Per-exemplar learning: Object Detection and Beyond

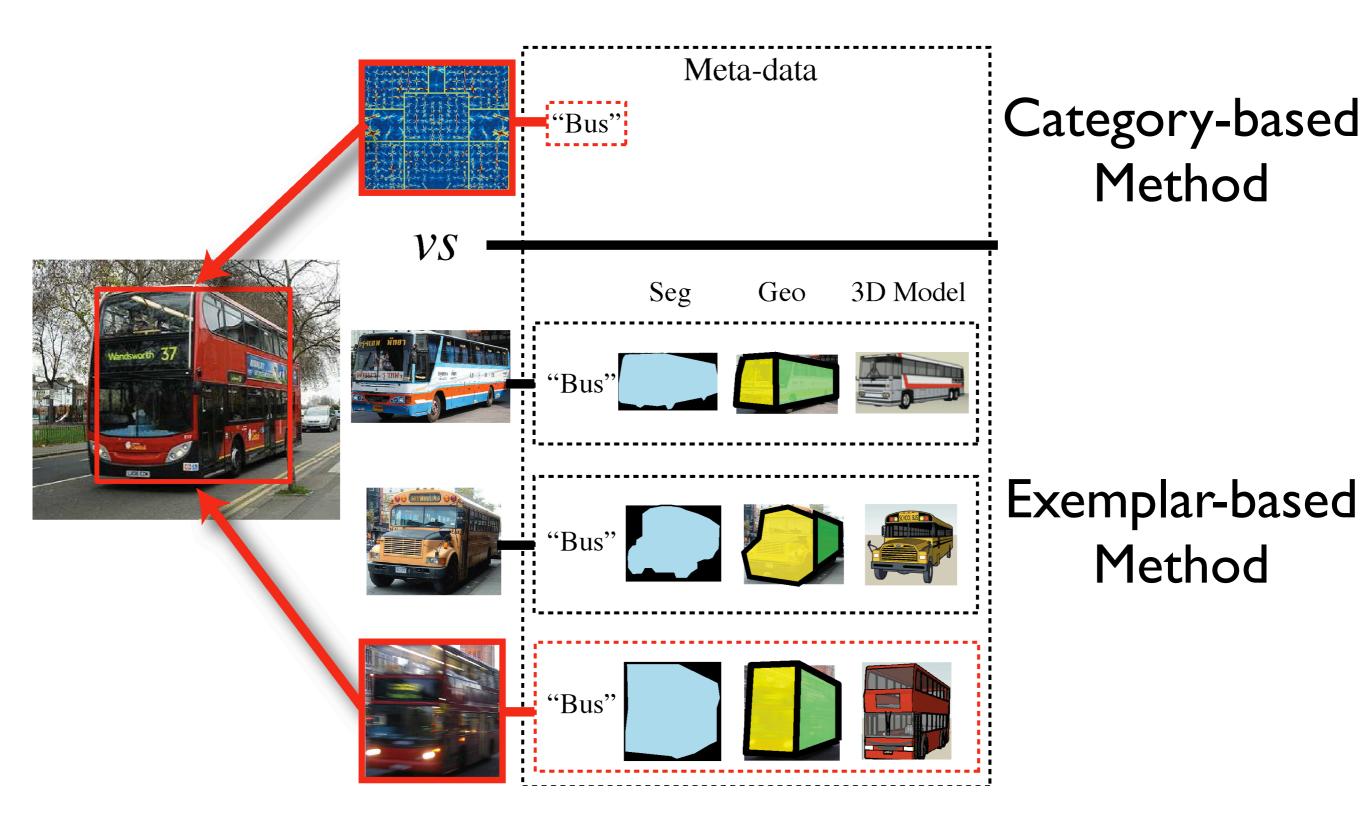
Carnegie Mellon THE ROBOTICS INSTITUTE

Tomasz Malisiewicz

tomasz@csail.mit.edu

Workshop on Kernels and Distances @ICCV 2011 Barcelona, Spain

Why Nearest Neighbors Matter



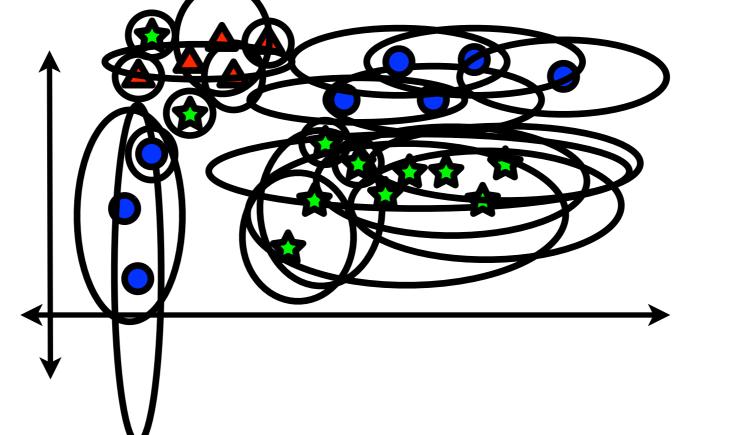
Overview

- Learning Per-exemplar Distance Functions
- **ExemplarSVMs**: Coping with large scale detection problems
 - PASCALVOC Object Detection and Meta-data Transfer
 - Cross-domain Image Matching
- Concluding Remarks and Open Problems

Per-Exemplar Learning

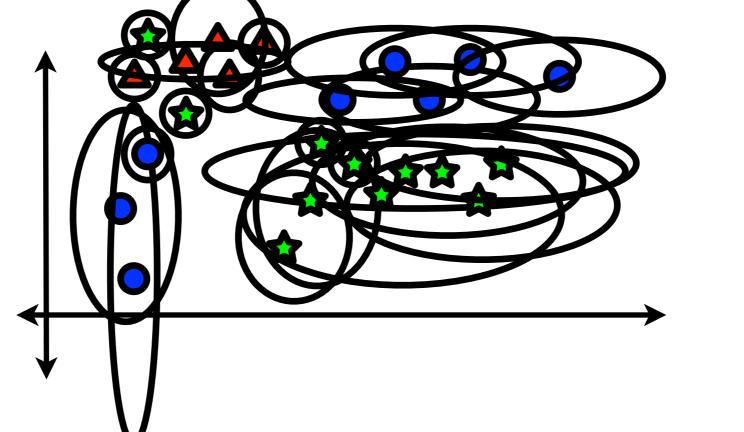
- NN-method, where each exemplar has its own distance "similarity" function

Per-Exemplar Learning



- NN-method, where each exemplar has its own distance "similarity" function
- Introduced for Image Classification by Frome et al., NIPS 2007

Per-Exemplar Learning



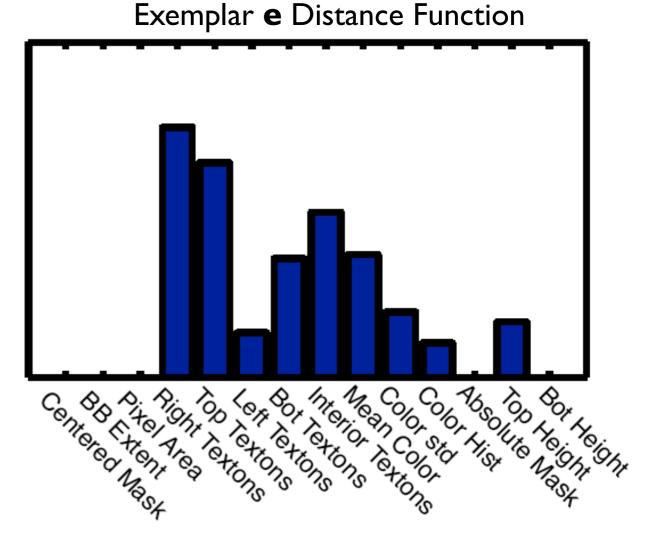
- NN-method, where each exemplar has its own distance "similarity" function
- Introduced for Image Classification by Frome et al., NIPS 2007
- Extended to Segmentation-based detection Malisiewicz et al., CVPR 2008

Per-Exemplar Distance "Similarity" Functions

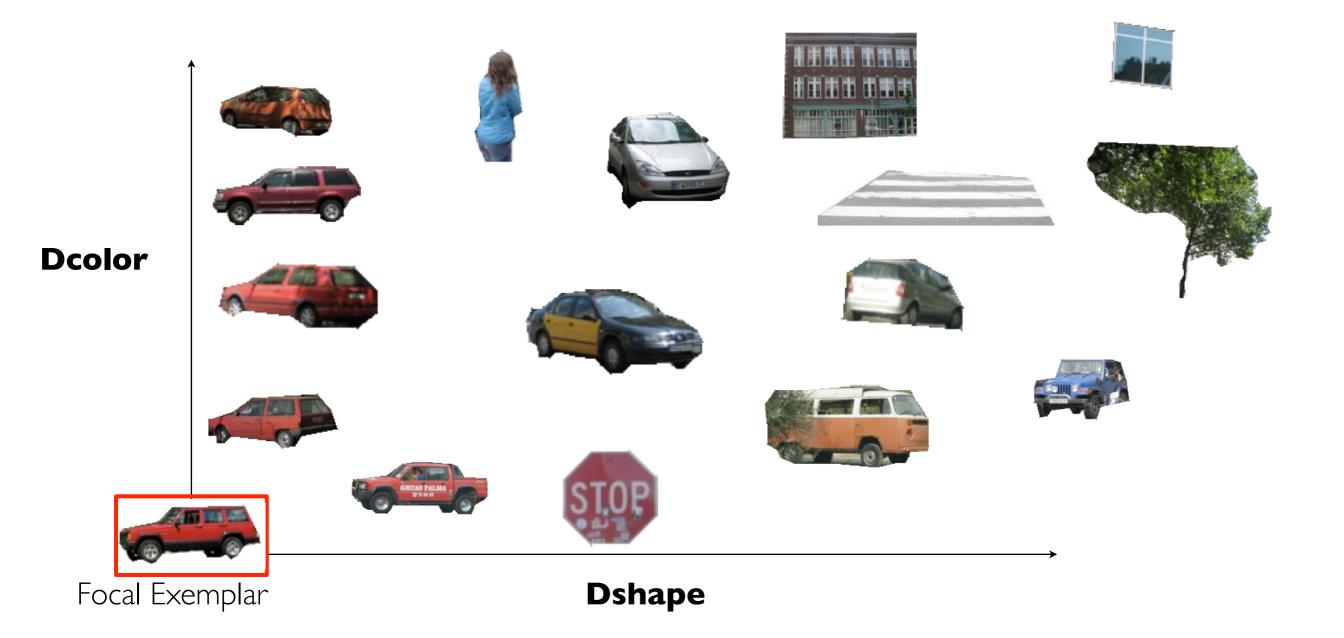
• Positive linear combination of elementary distances

