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Abstract

Perturbation models are families of distri-
butions induced from perturbations. They
combine randomization of the parameters
with maximization to draw unbiased sam-
ples. Unlike Gibbs’ distributions, a perturba-
tion model defined on the basis of low order
statistics still gives rise to high order depen-
dencies. In this paper, we analyze, extend
and seek to estimate such dependencies from
data. In particular, we shift the modelling
focus from the parameters of the Gibbs’ dis-
tribution used as a base model to the space of
perturbations. We estimate dependent per-
turbations over the parameters using a hard-
EM approach, cast in the form of inverse con-
vex programs. Each inverse program confines
the randomization to the parameter polytope
responsible for generating the observed an-
swer. We illustrate the method on several
computer vision problems.

1 Introduction

Realistic modeling approaches are built on flexible
probability distributions and inference algorithms that
support them. For example, problems such as scene
understanding [5], parsing [21], or protein design [32]
all involve complex inference calculations in models
where likely structures, parses, or arrangements are
guided by potential functions over subsets of variables.
By introducing higher order potential functions we ob-
tain richer (more realistic) models but at the cost of
heavy inference calculations.

Feasibility of inference calculations is often linked to
Markov properties such as conditional independencies.
Markov properties are exploited in both exact and ap-
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proximate inference algorithms, including belief prop-
agation [30], Gibbs sampling [8], Metropolis-Hastings
[12] or Swendsen-Wang [39]. In specific cases one can
sample efficiently from a Markov random field model
by constructing a rapidly mixing Markov chain (cf.
[16, 17, 15]). Such approaches do not extend to many
practical cases where the values of the variables are
strongly guided by both data (high signal) and prior
knowledge (high coupling). Indeed, sampling in high-
signal high-coupling regime is known to be provably
hard [16, 9].

Finding a single most likely assignment (MAP struc-
ture) is often considerably easier than summing over
the values of variables or drawing an unbiased sample.
Substantial effort has gone into developing algorithms
for recovering MAP assignments, either based on spe-
cific structural restrictions such as super-modularity
[20] or by devising linear programming relaxations and
successively refining them [32, 40]. MAP inference is
nevertheless limiting when there are a number of al-
ternative likely assignments.

Recently, MAP inference has been combined with ran-
domization to define new classes of probability models
that are easy to sample from [29, 34, 13, 14, 27, 24].
These perturbation models involve randomization of
Gibbs’ potentials and finding the corresponding maxi-
mizing assignment. The assignment represents a sam-
ple from the induced distribution. Properties of the
induced distribution are heavily governed by the ran-
domization. Indeed, in contrast to Gibbs’ distribu-
tions, low order potentials, after undergoing random-
ization and maximization, lead to high order depen-
dencies in the induced distributions. We seek to un-
derstand, extend, and exploit such dependencies.

In this paper, we introduce dependent perturbations
as a modeling tool. Perturbation models are latent
variable models and we learn distributions over per-
turbations using a hard-EM approach. In the E-step,
an inverse convex program is used to confine the ran-
domization to the parameter polytope responsible for
generating the observed answer. We illustrate the ap-
proach on several computer vision problems.
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2 Background

Consider a complex model guided by real valued finite
potentials θ(x) = θ(x1, ..., xn) over a discrete product
space X = X1×· · ·×Xn. The domain is implicitly de-
fined through θ(x) via exclusions θ(x) = −∞ whenever
x 6∈ dom(θ). Potentials are mapped to the probability
scale via the Gibbs’ distribution:

p(x1, ..., xn) =
1

Z(θ)
exp(θ(x1, ..., xn)) (1)

Such distributions are often useful, but are challeng-
ing to learn and sample from, depending on how the
potential function decomposes.

