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Abstract

We present a hierarchical Bayesian framework
for clustering with cluster-specific feature selec-
tion. We derive a simplified model, CRAFT,
by analyzing the asymptotic behavior of the
log posterior formulations in a nonparametric
MAP-based clustering setting in this framework.
CRAFT handles assorted data, i.e., both numeric
and categorical data, and the underlying objec-
tive functions are intuitively appealing. The re-
sulting algorithm is simple to implement and
scales nicely, requires minimal parameter tuning,
obviates the need to specify the number of clus-
ters a priori, and compares favorably with other
state-of-the-art methods on several datasets. We
provide empirical evidence on carefully designed
synthetic data sets to highlight the robustness of
the algorithm to recover the underlying feature
subspaces, even when the average dimensional-
ity of the features across clusters is misspeci-
fied. Besides, the framework seamlessly allows
for multiple views of clustering by interpolating
between the two extremes of cluster-specific fea-
ture selection and global selection, and recovers
the DP-means objective [14] under the degener-
ate setting of clustering without feature selection.

1 Introduction

Feature or variable selection remains a key aspect of mod-
ern high-dimensional regression, classification, and struc-
tured prediction tasks. Beyond statistical gains from overt
dimensionality reduction, isolating a small number of rele-
vant features cuts down test-time computation and storage,
provides easily interpretable models, and facilitates data vi-
sualization (e.g., [9, 16]). The role of feature selection in
clustering is, however, more nuanced.
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Specifying a reasonable clustering metric in high dimen-
sions is challenging. Indeed, dimensionality reduction
methods such as PCA, Laplacian eigenmaps [4], or ran-
dom projections [27] are often used prior to K-means or
other clustering algorithms. Feature selection, as a dimen-
sionality reduction method, entertains strictly axis aligned
projections. The main argument for this restriction over
oblique projections is interpretability as the original coordi-
nates tend to be well-grounded on the application. The re-
striction does not necessarily imply a computational over-
head. For example, typical similarity measures decompose
coordinate-wise and the relevant subset could be obtained
via `1 regularization [28]. Some methods, instead, use a
pairwise fusion [8] or a group lasso penalty [25].

By changing the clustering metric via feature selection (or
dimensionality reduction), we may also alter what the re-
sulting clusters are. For example, we can cluster apples
and grapes based on their size, color, or other features, ob-
taining different clusterings as a result. While the ambigu-
ity is inherent and present at the outset (e.g., due to differ-
ent scaling of coordinates), the issue highlights the need to
properly setup the overall clustering objective.

Generative models provide a natural basis for specifying
clustering objectives, especially with feature selection. For
example, we can define a coherent objective for global fea-
ture selection by adaptively assigning a broad distribution
over irrelevant features (effectively excluding them) while
concentrating around on others in order for them to influ-
ence clustering decisions. Moreover, in many real appli-
cations, it makes sense to perform local or cluster-specific
feature selection where clusters can adjust their own metric.
For instance, when clustering news articles, similarity be-
tween political articles should be assessed based on the lan-
guage (features) about politics, discounting references to
other topics. Making the selection cluster specific does not
introduce any major conceptual challenges; indeed, even a
simple mixture of multi-variate Gaussians already involves
cluster-specific metrics. We open up the selection of which
features are modeled with broad or specific distributions at
the cluster level, and balance the tendency for clusters to
agree on the relevant features (global selection) as opposed
to selecting them anew (local selection).

In this paper, we specify a generative hierarchical Bayesian
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model for clustering with cluster-specific feature selection.
While unsupervised global feature selection is widely con-
sidered hard [15], cluster-specific unsupervised feature se-
lection is somewhat harder (computationally) since sepa-
rate, possibly overlapping, subsets of features need to be
inferred along with the clusters. To address this compu-
tational challenge, we study our hierarchical model un-
der asymptotic conditions. The resulting simplified model,
CRAFT, dispenses with the need to model unselected fea-
tures, leaving only a regularizer for the selected features.

CRAFT retains essential benefits of the full Bayesian
model, while additionally lending simplicity and scalabil-
ity to the model. For example, CRAFT provides multiple
views to clustering - it contains a single prior parameter that
can be adjusted for a desired balance between global and
local feature selection. Moreover, CRAFT can handle both
numeric and categorical features (assorted data). Many real
datasets contain categorical variables or are processed to
contain categorical variables; for instance, in web-based
clustering applications, it is standard to represent each web-
page as a binary (categorical) feature vector. A vast major-
ity of clustering methods, like K-means [17, 18], that were
designed for numeric data, do not work well on categori-
cal variables due to absence of ordinal relationships among
the categorical labels. This explains why despite several at-
tempts (see, e.g., [1, 2, 11, 12, 21]), variations of K-means
have largely proved ineffective in handling mixed data.