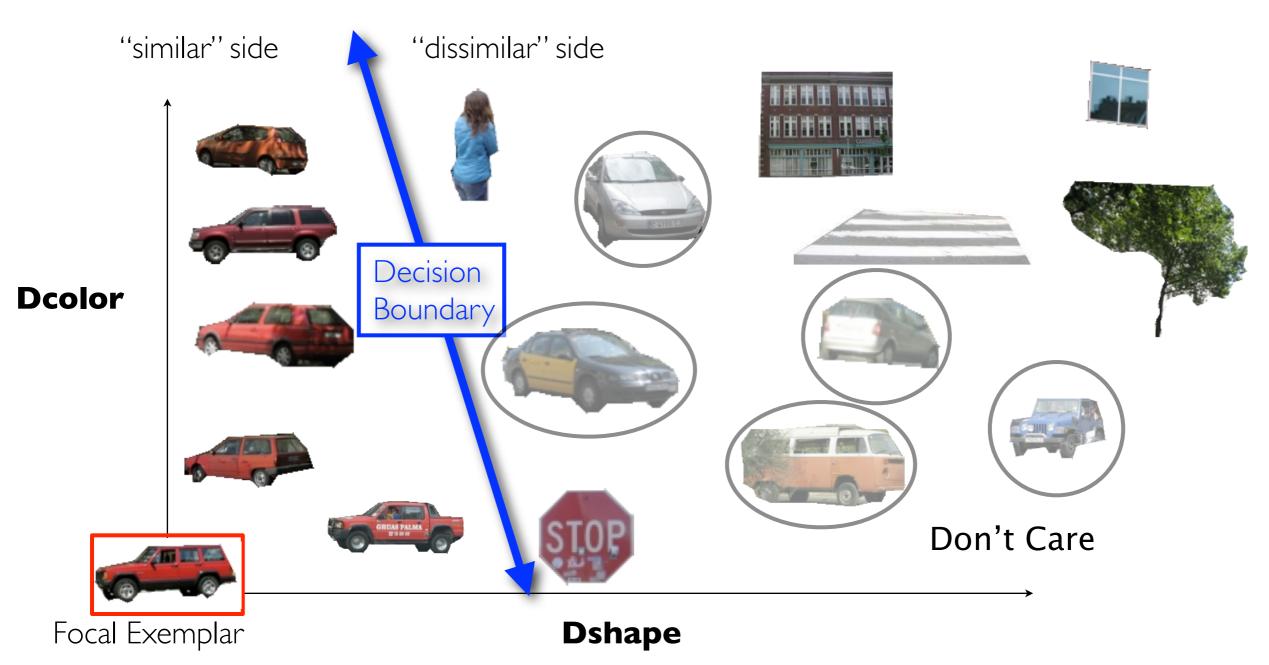
$$D_e(z) = \mathbf{w}_e \cdot \mathbf{d}_{ez}$$

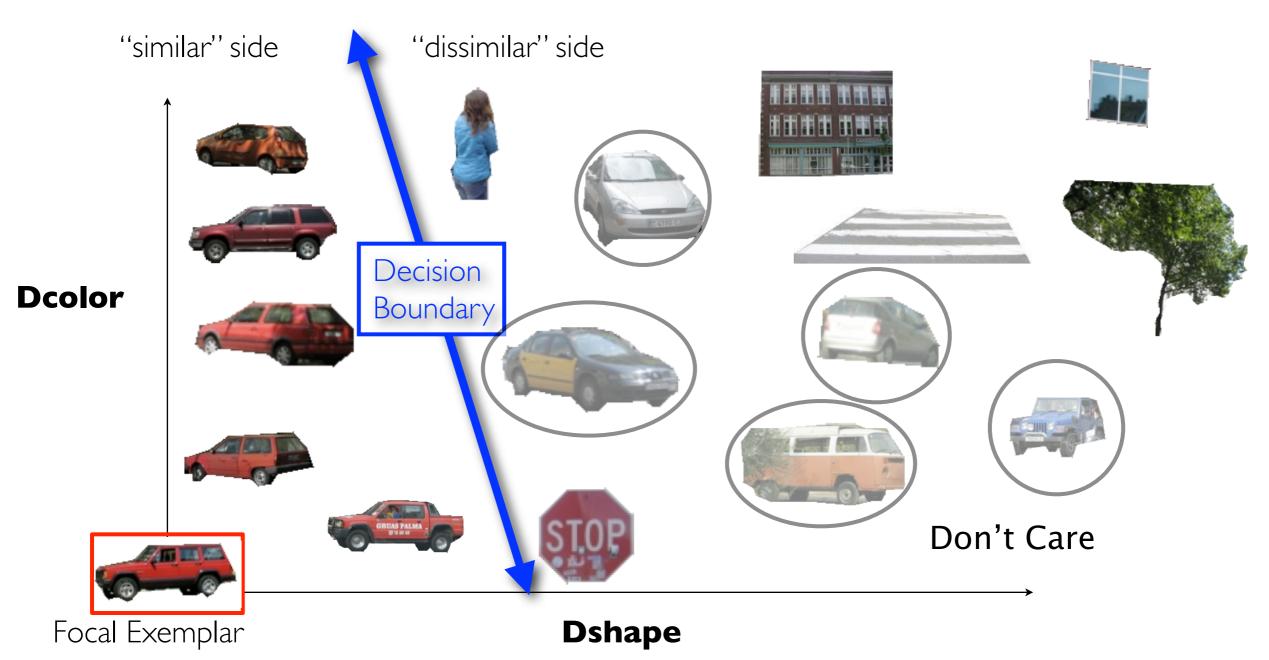
Exemplar e



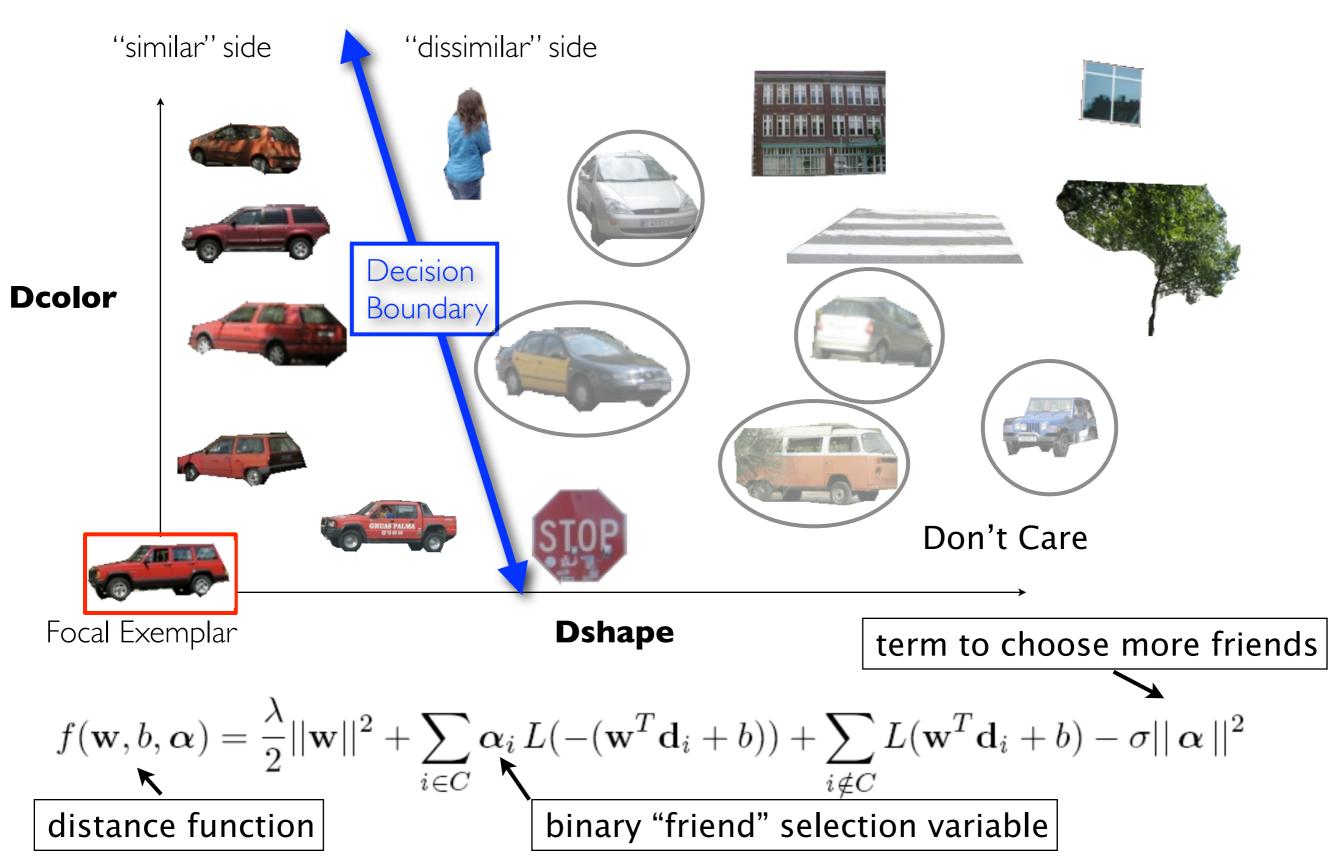
Frome et al. NIPS 2007, Malisiewicz et al. CVPR 2008