Our approach is based on representations of the Gibbs’
distribution using the statistics of randomized poten-
tials. We add a random function γ : X → R to the
potential function in (1) and draw a sample by solving
the resulting MAP prediction problem:

x∗ = arg max
x∈X
{θ(x) + γ(x)}. (2)

The distribution induced in this manner is given by
the following:

P(x̂) = Pγ

[
x̂ ∈ arg max

x∈X
{θ(x) + γ(x)}

]
(3)

and it’s heavily dependent on the nature of randomiza-
tion. The simplest approach to designing a perturba-
tion function is to associate an i.i.d. random variable
γ(x) for each x ∈ X . The following result charac-
terizes the induced distribution in this case, assuming
perturbations are Gumbel distributed:

Theorem 1. [10] Let X be finite and let {γ(x), x ∈ X}
be a collection of i.i.d. zero mean Gumbel distributed
random variables, whose cumulative distribution func-
tions is F (t) = exp(− exp(−(t+ c))) and c ≈ 0.5772 is
the Euler-Mascheroni constant. Then

Pγ

[
x̂ ∈ arg max

x∈X
{θ(x) + γ(x)}

]
=

1

Z(θ)
exp(θ(x)) (4)

The max-stability of the Gumbel distribution shows
that one can preserve the Markov properties of the
Gibbs model using high dimensional perturbations.

Clearly, instantiating γ(x) for each x ∈ X is not fea-
sible in practice. In our work, we investigate low di-
mensional perturbations as the main tool to control
the dependencies of the induced probability model.

3 Dependencies in Tree Structured
Models

Gibbs distributions dependency structures follow their
Markov blankets. We investigate whether the same is
true for perturbation models.

Theorem 1 implies that when the Gibbs distribution
is independent it can be represented using low di-
mensional perturbation models. To verify this prop-
erty we recall that a probability distribution is inde-
pendent whenever p(x) =

∏n
i=1 p(xi), where p(xi) =∑

x\xi p(x) are its marginal probabilities. Thus this
assertion holds when applying Theorem 1 for each di-
mension i = 1, ..., n while setting θi(xi) = log p(xi)
and using i.i.d. perturbations γi(xi) that follow the
Gumbel distribution.

In the following we consider the different dependen-
cies that relate to tree structured MRFs. We show
that there are perturbations that preserve the Markov
properties of the Gibbs distributions. We also show
that other perturbations demonstrate long-range de-
pendencies beyond those that are described by the
tree structure of its potentials. This is a promising re-
sult that implies that perturbation models may learn
efficiently long-range dependencies that are currently
present in many machine learning applications.

3.1 Perturbation Models with Markov-Type
Dependencies

Distributions can be described by their conditional
probabilities p(x1, ..., xn) =

∏n
j=1 p(xj |x1, ..., xj−1),

and in Markov random fields these conditional prob-
abilities are simplified by their dependency graphs.
Specifically, assume a tree structured MRF and let ~E
be any directed version of the tree. For notational con-
venience, assume that the vertices {1, ..., n} are topo-
logically sorted and that there is an arc (i→ j). Then
p(xj |x1, ..., xj−1) = p(xj |xi). Furthermore, for a tree,
specifying θ(x) is equivalent to specifying marginals
probabilities p(xi), i = 1, . . . , n, and p(xi, xj), (i, j) ∈
E, which can be related as follows:

θi(xi) = log p(xi), θij(xi, xj) = log
p(xi, xj)

p(xi)p(xj)
(5)

The following theorem shows that in this case, for any
potential function there are low dimensional perturba-
tion models that preserve these the independencies:

Theorem 2. Consider the Gibbs distribution with a
tree structured Markov random field. Then for any
potential function

θ(x) =

n∑
i=1

θi(xi) +
∑

(i,j)∈E

θij(xi, xj) (6)

there are random variables {γij(xi, xj)} indexed by
(i, j) ∈ E, (xi, xj) ∈ Xi ×Xj such that

p(x̂) = Pγ

[
x̂ ∈ argmax

x∈X
{θ(x) +

∑
(i,j)∈E

γij(xi, xj)}
]

(7)
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Proof. Let γ̂ij(xi, xj) be i.i.d. random variables that

follow the Gumbel distributions. Let ~E be a di-
rected version of the tree and assume that the vertices
{1, ..., n} are topologically sorted and that there is an
arc (1→ 2). Let γ12(x1, x2) = γ̂12(x1, x2) and for any
other edge (i→ j) define γij(xi, xj) =

γ̂ij(xi, xj)−max
x′
j

{
θij(xi, x

′
j) + θj(x

′
j) + γ̂ij(xi, x

′
j)
}

Let p(x1, x2) =
∑
x\{x1,x2} p(x) be the marginal prob-

abilities of Gibbs distribution. We begin by showing
that

p(x̂1, x̂2) = Pγ
[
x̂1, x̂2 ∈ argmax

x∈X
{θ(x)+

∑
(i,j)∈~E

γij(xi, xj)}
]

