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• NN-method, where each exemplar has its 
own distance “similarity” function

• Introduced for Image Classification by 
Frome et al., NIPS 2007 

• Extended to Segmentation-based detection 
Malisiewicz et al., CVPR 2008
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Distance “Similarity” Functions

• Positive linear combination of elementary distances
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Frome et al. NIPS 2007, Malisiewicz et al. CVPR 2008
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Figure 1. Problem summary. Given a set of input images (first column), we wish to discover object categories and infer their spatial extent

(e.g. cars and buildings: final two columns). We compute multiple segmentations per image (a subset is depicted in the second through

fifth columns; all of the segmentations for the first row are shown in Figure 4). The task is to sift the good segments from the bad ones for

each discovered object category. Here, the segments chosen by our method are shown in green (buildings) and yellow (cars).

words in the image belonging to a particular topic.

One major issue noticed by several groups [17, 21], is
that the “visual words” are not always as descriptive as
their text counterparts. While some visual words do cap-
ture high-level object parts, (e.g. wheels, eyes, airplane
wingtips), many others end up encoding simple oriented
bars and corners and might more appropriately be called
“visual phonemes” or even “visual letters”. Consequently,
there is a proportion of visual synonyms – several words
describing the same object or object part, and, more prob-
lematically, visual polysemy – the same word describing
several different objects or object parts. All this means that
the statistical text methods alone are sometimes not power-
ful enough to deal with the visual data. This is not too sur-
prising – after all, the visual world is much richer and nois-
ier than the human-constructed, virtually noiseless world of
text.

1.2. Grouping visual words
The problem of visual polysemy becomes apparent when

we consider how an image is represented in the “bag of
words” document model. All visual words in an image are
placed into a single histogram, losing all spatial and neigh-
borhood relationships. Suppose a car is described by ten
visual words. Does the presence of these ten words in an
image imply that it contains a car? Not necessarily, since
these ten words did not have to occur together spatially,
but anywhere in the image. Of course, if the object and
its background are highly correlated (e.g. cars and roads or
cows and grass), then modeling the entire image can actu-
ally help recognition. However, this is unlikely to scale as
we look at a large number of object classes. Therefore, what
we need is a way to group visual words spatially [8, 24] to
make them more descriptive.

1.3. Multiple segmentation approach

In this paper we propose to use image segmentation as a
way to utilize visual grouping cues to produce groups of

related visual words. In theory, the idea sounds simple:
compute a segmentation of each image so that each seg-
ment corresponds to a coherent object. Then cluster sim-
ilar segments together using the “bag of words” represen-
tation. However, image segmentation is not a solved prob-
lem. It is naive to expect a segmentation algorithm to par-
tition an image into its constituent objects – in the general
case, you need to have solved the recognition problem al-
ready! In practice, some approaches, like Mean-shift [4],
perform only a low-level over-segmentation of the image
(superpixels). Others, like Normalized Cuts [20] attempt to
find a global solution, but often without success (however,
see Duygulu et al. [6] for a clever joint use of segments and
textual annotations).

Recently, Hoiem et al. [13] have proposed a surprisingly
effective way of utilizing image segmentation without suf-
fering from its shortcomings. For each image, they com-
pute multiple segmentations by varying the parameters of
the segmenting algorithm. Each of the resulting segmenta-
tions is still assumed to be wrong – but the hope is that some

segments in some of the segmentations will be correct. For
example, consider the images in figures 1 and 4. None of
the segmentations are entirely correct, but most objects get
segmented correctly at least once. This idea of maintaining
multiple segmentations until further evidence can be used
to disambiguate is similar to the approach of Borenstein et

al. [3].