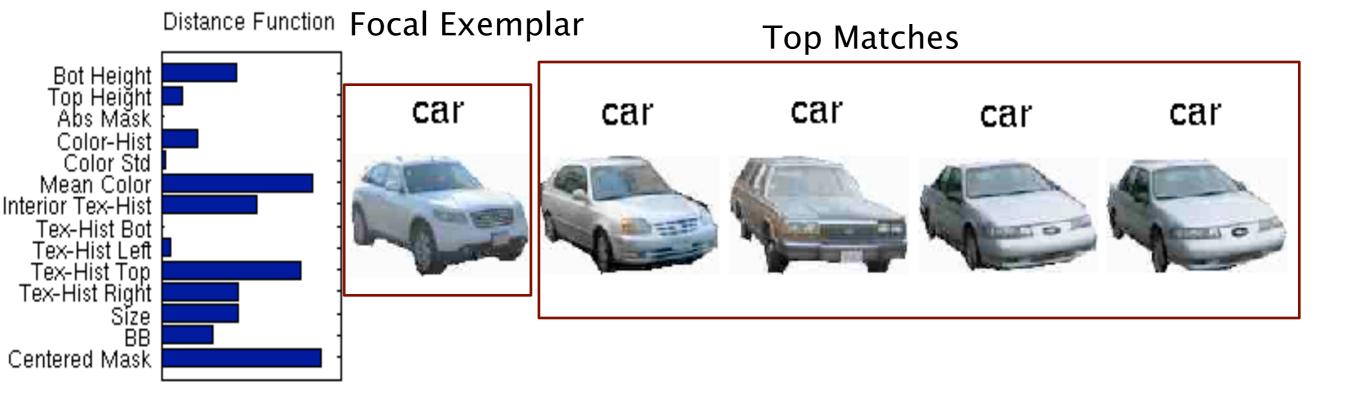


$$f(\mathbf{w}, b, \alpha) = \frac{\lambda}{2} ||\mathbf{w}||^2 + \sum_{i \in C} \alpha_i L(-(\mathbf{w}^T \mathbf{d}_i + b)) + \sum_{i \notin C} L(\mathbf{w}^T \mathbf{d}_i + b) - \sigma ||\alpha||^2$$



A Learned Distance Function

No learning



Segment-then-recognize

Input Image

Segment-then-recognize

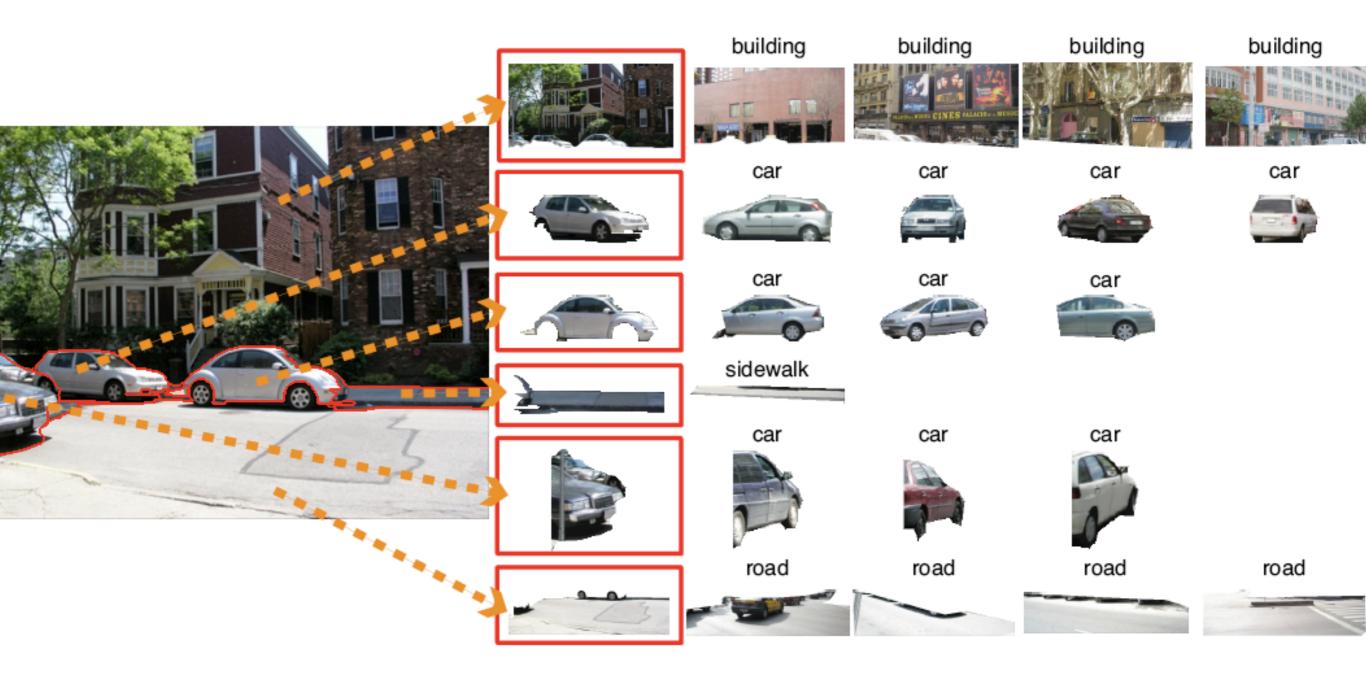
Input Image

Multiple Segmentations [Hoiem et al. 2005]

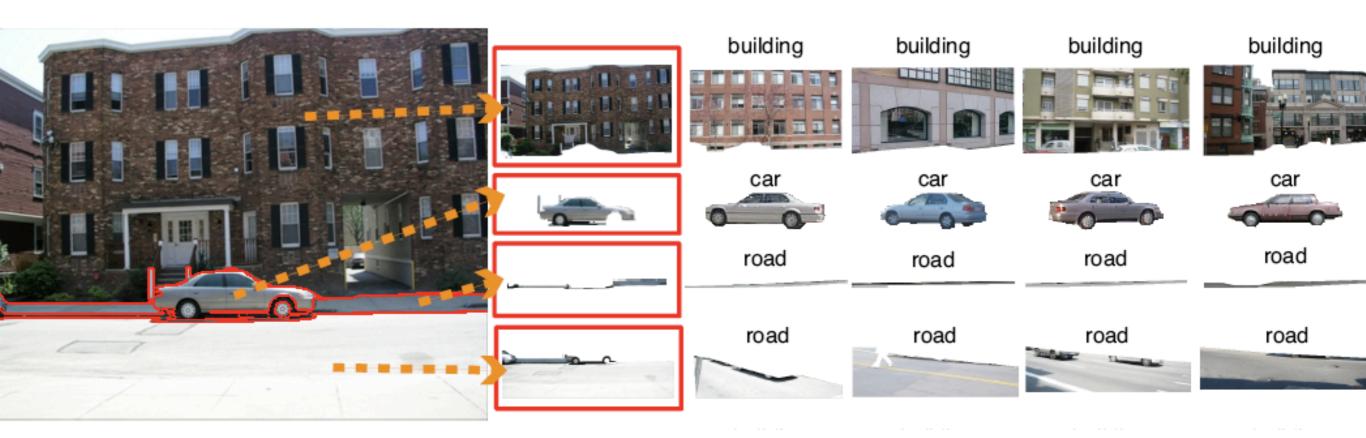
Segment-then-recognize



Segment-then-recognize Results



Segment-then-recognize Results



Limits of distance function learning

 Learning focuses on objects, but in **object detection** there are many more nonobjects than objects

Limits of distance function learning

- Learning focuses on objects, but in **object detection** there are many more nonobjects than objects
- Need to potentially cope with millions of negatives during learning

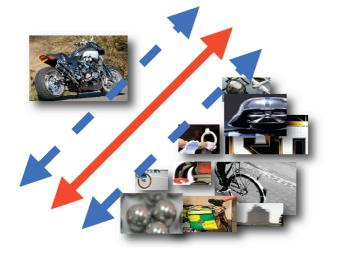
Limits of distance function learning

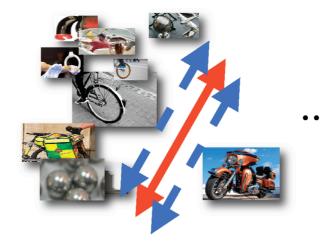
- Learning focuses on objects, but in **object detection** there are many more nonobjects than objects
- Need to potentially cope with millions of negatives during learning
- State-of-the-art object detectors deal with negative data by hard negative mining [Dalal-Triggs 2005, Felzenszwalb et al. 2008]