To this end, any sample (x̂1, x̂2) from the induced
marginal distribution is obtained by

x̂1, x̂2 = arg max
x1,x2

max
x\{x1,x2}

{
θ(x) +

∑
(i,j)∈~E

γij(xi, xj)
}

= arg max
x1,x2

{
log p(x1, x2) + γ12(x1, x2)

}
where the equality follows from the definition of
γij(xi, xj) that enforces maxxj{θij(xi, xj) + θj(xj) +
γij(xi, xj)} = 0, applied recursively to each leaf in the
tree. Theorem 1 implies that marginal probabilities
of the Gibbs distribution and the MAP perturbation
distribution are the same since γ12(x1, x2) are inde-
pendent Gumbel random variables.

To complete the proof we show that for every (i→ j)
the conditional probability of MAP perturbations is
the same as the Gibbs. For that end, define for every
α ⊂ {1, .., n} the subset of indexes xα = (x)i∈α, and

Γ(x̂α) =
{
γ : x̂α ∈ argmax

x∈X
{θ(x)+

∑
(i,j)∈~E

γij(xi, xj)}
}

Recall the vertices are topologically ordered, thus we
aim at showing that

p(xj |xi) = Pγ

(
Γ(x1, ..., xj)|Γ(x1, ..., xj−1)

)
By our construction, for any values of x1, ..., xj−1

the argument xj is chosen to maximize θj(xj) +
θij(xi, xj) + γ̂ij(xi, xj). Since θj(xj) + θij(xi, xj) =
log p(xj |xi) and γ̂ij(xi, xj) are i.i.d. with zero mean
Gumbel distribution, the result follows by applying
Theorem 1.

The perturbation models may describe tree struc-
tured Gibbs distributions. Perhaps surprisingly, the
random variables that enforce the Markov properties
in this case are not independent nor identically dis-
tributed. This demonstrates the potential power of
induced models when allowing dependent perturbation
variables. In the following we show that perturbation
models may induce long-range dependencies as well.

3.2 Perturbation Models and Long-Range
Dependencies

Next we show that independent low dimensional per-
turbations may capture long-range interactions. We
focus on perturbation models with tree structured po-
tential functions and perturbations on the edge po-
tentials, but the results can be generalized to more
complex graphs.

The following theorem shows that when i.i.d. pertur-
bations follow the edge structure of the potential func-
tion, we are able to capture dependencies above and
beyond the initial structure.

Theorem 3. There exist perturbation models with tree
structured potential functions and i.i.d. perturbation
variables {γij(xi, xj)} indexed by (i, j) ∈ E, (xi, xj) ∈
Xi ×Xj, such that the induced model given by:

P(x̂) = Pγ

[
x̂ ∈ argmax

x∈X
{θ(x) +

∑
(i,j)∈E

γij(xi, xj)}
]

(8)

includes dependencies above and beyond the original
tree structure.

Proof. Consider a simple chain with three variables
(x1, x2, x3), potential function θ(x) = θ12(x1, x2) +
θ23(x2, x3) and perturbations given by γ(x) =
γ12(x1, x2) + γ23(x2, x3). Let Γ(x̂α) be defined as
in Theorem 2 and, similarly, for all subsets α, β ⊆
{1, . . . , n}, let

Γ(x̂α|x̂β) =
{
γ : x̂α ∈ argmax

x∈X,xβ=x̂β

{θ(x) + γ(x)}
}

the set of perturbation assignments for which x̂α is
optimal if we plug-in values x̂β .

We illustrate that x1 ⊥⊥ x3|x2 need not hold. To this
end, consider probabilities:

P(x̂i|x̂2) = Pγ (Γ(x̂i|x̂2)|Γ(x̂2)) , for i ∈ {1, 3}

Note that the set Γ(x̂1|x̂2) is governed by the con-
straint θ12(x̂1, x̂2)+γ12(x̂1, x̂2) ≥ maxx1

{θ12(x1, x̂2)+
γ12(x1, x̂2)} and similarly, Γ(x̂3|x̂2) is governed by an
analogous constraint on γ23. Γ(x̂2), in contrast, in-
volves inequalities that couple all the perturbation
variables together: maxx1

{θ12(x1, x̂2) + γ12(x1, x̂2)}+
maxx3

{θ23(x̂2, x3) + γ23(x̂2, x3)} ≥ maxx{θ(x) +
γ12(x1, x2) + γ23(x2, x3)}. Since in general these con-
straints cannot be decomposed as (γ12, γ23), the set is
not a product space.