The problem now becomes one of going through a large
“soup” of (overlapping) segments and trying to discover the
good ones. But note that, in a large image dataset with many
examples of the same object, the good segments (i.e. the
ones containing the object) will all be represented by a simi-
lar set of visual words. The bad segments, on the other hand,
will be described by a random mixture of object-words and
background-words. To paraphrase Leo Tolstoy [25]: all

good segments are alike, each bad segment is bad in its own

way. This is the main insight of the paper: segments cor-

Figure 1. Problem summary. Given a set of input images (first column), we wish to discover object categories and infer their spatial extent

(e.g. cars and buildings: final two columns). We compute multiple segmentations per image (a subset is depicted in the second through

fifth columns; all of the segmentations for the first row are shown in Figure 4). The task is to sift the good segments from the bad ones for

each discovered object category. Here, the segments chosen by our method are shown in green (buildings) and yellow (cars).

words in the image belonging to a particular topic.

One major issue noticed by several groups [17, 21], is
that the “visual words” are not always as descriptive as
their text counterparts. While some visual words do cap-
ture high-level object parts, (e.g. wheels, eyes, airplane
wingtips), many others end up encoding simple oriented
bars and corners and might more appropriately be called
“visual phonemes” or even “visual letters”. Consequently,
there is a proportion of visual synonyms – several words
describing the same object or object part, and, more prob-
lematically, visual polysemy – the same word describing
several different objects or object parts. All this means that
the statistical text methods alone are sometimes not power-
ful enough to deal with the visual data. This is not too sur-
prising – after all, the visual world is much richer and nois-
ier than the human-constructed, virtually noiseless world of
text.

1.2. Grouping visual words
The problem of visual polysemy becomes apparent when

we consider how an image is represented in the “bag of
words” document model. All visual words in an image are
placed into a single histogram, losing all spatial and neigh-
borhood relationships. Suppose a car is described by ten
visual words. Does the presence of these ten words in an
image imply that it contains a car? Not necessarily, since
these ten words did not have to occur together spatially,
but anywhere in the image. Of course, if the object and
its background are highly correlated (e.g. cars and roads or
cows and grass), then modeling the entire image can actu-
ally help recognition. However, this is unlikely to scale as
we look at a large number of object classes. Therefore, what
we need is a way to group visual words spatially [8, 24] to
make them more descriptive.

1.3. Multiple segmentation approach

In this paper we propose to use image segmentation as a
way to utilize visual grouping cues to produce groups of

related visual words. In theory, the idea sounds simple:
compute a segmentation of each image so that each seg-
ment corresponds to a coherent object. Then cluster sim-
ilar segments together using the “bag of words” represen-
tation. However, image segmentation is not a solved prob-
lem. It is naive to expect a segmentation algorithm to par-
tition an image into its constituent objects – in the general
case, you need to have solved the recognition problem al-
ready! In practice, some approaches, like Mean-shift [4],
perform only a low-level over-segmentation of the image
(superpixels). Others, like Normalized Cuts [20] attempt to
find a global solution, but often without success (however,
see Duygulu et al. [6] for a clever joint use of segments and
textual annotations).

Recently, Hoiem et al. [13] have proposed a surprisingly
effective way of utilizing image segmentation without suf-
fering from its shortcomings. For each image, they com-
pute multiple segmentations by varying the parameters of
the segmenting algorithm. Each of the resulting segmenta-
tions is still assumed to be wrong – but the hope is that some

segments in some of the segmentations will be correct. For
example, consider the images in figures 1 and 4. None of
the segmentations are entirely correct, but most objects get
segmented correctly at least once. This idea of maintaining
multiple segmentations until further evidence can be used
to disambiguate is similar to the approach of Borenstein et

al. [3].

