## Improving Spatial Support for Objects via Multiple Segmentations

presented at British Machine Vision Conference 2007 September 12, 2007

Tomasz Malisiewicz and Alexei A. Efros The Robotics Institute Carnegie Mellon University

**Carnegie Mellon** 







## in Practice











# Car Sliding Windows



# Car Sliding Windows





# Successes of Sliding Windows



Schneiderman & Kanade '00

faces



Viola & Jones '04 Schneiderman & Kanade '00

pedestrians



Dalal & Triggs '05 Ferrari et al '07

# Successes of Sliding Windows



Schneiderman & Kanade '00

faces



Viola & Jones '04 Schneiderman & Kanade '00

pedestrians



Dalal & Triggs '05 Ferrari et al '07











#### Overview

• Does spatial support matter?

• How to get good spatial support?

# I. Does Spatial Support Matter?



#### **Ground-Truth Segment**

Classify

VS.



#### **Bounding Box**



#### Does Spatial Support Matter? MSRC data-set: 591 images of 23 object classes +

Data-set: 591 images of 23 object classe pixel-wise segmentation masks









## **Does Spatial Support Matter?**

#### Features



| Feature Descriptions                                                    | Num |
|-------------------------------------------------------------------------|-----|
| Color                                                                   | 16  |
| C1. RGB values: mean                                                    | 3   |
| C2. HSV values: C1 in HSV space                                         | 3   |
| C3. Hue: histogram (5 bins) and entropy                                 | 6   |
| C4. Saturation: histogram (3 bins) and entropy                          | 4   |
| Texture                                                                 | 15  |
| T1. DOOG filters: mean abs response of 12 filters                       | 12  |
| T2. DOOG stats: mean of variables in T1                                 | 1   |
| T3. DOOG stats: argmax of variables in T1                               | 1   |
| T4. DOOG stats: (max - median) of variables in T1                       | 1   |
| Location and Shape                                                      | 12  |
| L1. Location: normalized x and y, mean                                  | 2   |
| L2. Location: norm. x and y, 10 <sup>th</sup> and 90 <sup>th</sup> pctl | 4   |
| L3. Location: norm. y wrt horizon, $10^{th}$ , $90^{th}$ pctl           | 2   |
| L4. Shape: number of superpixels in region                              | 1   |
| L5. Shape: number of sides of convex hull                               | 1   |
| L6. Shape: num pixels/area(convex hull)                                 | 1   |
| L7. Shape: whether the region is contiguous $\in \{0, 1\}$              | 1   |
| 3D Geometry                                                             | 35  |
| G1. Long Lines: total number in region                                  | 1   |
| G2. Long Lines: % of nearly parallel pairs of lines                     | 1   |
| G3. Line Intsctn: hist. over 12 orientations, entropy                   | 13  |
| G4. Line Intsctn: % right of center                                     | 1   |
| G5. Line Intsctn: % above center                                        | 1   |
| G6. Line Intsctn: % far from center at 8 orientations                   | 8   |
| G7. Line Intsctn: % very far from center at 8 orient.                   | 8   |
| G8. Texture gradient: x and y "edginess" (T2) center                    | 2   |

#### Classifier

Boosted Decision Tree\*

#### \*Hoiem et al '05

#### **Does Spatial Support Matter?**



Segmentation is a natural way to obtain spatial support

- Segmentation is a natural way to obtain spatial support
- Can an off-the-shelf segmentation algorithm provide good spatial support?

- Segmentation is a natural way to obtain spatial support
- Can an off-the-shelf segmentation algorithm provide good spatial support?

Normalized Cuts

Mean Shift

Efficient Graph Based



Shi & Malik

Comaniciu & Meer

Felzenszwalb & Huttenlocher

# Spatial Support



Segment #I



Segment #2



#### **Ground Truth**

# Spatial Support



#### **Ground Truth**

Segment #I



Segment #2

 $OS(S,G) = \frac{|S \cap G|}{|S \cup G|}$ 

# Spatial Support



Segment #I

**Ground Truth** 



Segment #2

.825

 $OS(S,G) = \frac{|S \cap G|}{|S \cup G|}$ 

.892

#### Ground Truth



#### Mean Shift

#### NCuts













### Evaluation\*



\*Unnikrishnan et al 2005, Ge et al 2006

#### The problem with segmentation



#### The problem with segmentation



No Single Segmentation provides adequate spatial support

## The problem with segmentation



No Single Segmentation provides adequate spatial support

Use a Soup of Segments (Hoiem et al 2005, Russell et al 2006)

#### Ground Truth



#### Mean Shift (33)













## Quantitative Results



## A closer look



# A closer look





# Merging Segments

- Enumerate all pairs/triplets of adjacent segments
- Inexpensive and fast given an adjacency graph

#### Mean Shift















## Quantitative Results



## **Upper-Bound:** Superpixels

- Create superpixels with NCuts and K=200 (Ren & Malik 2003)
- Consider all merges of superpixels
- Infeasible in practice



Superpixel Limit .932



#### Superpixel Limit .917



#### Superpixel Limit .825

## Quantitative Results



# Upper-Bound: Rectangular Windows

- Consider the best\* rectangular spatial support
- Infeasible in practice



Rectangular Limit .909



Rectangular Limit .682



#### Rectangular Limit .616

## Quantitative Results



# Viola-Jones Sliding Windows

- Generate soup of segments by sliding square windows
- Often used in practice



Square .555







Square .495

# Comparing to Limits



# Which Segmentation Algorithm is the best?



# Which Segmentation Algorithm is the best?



Correct Spatial Support is important for recognition

- Correct Spatial Support is important for recognition
- Multiple Segmentations are better than one

- Correct Spatial Support is important for recognition
- Multiple Segmentations are better than one
- Mean-Shift is better than FH or NCuts, but together they do best

- Correct Spatial Support is important for recognition
- Multiple Segmentations are better than one
- Mean-Shift is better than FH or NCuts, but together they do best
- Segment merging can benefit any segmentation

- Correct Spatial Support is important for recognition
- Multiple Segmentations are better than one
- Mean-Shift is better than FH or NCuts, but together they do best
- Segment merging can benefit any segmentation
- "Segment Soup" is large, but not catastrophically large

- Correct Spatial Support is important for recognition
- Multiple Segmentations are better than one
- Mean-Shift is better than FH or NCuts, but together they do best
- Segment merging can benefit any segmentation
- "Segment Soup" is large, but not catastrophically large

# Questions?