Consider the following example, where xi ∈ {0, 1}
and θ12(1, 1) = 1.9, θ12(0, 0) = 1.2, θ12(0, 1) = 1.1,
θ12(1, 0) = 0 and θ23(x2, x3) = θ12(x3, x2),∀x2, x3 .
For x̂2 = 1, Γ(x̂2) includes the constraint max{1.9 +
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γ12(1, 1), 1.1 + γ12(0, 1)} + max{1.9 + γ23(1, 1), 1.1 +
γ23(1, 0)} ≥ max{1.2+γ12(0, 0), γ12(1, 0)}+max{1.2+
γ23(0, 0), γ23(0, 1)}. We argue that there exist i.i.d.
perturbation distributions over (γ12, γ23) for which
the constraint couples the two variables. In par-
ticular, if γ12 and γ23 are uniform in {−1, 1} then
for γij = (γij(1, 1), γij(0, 1), γij(0, 0), γij(1, 0)), the
configurations (γ12, γ23) ∈ {((1, 1,−1, 1), (−1, 1, 1, 1)),
((1, 1,−1, 1), (1, 1,−1, 1)), ((−1, 1, 1, 1), (1, 1,−1, 1))},
are in Γ(x̂2), but ((−1, 1, 1, 1), (−1, 1, 1, 1)) is not, thus
it cannot be a product space in this case.

As a result, γ12 and γ23 become dependent if we con-
dition on x̂2 as the maximizing value. In other words,
the indicator functions corresponding to Γ(x̂1|x̂2) and
Γ(x̂3|x̂2) are also dependent if γ ∈ Γ(x̂2). Whenever
x1 and x3 depend non-trivially on the corresponding
perturbation variables, we conclude that x1 6⊥⊥ x3|x2.
This is typically the case.

The importance of this theorem lies in the modeling
power of MAP perturbations. Many important ma-
chine learning applications, such as pose estimation,
consist of tree structured potential functions whose
Gibbs distributions assume conditional independence,
e.g., the hands and legs are independent given the
body position. Many of these assumptions are made
for computation reasons and perturbation models may
be able to capture the longer-range dependencies be-
tween the parts without increasing the complexity of
the potential function.

4 Learning Perturbation Models

So far we have considered tree-structured potential
functions and perturbations along the edges in the
tree. The resulting induced distributions can be tai-
lored to respect the same Markov structure but, as
shown, additional dependencies will emerge in the gen-
eral case. We will explore here more complex potential
functions as well as perturbations that are no longer
independent across the edges. The induced distribu-
tions in this case will likely involve interactions of all
orders. We propose to take advantage of this model-
ing power and directly learn dependent perturbation
models from data.

To specify the perturbation models we use potential
functions defined by parameters w and statistics φ(x),
i.e., θ(x;w) = wTφ(x). In contrast to additive per-
turbations considered earlier, we view w directly as
a random variable. The distribution p(w; η) governs
the randomization and η are the (hyper-)parameters
we aim to learn. In the additive case, we would sim-
ply use w = w0 + γ where γ is a vector of random

perturbations.

The induced distribution over the product space X is
now given by:

P(x̂; η) =

∫
p(w; η)[[ x̂ = argmax

x
θ(x;w) ]]dw (9)

The goal is to learn the hyper-parameters η that
maximize the induced log-likelihood of the data∑
x̂∈S logP(x̂; η). This is a latent variable model with

continues hidden variables w. In principle, we could
use the EM algorithm resulting in the following itera-
tive updates

η(t+1) = argmax
η

∑
x̂∈S

Ew∼p(w|x̂;η(t))

[
log p(w; η)

]
(10)

However, evaluating the expectation requires sam-
pling from the inverse set Γ(x̂) = {w | x̂ =
argmaxx w

Tφ(x)}. This is often difficult, requiring
costly MCMC methods. We will instead replace the
expectation in the E-step with a maximization over w,
obtaining a single point in the inverse set Γ(x̂). This
hard-EM algorithm is given by

η(t+1) = argmax
η

∑
x̂∈S

max
w∈Γ(x̂)

log p(w; η) (11)

The inner maximization remains challenging since the
number of constraints specifying the inverse set can be
exponential in the number of variables. For example,
we might need to enforce w>φ(x̂) ≥ w>φ(x) for every
x ∈ dom(φ). We will show below that there are many
problems of interest for which the inverse set can be
described compactly.