The problem now becomes one of going through a large
“soup” of (overlapping) segments and trying to discover the
good ones. But note that, in a large image dataset with many
examples of the same object, the good segments (i.e. the
ones containing the object) will all be represented by a simi-
lar set of visual words. The bad segments, on the other hand,
will be described by a random mixture of object-words and
background-words. To paraphrase Leo Tolstoy [25]: all

good segments are alike, each bad segment is bad in its own

way. This is the main insight of the paper: segments cor-

Figure 1. Problem summary. Given a set of input images (first column), we wish to discover object categories and infer their spatial extent

(e.g. cars and buildings: final two columns). We compute multiple segmentations per image (a subset is depicted in the second through

fifth columns; all of the segmentations for the first row are shown in Figure 4). The task is to sift the good segments from the bad ones for

each discovered object category. Here, the segments chosen by our method are shown in green (buildings) and yellow (cars).

words in the image belonging to a particular topic.

One major issue noticed by several groups [17, 21], is
that the “visual words” are not always as descriptive as
their text counterparts. While some visual words do cap-
ture high-level object parts, (e.g. wheels, eyes, airplane
wingtips), many others end up encoding simple oriented
bars and corners and might more appropriately be called
“visual phonemes” or even “visual letters”. Consequently,
there is a proportion of visual synonyms – several words
describing the same object or object part, and, more prob-
lematically, visual polysemy – the same word describing
several different objects or object parts. All this means that
the statistical text methods alone are sometimes not power-
ful enough to deal with the visual data. This is not too sur-
prising – after all, the visual world is much richer and nois-
ier than the human-constructed, virtually noiseless world of
text.

1.2. Grouping visual words
The problem of visual polysemy becomes apparent when

we consider how an image is represented in the “bag of
words” document model. All visual words in an image are
placed into a single histogram, losing all spatial and neigh-
borhood relationships. Suppose a car is described by ten
visual words. Does the presence of these ten words in an
image imply that it contains a car? Not necessarily, since
these ten words did not have to occur together spatially,
but anywhere in the image. Of course, if the object and
its background are highly correlated (e.g. cars and roads or
cows and grass), then modeling the entire image can actu-
ally help recognition. However, this is unlikely to scale as
we look at a large number of object classes. Therefore, what
we need is a way to group visual words spatially [8, 24] to
make them more descriptive.

1.3. Multiple segmentation approach

In this paper we propose to use image segmentation as a
way to utilize visual grouping cues to produce groups of

related visual words. In theory, the idea sounds simple:
compute a segmentation of each image so that each seg-
ment corresponds to a coherent object. Then cluster sim-
ilar segments together using the “bag of words” represen-
tation. However, image segmentation is not a solved prob-
lem. It is naive to expect a segmentation algorithm to par-
tition an image into its constituent objects – in the general
case, you need to have solved the recognition problem al-
ready! In practice, some approaches, like Mean-shift [4],
perform only a low-level over-segmentation of the image
(superpixels). Others, like Normalized Cuts [20] attempt to
find a global solution, but often without success (however,
see Duygulu et al. [6] for a clever joint use of segments and
textual annotations).

Recently, Hoiem et al. [13] have proposed a surprisingly
effective way of utilizing image segmentation without suf-
fering from its shortcomings. For each image, they com-
pute multiple segmentations by varying the parameters of
the segmenting algorithm. Each of the resulting segmenta-
tions is still assumed to be wrong – but the hope is that some

segments in some of the segmentations will be correct. For
example, consider the images in figures 1 and 4. None of
the segmentations are entirely correct, but most objects get
segmented correctly at least once. This idea of maintaining
multiple segmentations until further evidence can be used
to disambiguate is similar to the approach of Borenstein et

al. [3].

The problem now becomes one of going through a large
“soup” of (overlapping) segments and trying to discover the
good ones. But note that, in a large image dataset with many
examples of the same object, the good segments (i.e. the
ones containing the object) will all be represented by a simi-
lar set of visual words. The bad segments, on the other hand,
will be described by a random mixture of object-words and
background-words. To paraphrase Leo Tolstoy [25]: all

good segments are alike, each bad segment is bad in its own

way. This is the main insight of the paper: segments cor-

Figure 1. Problem summary. Given a set of input images (first column), we wish to discover object categories and infer their spatial extent

(e.g. cars and buildings: final two columns). We compute multiple segmentations per image (a subset is depicted in the second through

fifth columns; all of the segmentations for the first row are shown in Figure 4). The task is to sift the good segments from the bad ones for

each discovered object category. Here, the segments chosen by our method are shown in green (buildings) and yellow (cars).

words in the image belonging to a particular topic.

