate  this  point, we have recorded actual  run  times 
for  a  number of simulations. While the  times  are clearly dependent 
on a  number of factors, such as  the  type of machine,  the specific 
algorithm, the  object sensed, and so on,  the  order of magnitude of 
the  run  times  helps  illustrate  the  computational efficiency of the 
method. For example, using an implementation in Lisp running 
on a Symbolics 3600 Lisp Machine, simulations  on the  motor 
housing  with  angular  error  range of 6 and  positional  error  range 
of 0.05 took an average of 1.27 seconds to  generate  and  prune 
the  interpretation  tree  and  an average of 3.17 seconds to perform 
the model check. The  time  required  to  generate  and  prune  the 
tree is clearly dependent  on  the  number of plausible  interpretations 
and grows non-linearly with an increase  in  this  number. The  time 
required to  perform model checking grows linearly with  the  number 
of interpretations  to which such a check must be applied. The 
average time  expended on each model check was 0.24 seconds. In 
general, the average  time to complete  the  computation was under 5 
seconds, for  this  particular  implementation,  although  this  number 
would occasionally be  exceeded  in sensing situations in which a 
large  number of interpretations were possible. 

The local  constraint  method developed here  requires that  all 
the sensory data  be  drawn from one object.  This is difficult to 
guarantee, in the  tactile M visual  domain, when the  object is in a 
bin among  other  objects. Qf course, if a  hypothesis is made  that 
all  the  points belong to one object  and  no feasible interpretations 
are  found,  then  one  can t e l i  that  the hypothesis is wrong. Much 
more research is needed in this area, however. 

Throughout  the  paper we have  limited  our  attention to the 
number of interpretations,  relative to one model, of data  obtained 
from that  object.  To carry o u t  recognition between several objects, 
one determines  the  number of legal interpretations of one  set of 
data relative to  multiple  object models. This process can simply 
be performed  sequentially on each model. One simple improvement 
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is clearly  possible. If one stores  with  each  model  the  maximum 
distance between  any of the  faces, then if one of the  measured 
distances is greater  than  this  upper  bound,  the model  can be 
discarded at once.  This  technique quickly separates  large  objects 
from  small ones. Unfortunately, very small  measured  distances  do 
not  rule  out  large  objects.  A second  method would  be to use 
direction  histograms to mle out  certain  models. For example, if 
the  angle  between two  sensed  normals  was  30°,  then  a  model of a 
cube would not  be  consistent  with  this  data,  and could quickly be 
excluded. 

After  generating and pruning the  interpretation  tree  and 
performing the model test an each of the known  objects, we have a 
listing of all the  positions  and  orientations of all  objects  consistent 
with  the  measured  data. A t  this  point,  further  discrimination can 
be  carried  out by additional  unguided sensing as before or by 
considering  the  alternatives  and choosing a good  place to sense 
next.  The  recognition  pmolem that remains is  now amenable to 
other  techniques  as well since it  has been  reduced to the  much 
more  tractable  problem of differentiating  among  a class of objects 
in known  positions  and  orientations. 
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