4.1 Inverse Optimization

Optimization problems over discrete sets such as max-
imization of w>φ(x) over x ∈ dom(φ), can be cast
as continuous optimization problems over the corre-
sponding convex hull conv({φ(x) : x ∈ dom(φ)}). The
convex hull is a polytope defined by linear constraints
{x : Az ≤ b, z ≥ 0}, and the vertexes of this poly-
tope are exactly the statistics φ(x). Thus w ∈ Γ(ẑ) if
and only if ẑ is the maximizer of the linear objective
f(z) = w>z over the polytope. In many cases, the
constraint matrix A is totally unimodular.

Naively one may verify that ẑ is the maximizer by try-
ing all the extreme points. More efficiently, we appeal
to convex duality in order to maintain a certificate
of optimality for ẑ. A dual certificate is a dual fea-
sible solution that satisfies the complementary slack-
ness constraints: if ẑi > 0 then the corresponding con-
straint on the dual variable yi is satisfied with equality
[AT y]i = wi, and if [Aẑ]i < bi then yi = 0. Using
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the dual certificate, we can maintain the optimality of
ẑ while changing w. Specifically, we write the inner
maximization problem in (11) as a convex program:

max
w,y

log p(w; η) (12)

s.t. AT y ≥ w, y ≥ 0 (13)

yi = 0, for i ∈ {i|[Aẑ]i < b} (14)

[AT y]j = wj , for j ∈ {j|ẑj > 0} (15)

Such inverse linear programs have been used before in
operations research. The goal is typically to find the
parameter setting closest to a given w0 while ensuring
that ẑ remains optimal. The distance is a weighted
Lp norm, mostly L1 and L∞ norms [1]. Also see [4]
for a related usage. In our case, p(w; η) is a multivari-
ate Gaussian and thus the resulting convex program is
quadratic, solved using standard QP solvers.

When the linear program (LP) admits a compact rep-
resentation, we can represent the inverse set compactly
as well since there is a dual variable for every primal
constraint. Cases of interest to us include bipartite
matching, maximum spanning tree, and so on. When
the LP formulation is a relaxation, the constraints (14-
15) are tighter than necessary. The inverse program
will return a point within a smaller set contained in
the inverse set Γ(x̂) (or the empty set).

We describe below a few examples that are relevant
for our models.

Example 1: Image Matching

We start with an assignment problem. For a graph
G = (I ∪ J,E,w), E ⊆ I × J with edges weighted by
wij and |I| = |J | = n, the goal is to find the maxi-
mum weight matching that assigns each element in I
to exactly one element in J . Document ranking and
key-point matching in images can be modeled as as-
signment problems.

By reweighing the edges, the optimal assignment can
be formulated as a minimum cost matching problem,
which can be computed in polynomial time using the
Hungarian algorithm [31]. Note that sampling and
computing the partition function remain #P-complete
[36] though MCMC-based fully-polynomial approxi-
mation schemes exist [18]. In comparison, perturba-
tion models rely only on the efficient polynomial time
maximization.

The minimum cost matching can be obtained by min-
imizing a linear objective f(z) = wT z subject to
constraints. The constraints ensure that each ver-
tex is incident to exactly one edge in the matching∑
k∈I zkj = 1,

∑
k∈J zik = 1 [31]. Using dual cer-

tificates, we can formulate the inverse problem, i.e.,

maxw∈Γ(ẑ) log p(w; η) as a convex program:

max
w,u,v

log p(w; η)

s.t. ui + vj = wij , (i, j) ∈ {(i, j)|ẑij 6= 0}
ui + vj ≤ wij , (i, j) ∈ {(i, j)|ẑij = 0}

where ẑ is the observed assignment and u and v are
dual variables. The compact description involves 2n2

constraints and 2n additional (dual) variables.

Example 2: Pose Estimation

In pose estimation, the human body is modeled as
a tree-structured graphical model, where nodes cor-
respond to body parts. The highest scoring labeling
specifies the estimated locations for the parts [41]. The
tree structure is computationally appealing, but it as-
sumes that limbs are independent given the body po-
sition. Perturbation models can capture longer range
dependencies even when the potential function corre-
sponds to a tree.