Exemplar-SVM 1

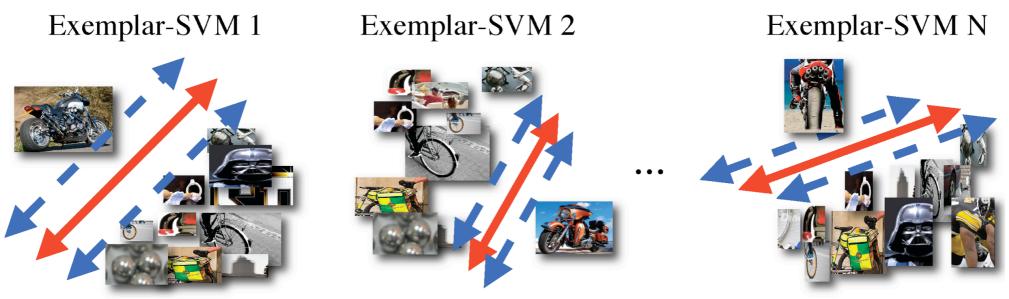
Exemplar-SVM 2

Exemplar-SVM N

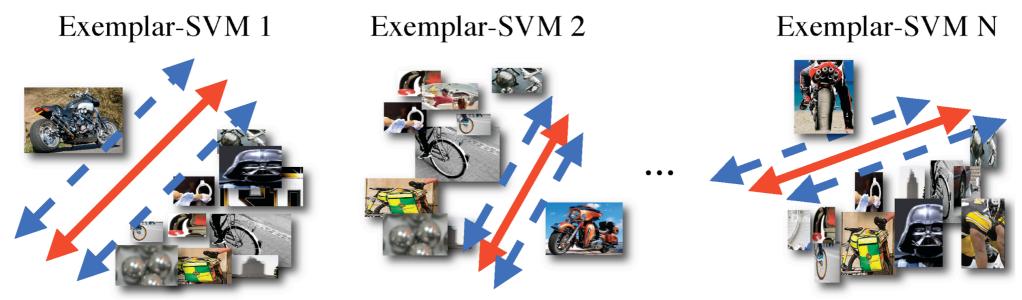




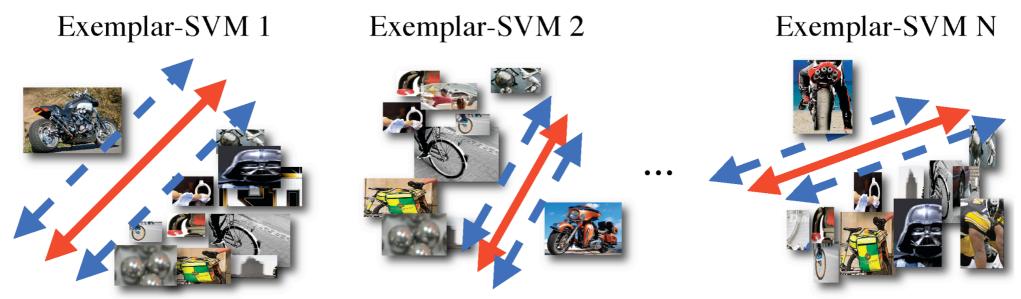




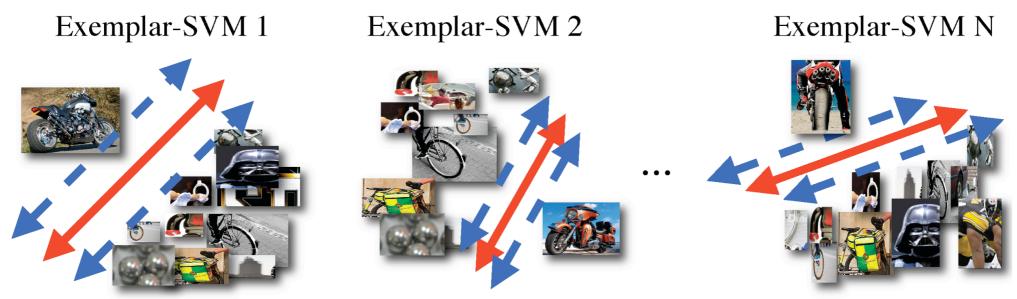
- Best of both worlds:
 - Effectiveness of discriminatively-trained object detectors
 - Explicit correspondence of Nearest Neighbor approaches



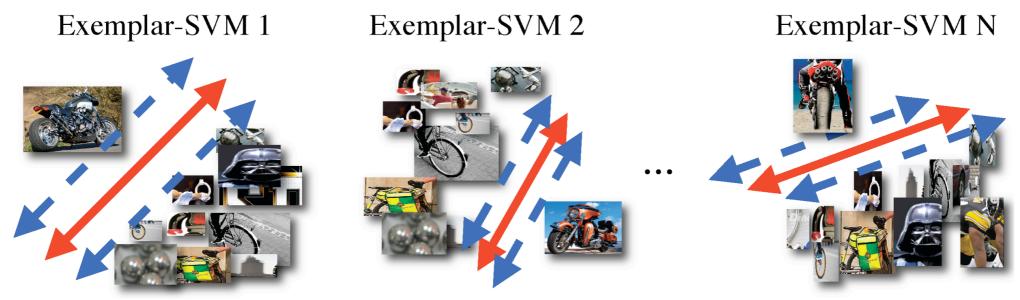
 Learn a separate linear SVM for each instance (exemplar) in the dataset (PASCALVOC)



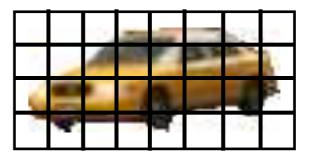
- Learn a separate linear SVM for each instance (exemplar) in the dataset (PASCALVOC)
- Each Exemplar-SVM is trained with a single positive instance and millions of negatives



- Learn a separate linear SVM for each instance (exemplar) in the dataset (PASCALVOC)
- Each Exemplar-SVM is trained with a single positive instance and millions of negatives
- Each Exemplar-SVM is more defined by "what it is not" vs. "what it is similar to"

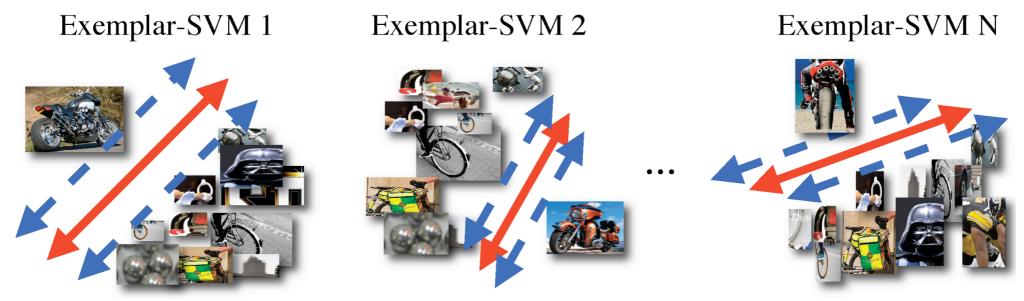


 Because each Exemplar-SVM is defined by a single positive instance, we can use different features for each exemplar

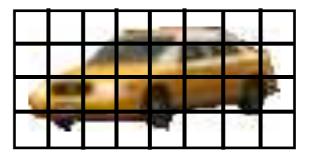


7x4 HOG

4x8 HOG



- Because each Exemplar-SVM is defined by a single positive instance, we can use different features for each exemplar
- Apply each Exemplar-SVM to test image in a sliding-window fashion

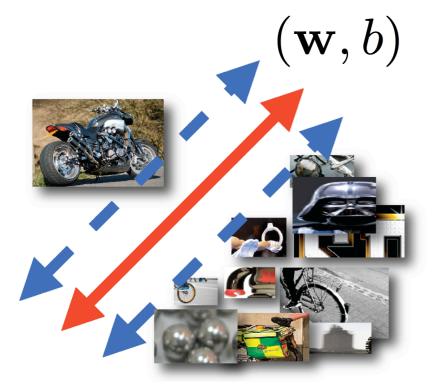


4x8 HOG

Exemplar E's Objective Function:

$$\Omega_E(\mathbf{w}, b) = ||\mathbf{w}||^2 + C_1 h(\mathbf{w}^T \mathbf{x}_E + b) + C_2 \sum_{\mathbf{x} \in \mathcal{N}_E} h(-\mathbf{w}^T \mathbf{x} - b)$$

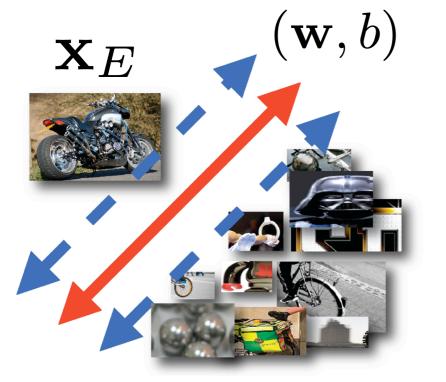
h(x) = max(1-x,0) "hinge-loss"



Exemplar E's Objective Function:

$$\Omega_E(\mathbf{w}, b) = ||\mathbf{w}||^2 + C_1 h(\mathbf{w}^T \mathbf{x}_E + b) + C_2 \sum_{\mathbf{x} \in \mathcal{N}_E} h(-\mathbf{w}^T \mathbf{x} - b)$$

h(x) = max(1-x,0) "hinge-loss"



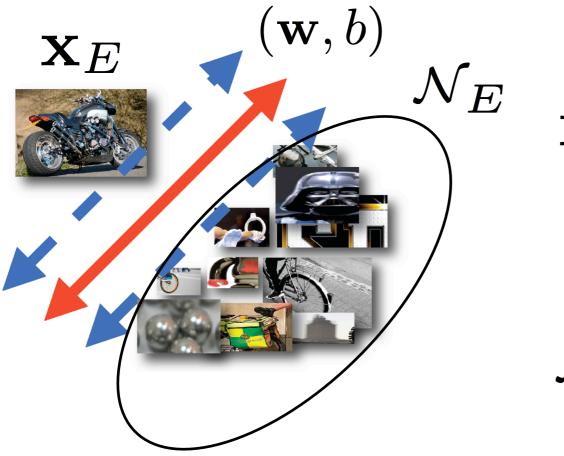
Exemplar represented by ~100 X_E HOG Cells (~3,100 features)

Exemplar E's Objective Function:

$$\Omega_E(\mathbf{w}, b) = ||\mathbf{w}||^2 + C_1 h(\mathbf{w}^T \mathbf{x}_E + b) + C_2 \sum_{\mathbf{x} \in \mathcal{N}_E} h(-\mathbf{w}^T \mathbf{x} - b)$$

h(x) = max(1-x,0) "hinge-loss"

Windows from images not \mathcal{N}_E containing any in-class instances (~2,000 images x ~10,000 windows/image = ~2M negatives)



Large-scale training

Ex

Exemplar-SVM 2

Each exemplar performs its CPU own hard negative mining

Exemplar-SVM 1

- Solve many convex learning problems
- Parallel training on cluster

 $\mathbf{E}\mathbf{X}_2$

Exemplar-SVM N

EXN

CPU

Interpreting Exemplar-SVMs

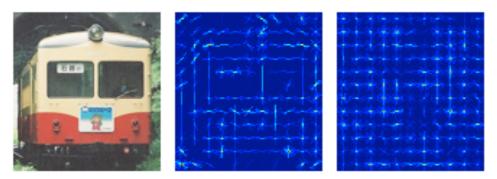


- Each exemplar defines its own single-instance "category"
- Each Exemplar-SVM acts as a "distance function" but without the exemplar at origin constraint
- As a linear classifier, Exemplar-SVMs operate as a simple dot product in feature space