The derivation of the CRAFT algorithm follows from
asymptotics on the log posterior of its generative model.
The model is based on a Dirichlet process mixture [7, 22,
23],1 and thus the number of clusters can be chosen non-
parametrically by the algorithm. Our asymptotic calcu-
lations build on the recent advancements in approximate
learning due to the works of Kulis and Jordan [14], who
derived the DP-means objective by considering approxima-
tions to the log-likelihood, and Broderick et al. [5], who
instead approximated the posterior log likelihood to de-
rive other nonparametric variations of K-means. These
works do not consider feature selection, and as a result,
our generative model is entirely different, and the calcu-
lations differ considerably from previous works. When
the data are only numeric, we recover the DP-means ob-
jective with an additional term arising due to feature se-
lection. CRAFT’s asymptotics yield interpretable objec-
tive functions, and suggest K-means style algorithms that
recovered subspaces on synthetic data, and outperformed
several state-of-the-art benchmarks on many real datasets.

We introduce our framework in Section 2, and discuss some
degenerate cases and some possible extensions in Section
3. We provide a detailed experimental analysis in Section
4, and conclude in Section 5. All the derivations are given
in the Supplementary Section 6 for improved readability.

1See [13] for a prototype model with feature selection.

2 The Proposed Model

The main intuition behind our formalism is that the points
in a cluster should agree closely on the features selected for
that cluster. As it turns out, the objective is closely related
to the cluster’s entropy for discrete data and variance for
numeric data. For instance, consider a parametric setting
where the features are all binary categorical, taking values
only in {0, 1}, and we select all the features. Assume that
the features are drawn from independent Bernoulli distribu-
tions. Let the cluster assignment vector be z, i.e., zn,k = 1
if point xn is assigned to cluster k. Then, we obtain the
following objective using a straightforward maximum like-
lihood estimation (MLE) procedure:

argmin
z

∑
k

∑
n:zn,k=1

∑
d

H(µ∗kd)

where µ∗kd denotes the mean of feature d computed by us-
ing points belonging to cluster k, and the entropy function
H(p) = −p log p−(1−p) log(1−p) for p ∈ [0, 1] charac-
terizes the uncertainty. Thus the objective tries to minimize
the overall uncertainty across clusters and thus forces sim-
ilar points to be close together, which makes sense from a
clustering perspective.

It is not immediately clear how to extend this insight about
clustering to cluster-specific feature selection. Our model
combines assorted data by enforcing a common Bernoulli
prior that selects features, regardless of whether they are
categorical or numerical. We derive an asymptotic approx-
imation for the joint log likelihood of the observed data,
cluster indicators, cluster means, and feature means. Mod-
eling assumptions are then made for categorical and nu-
merical data separately; this is why our model can handle
multiple data types. Unlike the more sophisticated Varia-
tional Bayes procedures, such as [7], the CRAFT asymp-
totics lead to an elegant K-means style algorithm that has
the following simple steps repeated in each iteration: (a)
compute the “distances” to the cluster centers using the se-
lected features for each cluster, (b) choose which cluster
each point should be assigned to (and create new clusters
if needed), and (c) recompute the centers and select the ap-
propriate cluster-specific features for the next iteration.

Formally, the data x consists of N i.i.d. D-dimensional
binary vectors x1, x2, . . . , xN . We assume a Dirichlet pro-
cess (DP) mixture model to avoid having to specify a priori
the number of clusters K+, and use the hyper-parameter θ,
in the underlying exchangeable probability partition func-
tion (EFPF) [20], to tune the probability of starting a new
cluster. We use z to denote cluster indicators: zn,k = 1 if
xn is assigned to cluster k. Since K+ depends on z, we
will often make the connection explicit by writing K+(z).
Let Cat and Num denote respectively the set of categori-
cal and the set of numeric features respectively.

We also introduce the variables vkd ∈ {0, 1} to indicate
whether feature d ∈ [D] is selected in cluster k ∈ [K]. We
assume vkd is generated from a Bernoulli distribution with



Vikas K. Garg, Cynthia Rudin, Tommi Jaakkola

xndvkdνkd

m

ρ

ηkdt

ζdσd
σkd

ζkd η0dt

αkdt

zn,k

θ

|Td|

|Cat|
|Num|

D = |Num|+ |Cat|

|Td|

|Cat|

|Num|

∞

D

∞

N

Figure 1: CRAFT- Graphical model. For cluster-specific feature selection ρ is set to a high value determined bym, whereas
for global feature selection ρ is set close to 0. The dashed arrow emphasizes this unification of cluster-specific and global
feature selection using a single parameter ρ.

parameter νkd. Further, we assume νkd is generated from a
Beta prior having variance ρ and mean m.