One major issue noticed by several groups [17, 21], is
that the “visual words” are not always as descriptive as
their text counterparts. While some visual words do cap-
ture high-level object parts, (e.g. wheels, eyes, airplane
wingtips), many others end up encoding simple oriented
bars and corners and might more appropriately be called
“visual phonemes” or even “visual letters”. Consequently,
there is a proportion of visual synonyms – several words
describing the same object or object part, and, more prob-
lematically, visual polysemy – the same word describing
several different objects or object parts. All this means that
the statistical text methods alone are sometimes not power-
ful enough to deal with the visual data. This is not too sur-
prising – after all, the visual world is much richer and nois-
ier than the human-constructed, virtually noiseless world of
text.

1.2. Grouping visual words
The problem of visual polysemy becomes apparent when

we consider how an image is represented in the “bag of
words” document model. All visual words in an image are
placed into a single histogram, losing all spatial and neigh-
borhood relationships. Suppose a car is described by ten
visual words. Does the presence of these ten words in an
image imply that it contains a car? Not necessarily, since
these ten words did not have to occur together spatially,
but anywhere in the image. Of course, if the object and
its background are highly correlated (e.g. cars and roads or
cows and grass), then modeling the entire image can actu-
ally help recognition. However, this is unlikely to scale as
we look at a large number of object classes. Therefore, what
we need is a way to group visual words spatially [8, 24] to
make them more descriptive.

1.3. Multiple segmentation approach

In this paper we propose to use image segmentation as a
way to utilize visual grouping cues to produce groups of

related visual words. In theory, the idea sounds simple:
compute a segmentation of each image so that each seg-
ment corresponds to a coherent object. Then cluster sim-
ilar segments together using the “bag of words” represen-
tation. However, image segmentation is not a solved prob-
lem. It is naive to expect a segmentation algorithm to par-
tition an image into its constituent objects – in the general
case, you need to have solved the recognition problem al-
ready! In practice, some approaches, like Mean-shift [4],
perform only a low-level over-segmentation of the image
(superpixels). Others, like Normalized Cuts [20] attempt to
find a global solution, but often without success (however,
see Duygulu et al. [6] for a clever joint use of segments and
textual annotations).

Recently, Hoiem et al. [13] have proposed a surprisingly
effective way of utilizing image segmentation without suf-
fering from its shortcomings. For each image, they com-
pute multiple segmentations by varying the parameters of
the segmenting algorithm. Each of the resulting segmenta-
tions is still assumed to be wrong – but the hope is that some

segments in some of the segmentations will be correct. For
example, consider the images in figures 1 and 4. None of
the segmentations are entirely correct, but most objects get
segmented correctly at least once. This idea of maintaining
multiple segmentations until further evidence can be used
to disambiguate is similar to the approach of Borenstein et

al. [3].

The problem now becomes one of going through a large
“soup” of (overlapping) segments and trying to discover the
good ones. But note that, in a large image dataset with many
examples of the same object, the good segments (i.e. the
ones containing the object) will all be represented by a simi-
lar set of visual words. The bad segments, on the other hand,
will be described by a random mixture of object-words and
background-words. To paraphrase Leo Tolstoy [25]: all

good segments are alike, each bad segment is bad in its own

way. This is the main insight of the paper: segments cor-

Figure 1. Problem summary. Given a set of input images (first column), we wish to discover object categories and infer their spatial extent

(e.g. cars and buildings: final two columns). We compute multiple segmentations per image (a subset is depicted in the second through

fifth columns; all of the segmentations for the first row are shown in Figure 4). The task is to sift the good segments from the bad ones for

each discovered object category. Here, the segments chosen by our method are shown in green (buildings) and yellow (cars).

words in the image belonging to a particular topic.