Visualizing Exemplar-SVMs

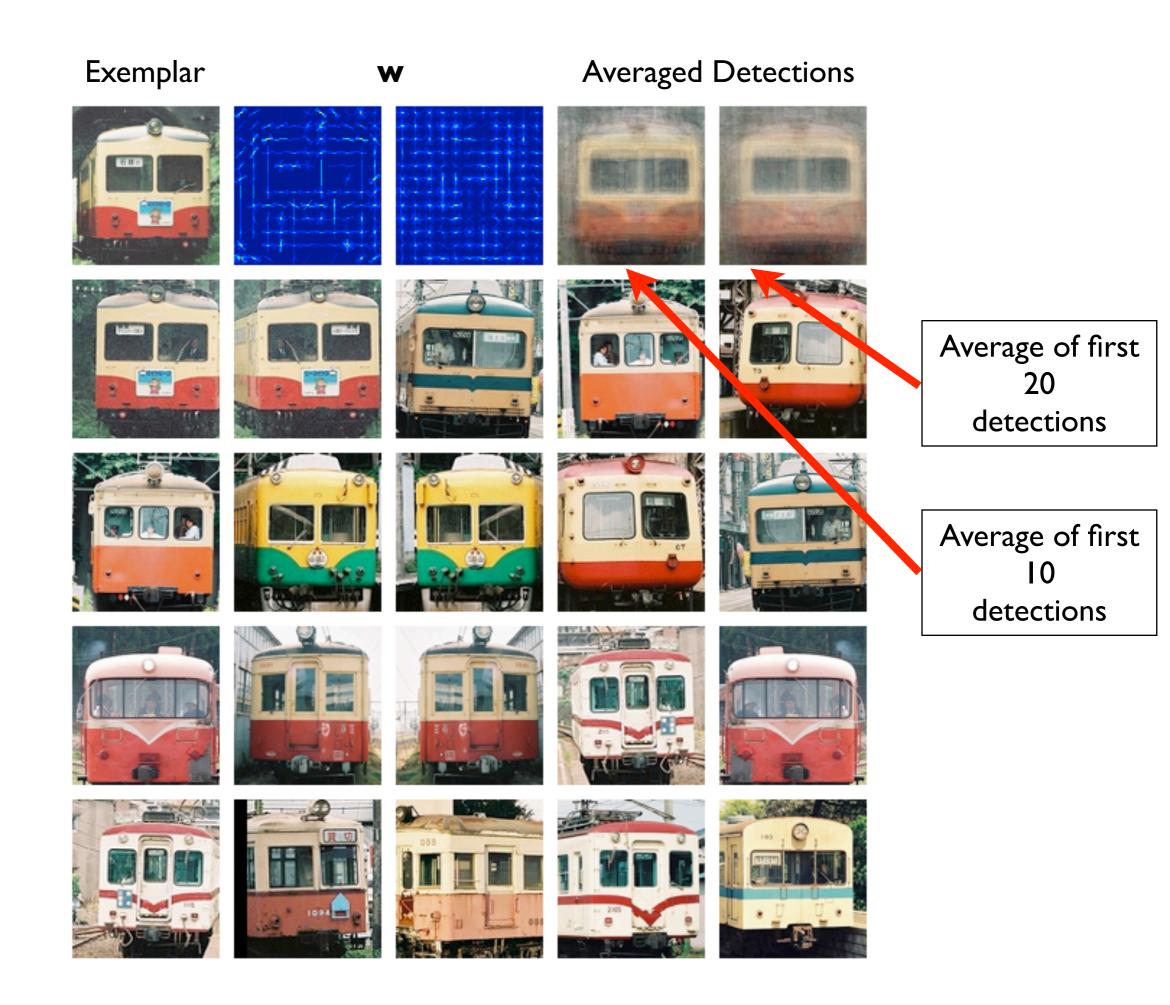
Exemplar

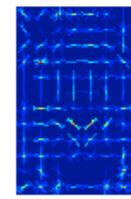
W

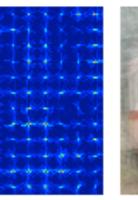


Exemplar

н







.

HX.