For categorical features, the features d selected in a cluster
k have values drawn from a discrete distribution with pa-
rameters ηkdt, d ∈ Cat, where t ∈ Td indexes the different
values taken by the categorical feature d. The parameters
ηkdt are drawn from a Beta distribution with parameters
αkdt/K

+ and 1. On the other hand, we assume the values
for the features not selected to be drawn from a discrete dis-
tribution with cluster-independent mean parameters η0dt.

For numeric features, we formalize the intuition that the
features selected to represent clusters should exhibit small
variance relative to unselected features by assuming a con-
ditional density of the form:

f(xnd|vkd) =
e

−

vkd (xnd − ζkd)2

2σ2
kd

+(1−vkd)
(xnd − ζd)2

2σ2
d


Zkd

,

Zkd =

√
2πσdσkd

σkd

√
1− vkd + σd

√
vkd

,

where xnd ∈ R, vkd ∈ {0, 1}, and Zkd ensures f integrates
to 1, and σkd guides the allowed variance of a selected fea-
ture d over points in cluster k by asserting feature d concen-
trate around its cluster mean ζkd. The features not selected
are assumed to be drawn from Gaussian distributions that
have cluster independent means ζd and variances σ2

d. Fig.
1 shows the corresponding graphical model.

Let I(P) be 1 if the predicate P is true, and 0 otherwise.
Under asymptotic conditions, minimizing the joint negative
log-likelihood yields the following objective

arg min
z,v,η,ζ,σ

K+∑
k=1

∑
n:zn,k=1

∑
d∈Num

vkd(xnd − ζkd)2

2σ2
kd︸ ︷︷ ︸

Numeric Data Discrepancy

Algorithm 1 CRAFT
Input: x1, . . . , xN : D-dimensional input data with cate-

gorical features Cat and numeric features Num, λ > 0:
regularization parameter, and m ∈ (0, 1): fraction of
features per cluster, and (optional) ρ ∈ (0,m(1 −m)):
control parameter that guides global/local feature selec-
tion. Each feature d ∈ Cat takes values from the set Td,
while each feature d ∈ Num takes values from R.

Output: K+: number of clusters, l1, . . . , lK+ : clustering,
and v1, . . . , vK+ : selected features.

1. Initialize K+ = 1, l1 = {x1, . . . , xN}, clus-
ter center (sample randomly) with categorical
mean η1 and numeric mean ζ1, and draw v1 ∼
[Bernoulli (m)]

D. If ρ is not specified as an in-
put, initialize ρ = max{0.01,m(1 − m) − 0.01}.
Compute the global categorical mean η0. Initialize
the cluster indicators zn = 1 for all n ∈ [N ], and
σ1d = 1 for all d ∈ Num.

2. Compute F∆ and F0 using (1).

3. Execute the CAF routine shown in Algorithm 2.

+ (λ+DF0)K+︸ ︷︷ ︸
Regularization Term

+

K+∑
k=1

D∑
d=1

vkd

F∆︸ ︷︷ ︸
Feature Control

+

K+∑
k=1

∑
d∈Cat

[
vkd

 ∑
n:zn,k=1

−I(xnd = t) log ηkdt)


︸ ︷︷ ︸

Categorical Discrepancy Term I

+ (1− vkd)
∑

n:zn,k=1

∑
t∈Td

−I(xnd = t) log η0dt

]
︸ ︷︷ ︸

Categorical Discrepancy Term II

,
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where F∆ and F0 depend only on the (m, ρ) pair: F∆ =
F1 − F0, with

F0 = (a0 + b0) log (a0 + b0)− a0 log a0 − b0 log b0,

F1 = (a1 + b1) log (a1 + b1)− a1 log a1 − b1 log b1,

a0 =
m2(1−m)

ρ
−m, b0 =

m(1−m)2

ρ
+m, (1)

a1 = a0 + 1, and b1 = b0 − 1.

This objective has an elegant interpretation. The categor-
ical and numerical discrepancy terms show how selected
features (with vkd = 1) are treated differently than unse-
lected features. The regularization term controls the num-
ber of clusters, and modulates the effect of feature selec-
tion. The feature control term contains the adjustable pa-
rameters: m controls the number of features that would
be turned on per cluster, whereas ρ guides the extent of
cluster-specific feature selection. A detailed derivation of
the objective is provided in the Supplementary.