One major issue noticed by several groups [17, 21], is
that the “visual words” are not always as descriptive as
their text counterparts. While some visual words do cap-
ture high-level object parts, (e.g. wheels, eyes, airplane
wingtips), many others end up encoding simple oriented
bars and corners and might more appropriately be called
“visual phonemes” or even “visual letters”. Consequently,
there is a proportion of visual synonyms – several words
describing the same object or object part, and, more prob-
lematically, visual polysemy – the same word describing
several different objects or object parts. All this means that
the statistical text methods alone are sometimes not power-
ful enough to deal with the visual data. This is not too sur-
prising – after all, the visual world is much richer and nois-
ier than the human-constructed, virtually noiseless world of
text.

1.2. Grouping visual words
The problem of visual polysemy becomes apparent when

we consider how an image is represented in the “bag of
words” document model. All visual words in an image are
placed into a single histogram, losing all spatial and neigh-
borhood relationships. Suppose a car is described by ten
visual words. Does the presence of these ten words in an
image imply that it contains a car? Not necessarily, since
these ten words did not have to occur together spatially,
but anywhere in the image. Of course, if the object and
its background are highly correlated (e.g. cars and roads or
cows and grass), then modeling the entire image can actu-
ally help recognition. However, this is unlikely to scale as
we look at a large number of object classes. Therefore, what
we need is a way to group visual words spatially [8, 24] to
make them more descriptive.

1.3. Multiple segmentation approach

In this paper we propose to use image segmentation as a
way to utilize visual grouping cues to produce groups of

related visual words. In theory, the idea sounds simple:
compute a segmentation of each image so that each seg-
ment corresponds to a coherent object. Then cluster sim-
ilar segments together using the “bag of words” represen-
tation. However, image segmentation is not a solved prob-
lem. It is naive to expect a segmentation algorithm to par-
tition an image into its constituent objects – in the general
case, you need to have solved the recognition problem al-
ready! In practice, some approaches, like Mean-shift [4],
perform only a low-level over-segmentation of the image
(superpixels). Others, like Normalized Cuts [20] attempt to
find a global solution, but often without success (however,
see Duygulu et al. [6] for a clever joint use of segments and
textual annotations).

Recently, Hoiem et al. [13] have proposed a surprisingly
effective way of utilizing image segmentation without suf-
fering from its shortcomings. For each image, they com-
pute multiple segmentations by varying the parameters of
the segmenting algorithm. Each of the resulting segmenta-
tions is still assumed to be wrong – but the hope is that some

segments in some of the segmentations will be correct. For
example, consider the images in figures 1 and 4. None of
the segmentations are entirely correct, but most objects get
segmented correctly at least once. This idea of maintaining
multiple segmentations until further evidence can be used
to disambiguate is similar to the approach of Borenstein et

al. [3].

The problem now becomes one of going through a large
“soup” of (overlapping) segments and trying to discover the
good ones. But note that, in a large image dataset with many
examples of the same object, the good segments (i.e. the
ones containing the object) will all be represented by a simi-
lar set of visual words. The bad segments, on the other hand,
will be described by a random mixture of object-words and
background-words. To paraphrase Leo Tolstoy [25]: all

good segments are alike, each bad segment is bad in its own

way. This is the main insight of the paper: segments cor-

Figure 1. Problem summary. Given a set of input images (first column), we wish to discover object categories and infer their spatial extent

(e.g. cars and buildings: final two columns). We compute multiple segmentations per image (a subset is depicted in the second through

fifth columns; all of the segmentations for the first row are shown in Figure 4). The task is to sift the good segments from the bad ones for

each discovered object category. Here, the segments chosen by our method are shown in green (buildings) and yellow (cars).

words in the image belonging to a particular topic.