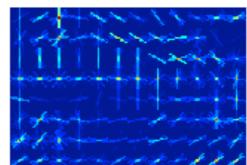
10.00

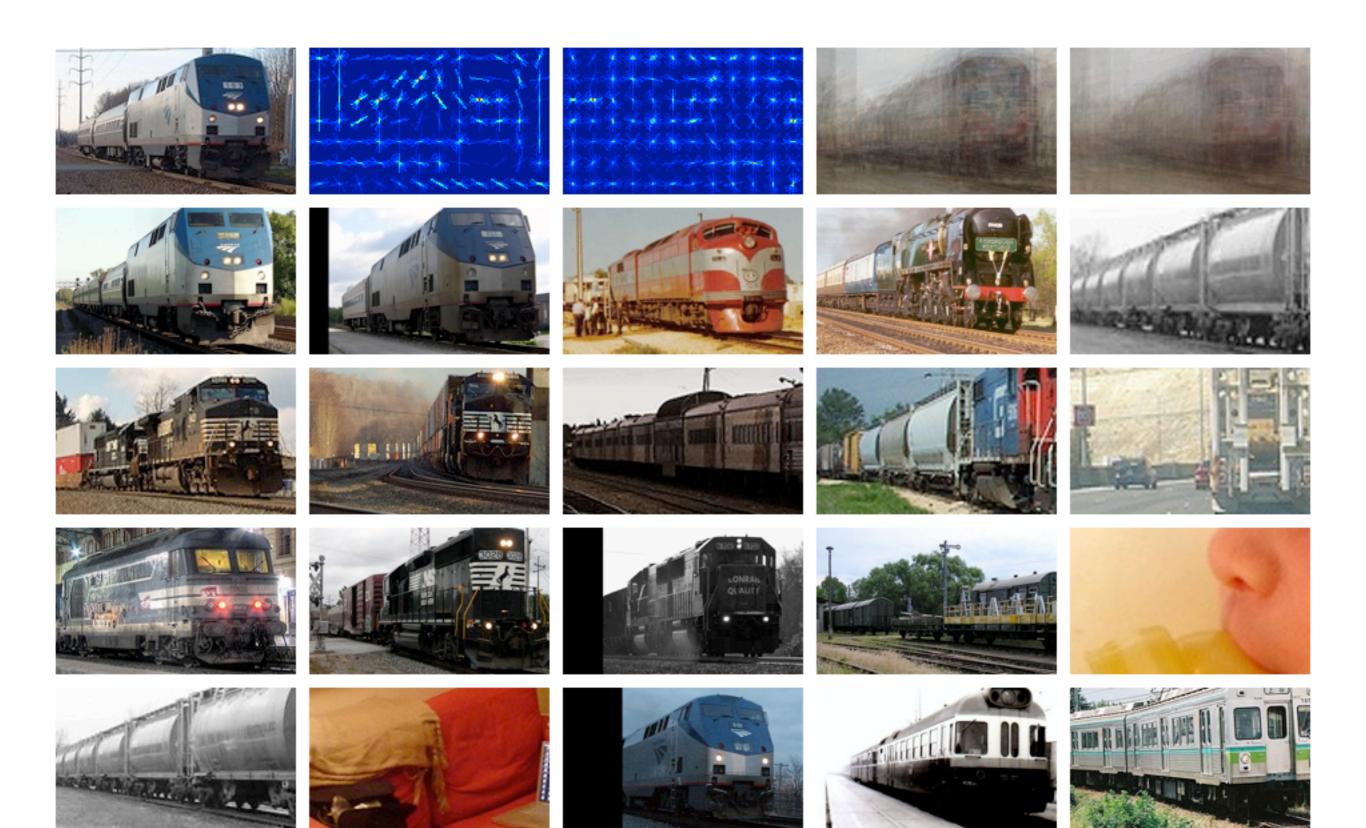
8

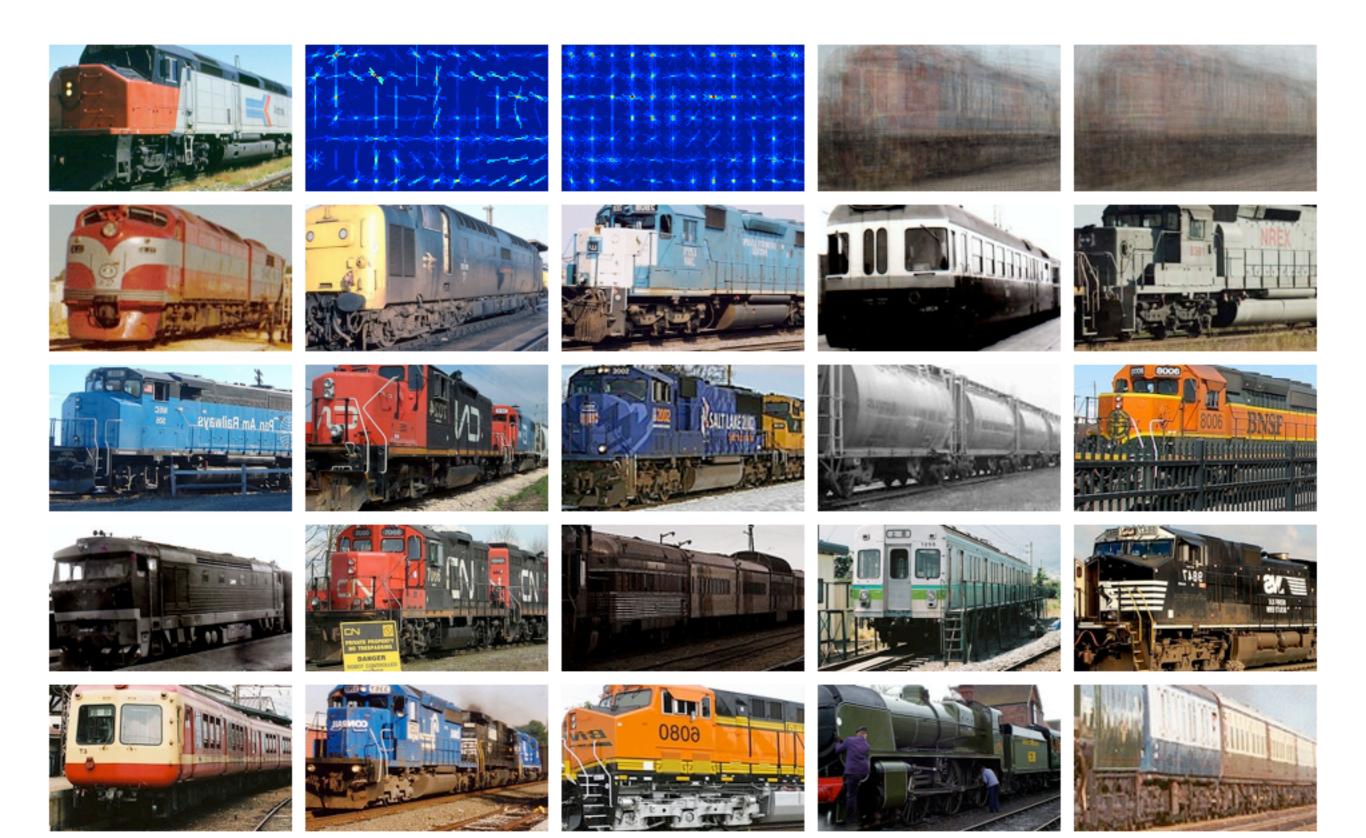
- -

0

3



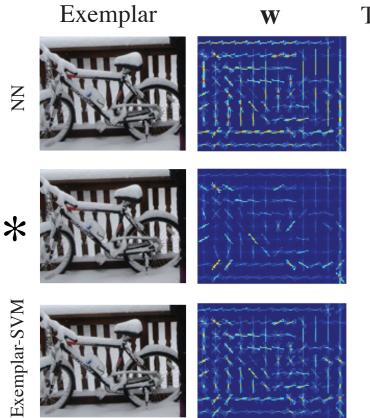




Understanding Exemplar-SVMs

- Nearest Neighbor
 - No Learning
- Per-Exemplar Distance Functions
 - Learning in distance-to-exemplar space [Malisiewicz et al. 2008]
- Exemplar-SVMs

Comparison of 3 methods

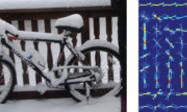


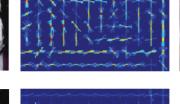
Top 6 Detections from Testset

*Learned Distance Function

Comparison of 3 methods

Exemplar





W

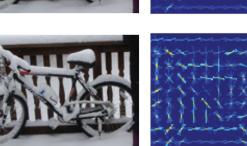
Top 6 Detections from Testset

*Learned Distance Function

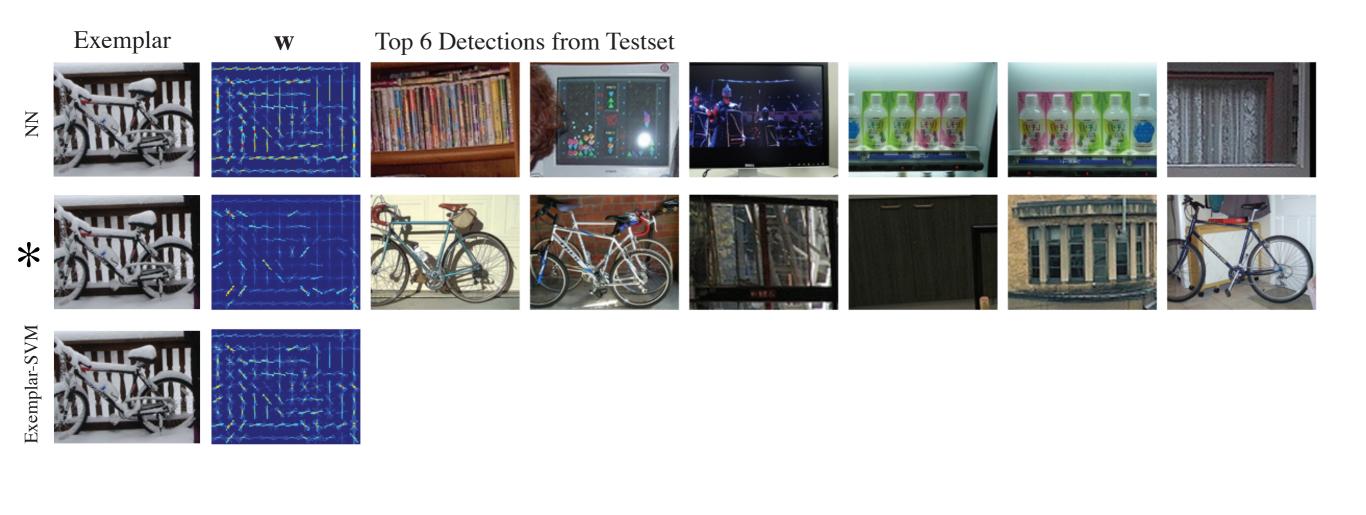
Exemplar-SVM

N

*



Comparison of 3 methods



*Learned Distance Function

Comparison of 3 methods

*Learned Distance Function

PASCALVOC 2007 Object Category Detection Results

Approach	aeroplane	bicycle	bird	boat	bottle	bus	car	cat	chair	соw	diningtable	dog	horse	motorbike	person	pottedplant	sheep	sofa	train	tymonitor	mAP
NN	.006	.094	.000	.005	.000	.006	.010	.092	.001	.092	.001	.004	.096	.094	.005	.018	.009	.008	.096	.144	.039
NN+Cal	.056	.293	.012	.034	.009	.207	.261	.017	.094	.111	.004	.033	.243	.188	.114	.020	.129	.003	.183	.195	.110
DFUN+Cal	.162	.364	.008	.096	.097	.316	.366	.092	.098	.107	.002	.093	.234	.223	.109	.037	.117	.016	.271	.293	.155
E-SVM+Cal	.204	.407	.093	.100	.103	.310	.401	.096	.104	.147	.023	.097	.384	.320	.192	.096	.167	.110	.291	.315	.198
E-SVM+Co-occ	.208	.480	.077	.143	.131	.397	.411	.052	.116	.186	.111	.031	.447	.394	.169	.112	.226	.170	.369	.300	.227
CZ [6]	.262	.409	-	-	-	.393	.432	-	_	-	-	-	-	.375	-	-	-	-	.334	-	-
DT [7]	.127	.253	.005	.015	.107	.205	.230	.005	.021	.128	.014	.004	.122	.103	.101	.022	.056	.050	.120	.248	.097
LDPM [9]	.287	.510	.006	.145	.265	.397	.502	.163	.165	.166	.245	.050	.452	.383	.362	.090	.174	.228	.341	.384	.266

Table 1. PASCAL VOC 2007 object detection results. We compare our full system (ESVM+Co-occ) to four different exemplar based baselines including NN (Nearest Neighbor), NN+Cal (Nearest Neighbor with calibration), DFUN+Cal (learned distance function with calibration) and ESVM+Cal (Exemplar-SVM with calibration). We also compare our approach against global methods including our implementation of Dalal-Triggs (learning a single global template), LDPM [9] (Latent deformable part model), and Chum et al. [6]'s exemplar-based method. [The NN, NN+Cal and DFUN+Cal results for person category are obtained using 1250 exemplars]

PASCALVOC 2007 Object Category Detection Results

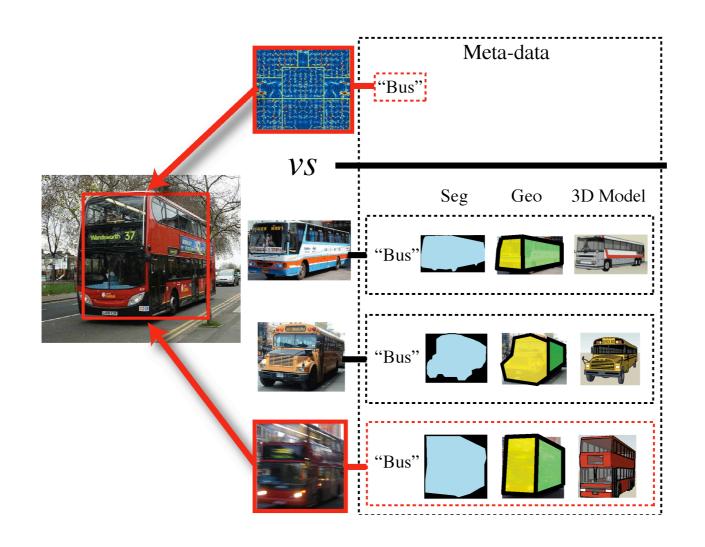
Approach	aeroplane	bicycle	bird	boat	bottle	bus	car	cat	chair	соw	diningtable	dog	horse	motorbike	person	pottedplant	sheep	sofa	train	tymonitor	mAP
NN	.006	.094	.000	.005	.000	.006	.010	.092	.001	.092	.001	.004	.096	.094	.005	.018	.009	.008	.096	.144	.039
NN+Cal	.056	.293	.012	.034	.009	.207	.261	.017	.094	.111	.004	.033	.243	.188	.114	.020	.129	.003	.183	.195	.110
DFUN+Cal	.162	.364	.008	.096	.097	.316	.366	.092	.098	.107	.002	.093	.234	.223	.109	.037	.117	.016	.271	.293	.155
E-SVM+Cal	.204	.407	.093	.100	.103	.310	.401	.096	.104	.147	.023	.097	.384	.320	.192	.096	.167	.110	.291	.315	.198
E-SVM+Co-occ	.208	.480	.077	.143	.131	.397	.411	.052	.116	.186	.111	.031	.447	.394	.169	.112	.226	.170	.369	.300	.227
CZ [6]	.262	.409	-	-	-	.393	.432	_	_	-	-	-	-	.375	-	-	-	-	.334	-	-
DT [7]	.127	.253	.005	.015	.107	.205	.230	.005	.021	.128	.014	.004	.122	.103	.101	.022	.056	.050	.120	.248	.097
LDPM [9]	.287	.510	.006	.145	.265	.397	.502	.163	.165	.166	.245	.050	.452	.383	.362	.090	.174	.228	.341	.384	.266

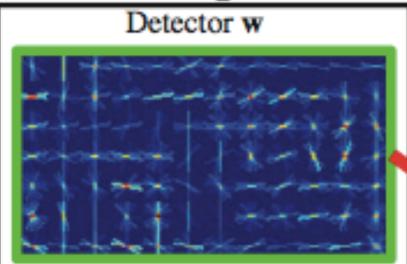
Table 1. PASCAL VOC 2007 object detection results. We compare our full system (ESVM+Co-occ) to four different exemplar based baselines including NN (Nearest Neighbor), NN+Cal (Nearest Neighbor with calibration), DFUN+Cal (learned distance function with calibration) and ESVM+Cal (Exemplar-SVM with calibration). We also compare our approach against global methods including our implementation of Dalal-Triggs (learning a single global template), LDPM [9] (Latent deformable part model), and Chum et al. [6]'s exemplar-based method. [The NN, NN+Cal and DFUN+Cal results for person category are obtained using 1250 exemplars]

Equal or better in performance than Pedro Felzenszwalb's Latent Deformable Part-based Model in 7 PASCALVOC 2007 categories.