While inference and sampling in tree-structured mod-
els is easy, sampling from the inverse set is difficult.
The constraints enforcing the solution x̂ to be opti-
mal extend beyond the tree structure. The MAP so-
lution can be nevertheless cast as a maximization of
a linear objective f(µ) = wTµ over the local poly-
tope ML(G) = {µ ≥ 0|

∑
xj
µi,j;xi,xj = µi;xi∀i, j, xi,∑

xi
µi,j;xi,xj = µj;xj ∀i, j, xj ,

∑
xi
µi;xi = 1 ∀i}. For

trees, the solution µ̂ is integral and corresponds to the
maximum assignment x̂ [6]. In other words, µ̂ de-
scribes x̂ in terms of local marginals. Using dual cer-
tificates, we can write the inverse problem as:

max
w

log p(w; η)

s.t. yi −
∑
j

y′i,j;xi −
∑
j

y′′j,i;xi ≥ wi;xi , for µ̂i;xi = 0

yi −
∑
j

y′i,j;xi −
∑
j

y′′j,i;xi = wi;xi , for µ̂i;xi > 0

y′i,j;xi + y′′i,j;xj ≥ wi,j;xi,xj , for µ̂i,j;xi,xj = 0

y′i,j;xi + y′′i,j;xj = wi,j;xi,xj , for µ̂i,j;xi,xj > 0

where y, y′, y′′ are dual variables corresponding to
the marginal constraints. The constraints are satisfied
with equality when the corresponding marginals in µ̂
are non-zero.

Example 3: Image Segmentation

Image segmentation and other computer vision tasks
can be modeled as energy minimization problems with
sub-modular potentials. Minimum graph cuts are used
as tools for finding the optimal assignments [33].
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For a graph G = (V,E,w) with |V | = n, |E| = m and
edge costs given by w, the minimum s-t cut problem
aims to find a subset of vertices S, with s ∈ S and
t ∈ V \ S, such that the cost of the cut (weight of
the edges crossing S and V \ S) is minimized. The
dual problem is maximum-flow, and we can solve the
inverse problem via

max
w,y

log p(w; η)

s.t.
∑
i

yik =
∑
j

ykj , ∀k 6= s, k 6= t

0 ≤ yij ≤ wij ,∀i, j
yij = wij , for (i, j) ∈ {(i, j)|ẑij > 0}

where y are the dual variables and ẑ encodes the ob-
served cut. We obtain a compact, polynomial size rep-
resentation of the inverse problem, at the cost of in-
troducing m additional variables. For image segmen-
tation and for most examples we provide, the number
of additional variables is at most the number of pa-
rameters w.

Example 4: Natural Language Parsing

Dependency parsing can be formulated as a maximum
directed spanning tree problem over the words in the
sentence [25]. Different interpretations of the sentence
correspond to different parse trees. As a result, the tar-
get parse can be inherently ambiguous. Perturbation
models can be used to efficiently sample high-scoring
parse trees to represent candidate interpretations.

In this case, a polynomial size representation of the in-
verse problem can be obtained via LP formulation of
the minimum cost directed tree problem. In a graph
G = (V,E,w), the primal LP involves minimizing a
linear objective

∑
(i,j)∈E wijzij subject to constraints

ensuring that for every node u ∈ V \{r} there is an r–u

flow f (u) of value 1 with f
(u)
ij ≤ zij [31]. The feasible

set is the projection of a high dimensional polytope in
mn dimensions, governed by at most n(2m + n) con-
straints. Here n and m are the length of the sentence
and the number of edges, respectively. As a result,
using the dual certificate approach (omitted), we can
formulate the inverse problem with O(mn) additional
variables.

4.2 Penalty-based Inverse Optimization

The inverse optimization framework provides a clean
way of solving the inner maximization in (11) for many
problems of interest. For completeness, we also pro-
vide examples where the size of the LP formulation is
large relative to the number of parameters in w.

Consider learning a perturbation model over binary

images of size k × k, guided by a potential function
θ(x;w) =

∑n
i=1 wixi+

∑
(i,j)∈E wijxixj , |E| = m. For

large k, it may be impractical to learn both unary and
pairwise potentials resulting in n+m parameters. We
can instead estimate a subset of parameters, e.g. fix
the higher-order potentials and learn n parameters for
node potentials. Nonetheless, the min-cut inverse LP
formulation in Example 3 adds additional variables for
each edge and even for estimating a subset of param-
eters, the number of variables is given by n+m.