One major issue noticed by several groups [17, 21], is
that the “visual words” are not always as descriptive as
their text counterparts. While some visual words do cap-
ture high-level object parts, (e.g. wheels, eyes, airplane
wingtips), many others end up encoding simple oriented
bars and corners and might more appropriately be called
“visual phonemes” or even “visual letters”. Consequently,
there is a proportion of visual synonyms – several words
describing the same object or object part, and, more prob-
lematically, visual polysemy – the same word describing
several different objects or object parts. All this means that
the statistical text methods alone are sometimes not power-
ful enough to deal with the visual data. This is not too sur-
prising – after all, the visual world is much richer and nois-
ier than the human-constructed, virtually noiseless world of
text.

1.2. Grouping visual words
The problem of visual polysemy becomes apparent when

we consider how an image is represented in the “bag of
words” document model. All visual words in an image are
placed into a single histogram, losing all spatial and neigh-
borhood relationships. Suppose a car is described by ten
visual words. Does the presence of these ten words in an
image imply that it contains a car? Not necessarily, since
these ten words did not have to occur together spatially,
but anywhere in the image. Of course, if the object and
its background are highly correlated (e.g. cars and roads or
cows and grass), then modeling the entire image can actu-
ally help recognition. However, this is unlikely to scale as
we look at a large number of object classes. Therefore, what
we need is a way to group visual words spatially [8, 24] to
make them more descriptive.

1.3. Multiple segmentation approach

In this paper we propose to use image segmentation as a
way to utilize visual grouping cues to produce groups of

related visual words. In theory, the idea sounds simple:
compute a segmentation of each image so that each seg-
ment corresponds to a coherent object. Then cluster sim-
ilar segments together using the “bag of words” represen-
tation. However, image segmentation is not a solved prob-
lem. It is naive to expect a segmentation algorithm to par-
tition an image into its constituent objects – in the general
case, you need to have solved the recognition problem al-
ready! In practice, some approaches, like Mean-shift [4],
perform only a low-level over-segmentation of the image
(superpixels). Others, like Normalized Cuts [20] attempt to
find a global solution, but often without success (however,
see Duygulu et al. [6] for a clever joint use of segments and
textual annotations).

Recently, Hoiem et al. [13] have proposed a surprisingly
effective way of utilizing image segmentation without suf-
fering from its shortcomings. For each image, they com-
pute multiple segmentations by varying the parameters of
the segmenting algorithm. Each of the resulting segmenta-
tions is still assumed to be wrong – but the hope is that some

segments in some of the segmentations will be correct. For
example, consider the images in figures 1 and 4. None of
the segmentations are entirely correct, but most objects get
segmented correctly at least once. This idea of maintaining
multiple segmentations until further evidence can be used
to disambiguate is similar to the approach of Borenstein et

al. [3].

The problem now becomes one of going through a large
“soup” of (overlapping) segments and trying to discover the
good ones. But note that, in a large image dataset with many
examples of the same object, the good segments (i.e. the
ones containing the object) will all be represented by a simi-
lar set of visual words. The bad segments, on the other hand,
will be described by a random mixture of object-words and
background-words. To paraphrase Leo Tolstoy [25]: all

good segments are alike, each bad segment is bad in its own

way. This is the main insight of the paper: segments cor-

Multiple 
Segmentations

[Hoiem et al. 2005]

Malisiewicz et al. CVPR 2008



Segment-then-recognize

Input Image

Figure 1. Problem summary. Given a set of input images (first column), we wish to discover object categories and infer their spatial extent

(e.g. cars and buildings: final two columns). We compute multiple segmentations per image (a subset is depicted in the second through

fifth columns; all of the segmentations for the first row are shown in Figure 4). The task is to sift the good segments from the bad ones for

each discovered object category. Here, the segments chosen by our method are shown in green (buildings) and yellow (cars).

words in the image belonging to a particular topic.