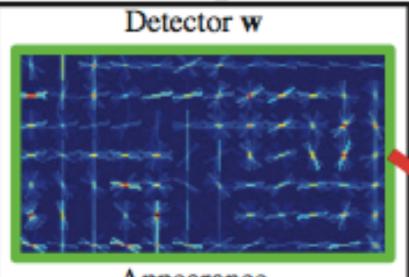
Meta-data transfer

 Based on the idea of label transfer [Torralba et al], Exemplar-SVMs can be used for tasks which go beyond object category detection

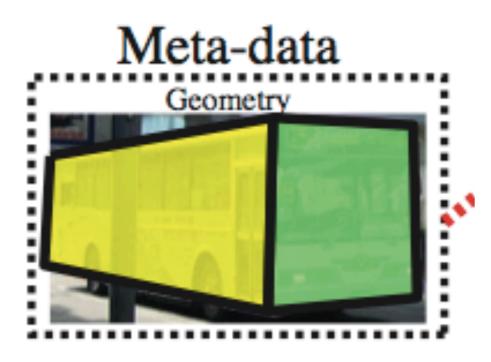


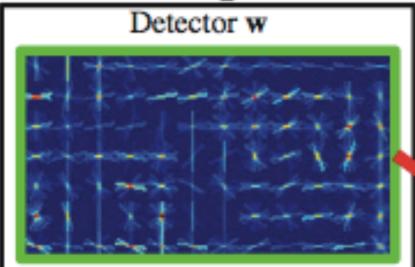


Appearance

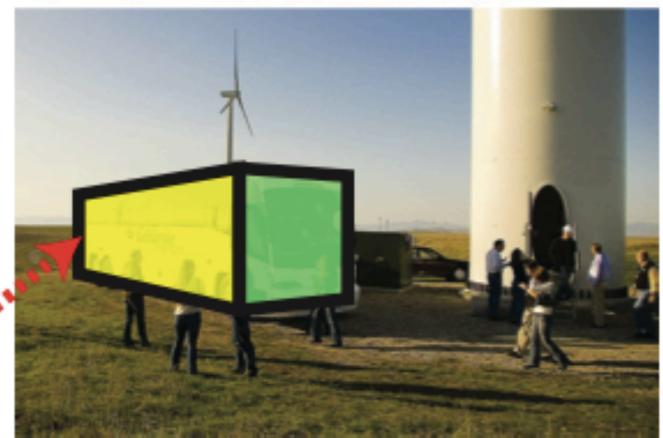


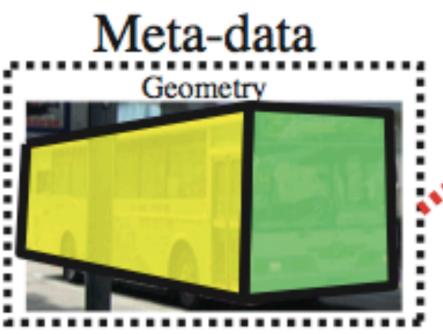
Appearance

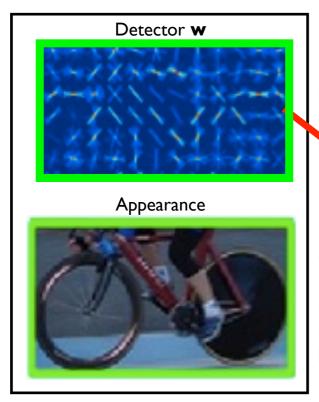


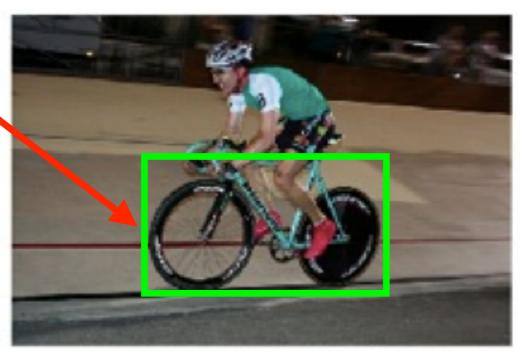


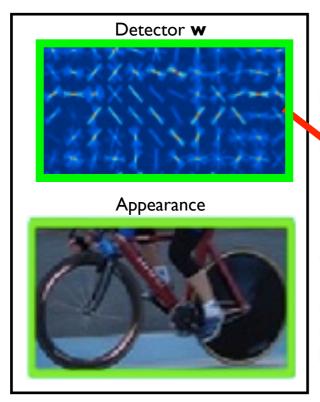
Appearance



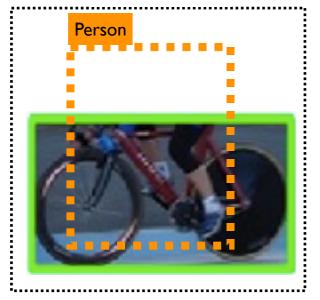


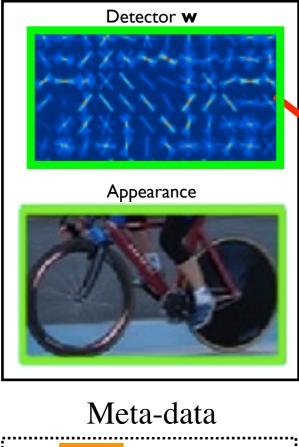


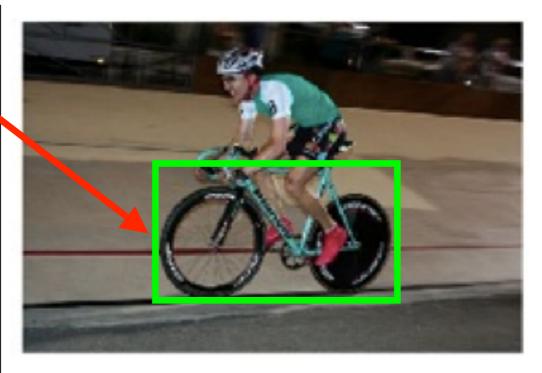


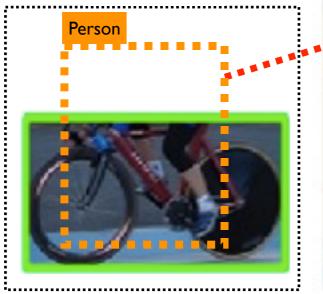


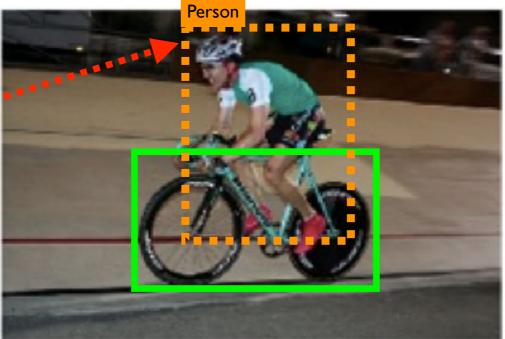
Meta-data

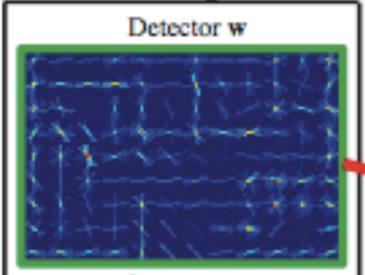




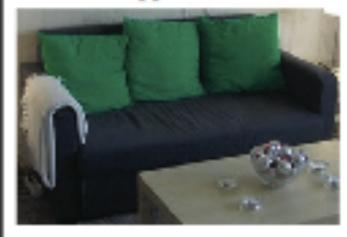








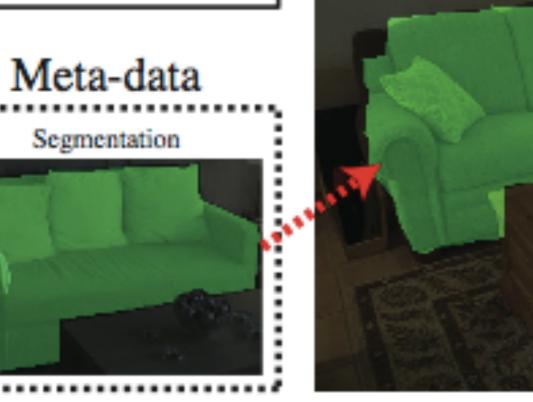
Appearance



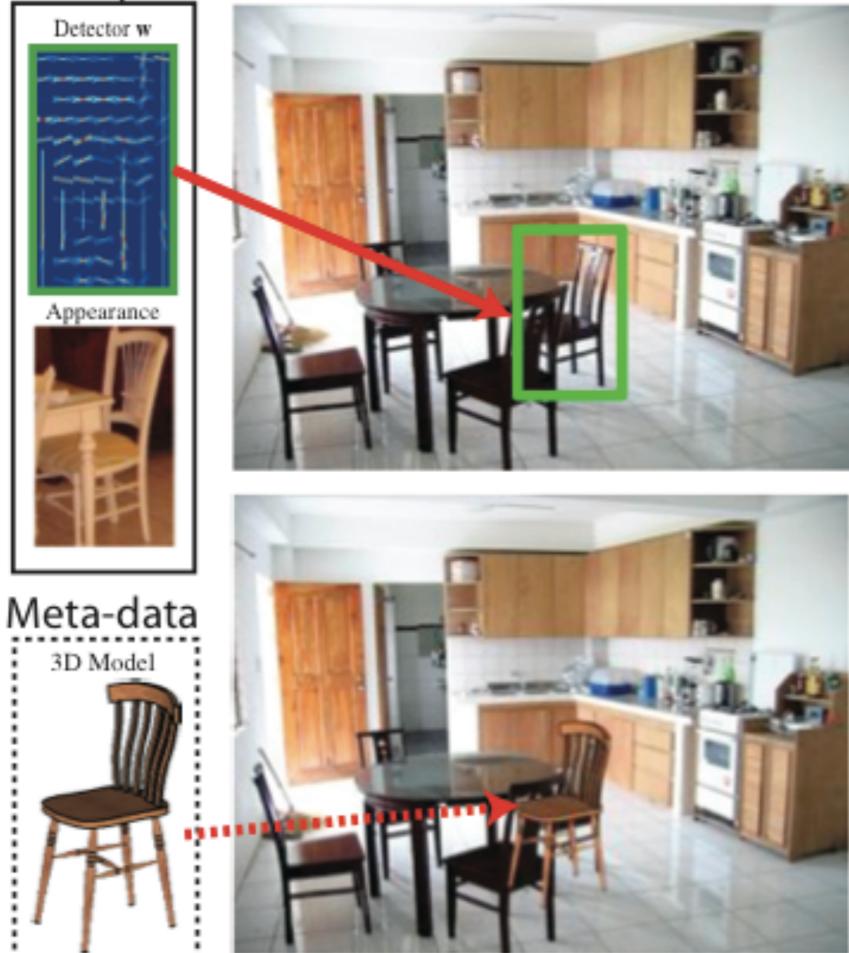
5

i

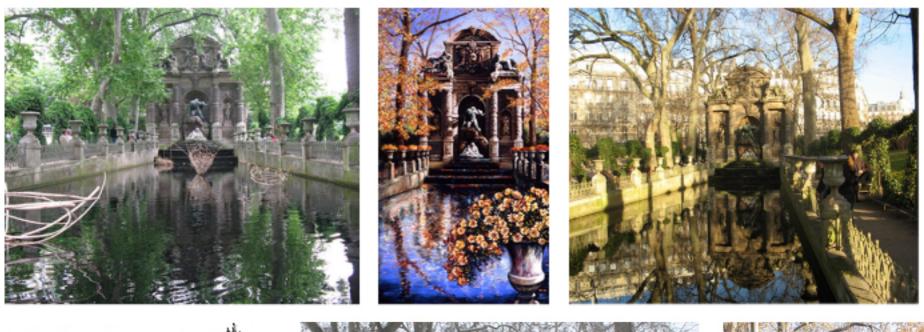
:.



3D Model



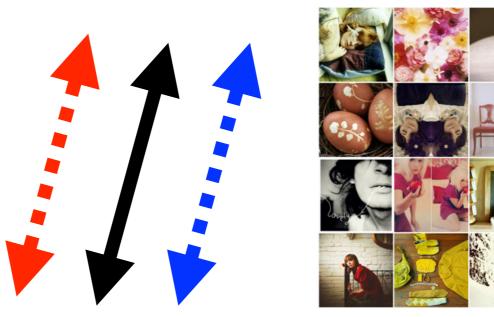
Cross-domain Image Matching



Shrivastava et al. SIGGRAPH ASIA 2011

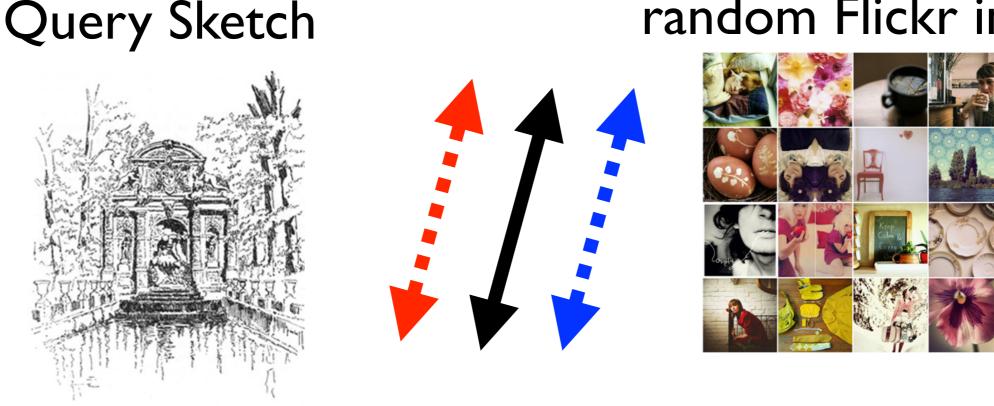
Learn Exemplar-SVM for query image

Negatives mined from random Flickr images



Learn Exemplar-SVM for query image

Negatives mined from random Flickr images



Then apply learned **w** to retrieval set of images in a sliding-window fashion

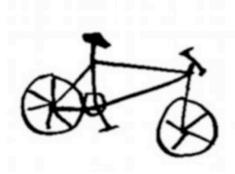
Painting to Image



Sketch to Image

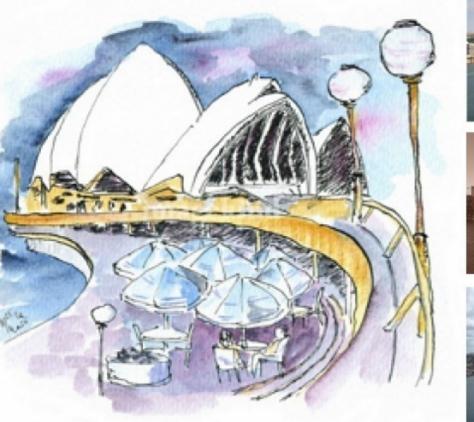
Input Sketch

Our Top Matches



Painting to GPS

Input Painting



Top Matches

GIST

Our Approach

IM2GPS: Hays et al. 2008

Open Problems

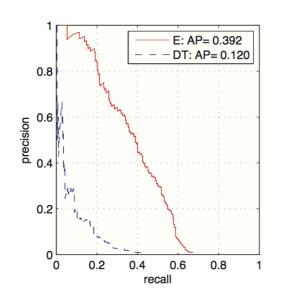