In many cases we must resort to constraints of the form
wTφ(x̂) ≥ wTφ(x),∀x. Assuming that the perturba-
tions follow a multivariate Gaussian distribution, the
inverse optimization problem is quadratic

min
w

(w − µ)TΣ−1(w − µ) + C
[
max
x

wTφ(x)− wTφ(x̂)
]

The objective is similar to structured SVM [35] and
a similar approach has been explored in [34]. The
problem can be solved using typical methods for struc-
tured SVMs, such as cutting-planes or gradient descent
methods. We illustrate this in the experimental sec-
tion using a sub-gradient descent with a decreasing
step size.

5 Experiments

The goal of our experiments is to demonstrate that
perturbation models capture dependencies above and
beyond the original structure of the potential function
and to illustrate the duality approach for learning. We
first exemplify the induced dependencies on a simple
image modeling task and then we apply the hard-EM
framework in the context of image matching.

5.1 Image segmentation

We selected four images from the Large Binary Image
Database1 representing basketball player silhouettes,
with the goal of learning a model over the basketball
player poses and showing that perturbation models are
able to store multiple modes and sample from them.

We used an Ising model over labels yi ∈ {+1,−1}
with potentials θ(yi) encoding whether pixel i is fore-
ground or background and θ(yi, yj) encouraging ad-
jacent pixels to have the same labels. We assumed
θ(yi, yj) = yiyj , θi(yi) = γiyi and learned a distribu-
tion over the node parameters γi. Since the model con-
tained node potentials only (resulting in 2500 param-
eters), we solved the inverse problem using the sub-
gradient approach explained in the previous section.
For each iteration of the hard-EM algorithm, we per-
formed 3 iterations of the sub-gradient algorithm for

1http://www.lems.brown.edu/~dmc/

http://www.lems.brown.edu/~dmc/
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Figure 1: First line: max-margin parameters and re-
sulting segmentation, second line: the mean of the per-
turbation parameters, the average segmentation and
the four images with the highest count.

each example, initialized with the point estimate from
the previous hard-EM iteration. Since the setting is so
simple, the hard-EM algorithm converged in less than
20 iterations. For computing the maximum likelihood
estimates of η in the M-step we performed regulariza-
tion by adding a constant c to the diagonal elements of
the estimated covariance matrix (we set c to 0.1). We
also implemented a structural SVM approach, using a
similar stochastic sub-gradient algorithm.

In Figure 1, second line, we show in this order the
mean of the perturbation parameters γ, the average
segmentation from 104 samples and the four images
with the highest count. In this case, the four images
correspond to the four human poses we considered and
images visually similar to them obtain a similar score.
The first line shows the learned node parameters and
the max-margin maximum weight configuration.

The potential function encodes only local interactions
through the lattice structure, but the induced distri-
bution shows longer range dependencies. This is due
to the correlations in the latent space as illustrated
in Figure 2. For pixels that are always foreground
or background the covariance matrix reveals no corre-
lations. The others have strong positive correlations
with pixels that are only activated on the same pose,
and negative correlations with other poses. To further
understand the perturbation models we look at inde-
pendent samples, Figure 3, where the perturbation dis-
tribution is a multivariate gaussian with unrestricted,
resp. diagonal, covariance matrix (first two lines). The
second model captures few or no long-range dependen-
cies in this case.

Instead of perturbation models, one may learn a mul-
tivariate gaussian model over the binary images and
compute a sample image by thresholding each pixel in-
dependently. We also show samples from these models
in Figure 3, last two line, where the covariance matrix
is unrestricted, resp. diagonal. The latent space is
capturing the long-range correlations, but the lack of
structure in the MAP solver results in visual artifacts.

Figure 2: Correlations between a reference pixel
(white) and the rest, as captured by the covariance
matrix of the perturbation distribution. We show a
pixel that is always off (so no correlations) and two
pixels that are activated on different poses.

5.2 Image matching

We illustrate the LP duality approach for a match-
ing task on images from the Buffy Stickmen dataset2.
Each frame is annotated with segment locations for
six body parts and we use the framework of [41] to
enlarge this set of locations such that we obtain 18
keypoints per image. We select frames of the same
person throughout an episode and from the resulting
set of all image pairs we randomly select two disjoint
sets for training and testing (15 train pairs and 23 test
pairs). The set of keypoints for an image pair serves
as the ground truth for our matching experiments.