One major issue noticed by several groups [17, 21], is
that the “visual words” are not always as descriptive as
their text counterparts. While some visual words do cap-
ture high-level object parts, (e.g. wheels, eyes, airplane
wingtips), many others end up encoding simple oriented
bars and corners and might more appropriately be called
“visual phonemes” or even “visual letters”. Consequently,
there is a proportion of visual synonyms – several words
describing the same object or object part, and, more prob-
lematically, visual polysemy – the same word describing
several different objects or object parts. All this means that
the statistical text methods alone are sometimes not power-
ful enough to deal with the visual data. This is not too sur-
prising – after all, the visual world is much richer and nois-
ier than the human-constructed, virtually noiseless world of
text.

1.2. Grouping visual words
The problem of visual polysemy becomes apparent when

we consider how an image is represented in the “bag of
words” document model. All visual words in an image are
placed into a single histogram, losing all spatial and neigh-
borhood relationships. Suppose a car is described by ten
visual words. Does the presence of these ten words in an
image imply that it contains a car? Not necessarily, since
these ten words did not have to occur together spatially,
but anywhere in the image. Of course, if the object and
its background are highly correlated (e.g. cars and roads or
cows and grass), then modeling the entire image can actu-
ally help recognition. However, this is unlikely to scale as
we look at a large number of object classes. Therefore, what
we need is a way to group visual words spatially [8, 24] to
make them more descriptive.

1.3. Multiple segmentation approach

In this paper we propose to use image segmentation as a
way to utilize visual grouping cues to produce groups of

related visual words. In theory, the idea sounds simple:
compute a segmentation of each image so that each seg-
ment corresponds to a coherent object. Then cluster sim-
ilar segments together using the “bag of words” represen-
tation. However, image segmentation is not a solved prob-
lem. It is naive to expect a segmentation algorithm to par-
tition an image into its constituent objects – in the general
case, you need to have solved the recognition problem al-
ready! In practice, some approaches, like Mean-shift [4],
perform only a low-level over-segmentation of the image
(superpixels). Others, like Normalized Cuts [20] attempt to
find a global solution, but often without success (however,
see Duygulu et al. [6] for a clever joint use of segments and
textual annotations).

Recently, Hoiem et al. [13] have proposed a surprisingly
effective way of utilizing image segmentation without suf-
fering from its shortcomings. For each image, they com-
pute multiple segmentations by varying the parameters of
the segmenting algorithm. Each of the resulting segmenta-
tions is still assumed to be wrong – but the hope is that some

segments in some of the segmentations will be correct. For
example, consider the images in figures 1 and 4. None of
the segmentations are entirely correct, but most objects get
segmented correctly at least once. This idea of maintaining
multiple segmentations until further evidence can be used
to disambiguate is similar to the approach of Borenstein et

al. [3].

The problem now becomes one of going through a large
“soup” of (overlapping) segments and trying to discover the
good ones. But note that, in a large image dataset with many
examples of the same object, the good segments (i.e. the
ones containing the object) will all be represented by a simi-
lar set of visual words. The bad segments, on the other hand,
will be described by a random mixture of object-words and
background-words. To paraphrase Leo Tolstoy [25]: all

good segments are alike, each bad segment is bad in its own

way. This is the main insight of the paper: segments cor-

Figure 1. Problem summary. Given a set of input images (first column), we wish to discover object categories and infer their spatial extent

(e.g. cars and buildings: final two columns). We compute multiple segmentations per image (a subset is depicted in the second through

fifth columns; all of the segmentations for the first row are shown in Figure 4). The task is to sift the good segments from the bad ones for

each discovered object category. Here, the segments chosen by our method are shown in green (buildings) and yellow (cars).

words in the image belonging to a particular topic.

One major issue noticed by several groups [17, 21], is
that the “visual words” are not always as descriptive as
their text counterparts. While some visual words do cap-
ture high-level object parts, (e.g. wheels, eyes, airplane
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prising – after all, the visual world is much richer and nois-
ier than the human-constructed, virtually noiseless world of
text.