 I. Learning for many exemplars is computationally expensive. Can cleverly reusing mined negatives help speed-up training?

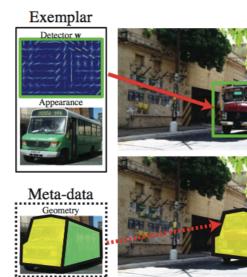
 2. At test-time, applying N Exemplar-SVMs takes O(N) time. Can exemplar pruning or approximate matching algorithms help?

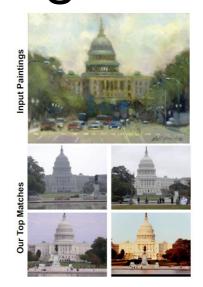
Concluding Remarks

Concluding Remarks

 Exemplar-SVMs can be used for detection, meta-data transfer, as well as cross-domain image matching

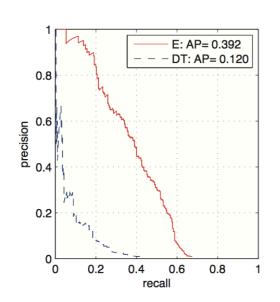


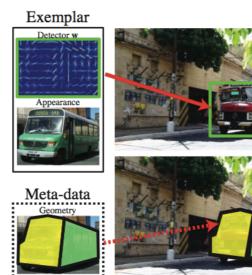


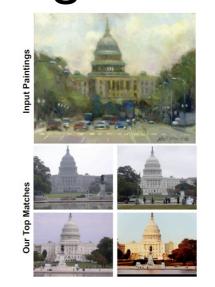


Concluding Remarks

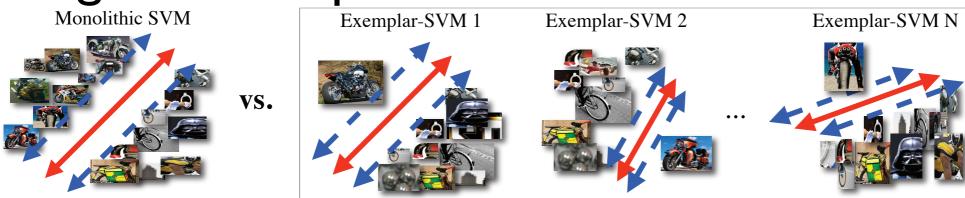
 Exemplar-SVMs can be used for detection, meta-data transfer, as well as cross-domain image matching







 Dealing with lots of data is the key to learning a good Exemplar-SVM



Thank you for listening

Abhinav Shrivastava

Tomasz Malisiewicz

Abhinav Gupta

Alyosha Efros

Thank you for listening

Abhinav Shrivastava

ExemplarSVMs

Abhinav Gupta

Alyosha Efros

Abhinav Shrivastava, Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. **Data-driven Visual** Similarity for Cross-domain Image Matching. In SIGGRAPH ASIA, 2011.

Tomasz Malisiewicz. Exemplar-based Representations for Object Detection, Association and Beyond. CMU PhD Dissertation. August, 2011.

Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. Ensemble of Exemplar-SVMs for Object Detection and Beyond. In ICCV, 2011.

Per-Exemplar Distance Functions

Tomasz Malisiewicz, Alexei A. Efros. Beyond Categories: The Visual Memex Model for Reasoning About Object Relationships. In NIPS, 2009.

Tomasz Malisiewicz, Alexei A. Efros. **Recognition by Association via Learning Per**exemplar Distances. In CVPR, 2008.