We represent the matching as a permutation of
keypoints denoted by π, and assume the follow-
ing potential function, following [37], θ(I, I ′, π;w) =∑
i,j w

T (ψ(I, i) − ψ(I ′, j))2. The features ψ(I, k) are
the SIFT descriptors evaluated keypoint k.

The inference problem can be formulated as an as-
signment problem, so we learn the perturbation distri-
bution using the hard-EM algorithm, and computing
the point estimate using the inverse optimization for-
mulation. In this case, the inverse problem becomes
a quadratic program with 26 additional variables and
324 constraints corresponding to edges.

Figure 4 shows an example pair from the test set. We
extract SIFT features at scale 5 and we return the
matching with the highest count after 1000 samples.
In this case the perturbation model shows similar per-
formance with SVM: the average error of the perturba-
tion model after 1000 samples was equal to 8.47 while
the average error of max margin was 8.69.

6 Related Work

The Gibbs distribution plays a key role in many areas
of computer science, statistics and physics. To learn
more about its roles in machine learning we refer the
interested reader to [19, 38]. The Gibbs distribution as
well as its Markov properties can be realized from the
statistics of high dimensional random MAP perturba-

2http://www.robots.ox.ac.uk/~vgg/data/stickmen/
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Figure 3: The average segmentation and samples from
four models, one per line: perturbation model where
the perturbations have unrestricted vs. diagonal co-
variance matrix and multivariate gaussian model with
unrestricted vs. diagonal covariance matrix.

tions with the Gumbel distribution (see Theorem 1),
[29, 34, 13, 14]. For comprehensive introduction to
extreme value statistics we refer the reader to [22].

Recent work [28, 29, 34] explores the different aspects
of low dimensional MAP perturbation models. Pa-
pandreou et al. [28] describe sampling from the Gaus-
sian distribution with random Gaussian perturbations.
Later [29], they show empirically that MAP predic-
tors with low dimensional perturbations share similar
statistics as the Gibbs distribution. In our work we
investigate the dependencies of such probability mod-
els. Specifically, we present non-i.i.d. low dimensional
random perturbations that recover the Markov prop-
erties of tree structured Markov random fields. We
also show that independent low dimensional pertur-
bations may model long-range interactions. Tarlow et
al. [34] describe the Bayesian perspectives of these
models and their efficient sampling procedures, as well
as several learning techniques including hard-EM. In
contrast, we focus on understanding the structure of
the induced distribution and our learning approach is
different. We use dual LPs in our hard-EM approach
so as to obtain compact representations of the inverse
polytope when possible, while Tarlow et. al [33] fo-
cus on cutting plane approaches. When using cutting
plane approaches for only a couple of iterations, the
hard-EM estimates often fall outside the inverse poly-
tope. Our dual LP approach alleviates this problem
and in our experiments almost all estimates fall within
the inverse polytope.

Our experiments show that we are able to sample from
the modes of the distribution. Alternatively, one may
use the M-best approach and its diverse-versions to
recover such modes [42, 7, 2, 26, 3, 11]. Finding the

Figure 4: Example matching returned by the random-
ized MAP model. This is the matching with the high-
est count from 100 samples and has error equal to 4.

M-best carries a computational effort which extends
beyond our learning approach whose complexity is as
a 1-best solver. Alternatively, one may sample from
determinantal point processes to retrieve the modes of
the distributions [23]. This learning approach concerns
problems that can be described by determinants while
our approach is based on MRF potentials.

7 Discussion

This work explored random MAP perturbation mod-
els. We showed that perturbation models can be tai-
lored to represent tree structured models but also that
they typically would involve long-range dependencies
above and beyond the original structure. Perturba-
tion models can be viewed as latent variable models
and we demonstrated distributions over perturbations
can be learned using a hard-EM approach. In the E-
step, an inverse convex program is used to confine the
randomization to the parameter polytope responsible
for generating the observed assignment. We illustrated
the approach on several computer vision problems.

This work can be extended in many ways. A complete
understanding of conditioning in perturbation models
is missing, as is a full account of long-range depen-
dences. Unlike sampling, evaluating the MAP assign-
ment from an induced model is not straightforward.
Finally, models with dependent perturbations, while
seemingly powerful, are not yet well-understood.
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