1.2. Grouping visual words
The problem of visual polysemy becomes apparent when

we consider how an image is represented in the “bag of
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its background are highly correlated (e.g. cars and roads or
cows and grass), then modeling the entire image can actu-
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Limits of 
distance function learning
• Learning focuses on objects, but in object 

detection there are many more non-
objects than objects

• Need to potentially cope with millions of 
negatives during learning

• State-of-the-art object detectors deal with 
negative data by hard negative mining 
[Dalal-Triggs 2005, Felzenszwalb et al. 2008]



Exemplar-SVMs

Malisiewicz et al. ICCV 2011



Exemplar-SVMs

• Best of both worlds:

• Effectiveness of discriminatively-trained object 
detectors

• Explicit correspondence of Nearest Neighbor 
approaches 

Malisiewicz et al. ICCV 2011
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• Learn a separate linear SVM for each instance 
(exemplar) in the dataset (PASCAL VOC)

• Each Exemplar-SVM is trained with a single positive 
instance and millions of negatives

• Each Exemplar-SVM is more defined by “what it is 
not” vs. “what it is similar to”
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Exemplar-SVMs

• Because each Exemplar-SVM is defined by a single 
positive instance, we can use different features for 
each exemplar

7x4 HOG 4x8 HOG

• Apply each Exemplar-
SVM to test image in a 
sliding-window fashion
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Exemplar-SVMs

Windows from images not 
containing any in-class instances 
(~2,000 images x ~10,000 
windows/image = ~2M negatives )

Exemplar represented by ~100 
HOG Cells (~3,100 features)

Exemplar E’s Objective Function:

h(x) = max(1-x,0) “hinge-loss”



Large-scale training

• Each exemplar performs its 
own hard negative mining

• Solve many convex learning 
problems

• Parallel training on cluster

CPU1 CPU2 CPUN

Ex1 Ex2 ExN...



Interpreting Exemplar-SVMs

• Each exemplar defines its own single-instance “category”

• Each Exemplar-SVM acts as a “distance function” but without 
the exemplar at origin constraint

• As a linear classifier, Exemplar-SVMs operate as a simple dot 
product in feature space



Visualizing Exemplar-SVMs
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Exemplar w Averaged Detections

Average of first 
10

detections

Average of first 
20

detections











Understanding
Exemplar-SVMs

• Nearest Neighbor

• No Learning

• Per-Exemplar Distance Functions

• Learning in distance-to-exemplar space 
[Malisiewicz et al. 2008]

• Exemplar-SVMs
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PASCAL VOC 2007 Object 
Category Detection Results

Equal or better in performance than Pedro Felzenszwalb’s Latent 
Deformable Part-based Model in 7 PASCAL VOC 2007 
categories.



Meta-data transfer
• Based on the idea of label transfer [Torralba et al], 

Exemplar-SVMs can be used for tasks which go 
beyond object category detection
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Cross-domain Image 
Matching

Shrivastava et al. SIGGRAPH ASIA 2011
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Learn Exemplar-SVM 
for query image

Negatives mined from 
random Flickr imagesQuery Sketch

Then apply learned w to retrieval set 
of images in a sliding-window fashion
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Sketch to Image



Painting to GPS

IM2GPS: Hays et al. 2008



Open Problems
• 1. Learning for many exemplars is 

computationally expensive. Can cleverly 
reusing mined negatives help speed-up 
training?

• 2. At test-time, applying N Exemplar-SVMs 
takes O(N) time. Can exemplar pruning or 
approximate matching algorithms help? 
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Concluding Remarks
• Exemplar-SVMs can be used for detection, meta-data 

transfer, as well as cross-domain image matching



Concluding Remarks
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• Dealing with lots of data is the key to learning 
a good Exemplar-SVM 

• Exemplar-SVMs can be used for detection, meta-data 
transfer, as well as cross-domain image matching
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