A K-means style alternating minimization procedure for
clustering assorted data as well as selecting features is out-
lined in Algorithm 1. The algorithm repeats the following
steps until convergence: (a) compute the “distances” to the
cluster centers using the selected features for each cluster,
(b) choose which cluster each point should be assigned to
(and create new clusters if needed), and (c) recompute the
cluster centers and select the appropriate features for each
cluster using the criteria that follow directly from the model
objective and variance asymptotics. In particular, the algo-
rithm starts a new cluster if the cost of assigning a point
to its closest cluster center exceeds (λ + DF0), the cost it
would incur to initialize an additional cluster. The informa-
tion available from the already selected features is lever-
aged to guide the initial selection of features in the new
cluster. Finally, the updates on cluster means and feature
selection are performed at the end of each iteration.

Approximate Budget Setting for a Variable Number of
Features: Algorithm 1 selects a fraction m of features per
cluster, uniformly across clusters. A slight modification
would allow Algorithm 1 to have a variable number of fea-
tures across clusters, as follows: specify a tuning parame-
ter εc ∈ (0, 1) and choose all the features d in cluster k for
which Gd − Gkd > εcGd. Likewise for numeric features,
we may choose features that have variance less than some
positive constant εv . As we show later, this slightly modi-
fied algorithm recovers the exact subspace on synthetic data
in the approximate budget setting for a wide range of m.

3 Discussion

We now discuss some conceptual underpinnings underly-
ing CRAFT, and also describe briefly some special cases
and straightforward extensions to the model.

Algorithm 2 (Auxiliary Module) Cluster Assignment and
Feature Selection (CAF)

Repeat until cluster assignments do not change

• For each point xn

– Compute ∀k ∈ [K+],

dnk =
∑

d∈Cat:vkd=0

∑
t∈Td

−I(xnd = t) log η0dt

+
∑

d∈Cat:vkd=1

∑
t∈Td

−I(xnd = t) log ηkdt

+
∑

d∈Num

vkd
(xnd − ζkd)2

2σ2
kd

+

(
D∑

d=1

vkd

)
F∆.

– If min
k
dnk > (λ+DF0), set K+ = K+ + 1,

zn = K+, and draw ∀ d ∈ [D],

vK+d ∼ Bernoulli

 ∑K+−1
j=1 avjd∑K+−1

j=1 (avjd + bvjd)

 ,

where a and b are as defined in (1). Set ηK+

and ζK+ using xn. Set σK+d = 1 for all d ∈
Num.

– Otherwise, set zn = argmin
k
dnk.

• Generate clusters lk = {xn | zn = k}, ∀ k ∈
{1, 2, . . . ,K+}, using z1, . . . , zK+ .

• Update the means η and ζ, and variances σ2, for all
clusters.

• For each cluster lk, k ∈ [K+], update vk: choose
the m|Num| numeric features d′ with lowest σkd′
in lk, and choose m|Cat| categorical features d
with maximum value of Gd − Gkd, where Gd =
−
∑
n:zn,k=1

∑
t∈Td I(xnd = t) log η0dt and

Gkd = −
∑
n:zn,k=1

∑
t∈Td I(xnd = t) log ηkdt.

Recovering DP-means objective on Numeric Data

CRAFT recovers the DP-means objective [14] in a degen-
erate setting (see Supplementary):

argmin
z

K+(z)∑
k=1

∑
n:zn,k=1

∑
d

(xnd − ζ∗kd)2 + λK+(z), (2)

where ζ∗kd denotes the (numeric) mean of feature d com-
puted by using points belonging to cluster k.
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Unifying Global and Local Feature Selection

The point estimate of νkd is

akd
akd + bkd

=

(
m2(1−m)

ρ
−m

)
+ vkd

m(1−m)

ρ

= m+
(vkd −m)ρ

m(1−m)
→

{
vkd, as ρ→ m(1−m)

m, as ρ→ 0.

Thus, using a single parameter ρ, we can interpolate be-
tween cluster specific selection, ρ→ m(1−m), and global
selection, ρ→ 0. Since we are often interested only in one
of these two extreme cases, this also implies that we essen-
tially need to specify only m, which is often governed by
the corresponding application requirements. Thus, CRAFT
requires minimal tuning for most practical purposes.

Accommodating Statistical-Computational Trade-offs

We can extend the basic CRAFT model of Fig. 1 to have
cluster specific meansmk, which may in turn be modulated
via Beta priors. The model can also be readily extended
to incorporate more informative priors or allow overlap-
ping clusters, e.g., we can do away with the independent
distribution assumptions for numeric data, by introducing
covariances and taking a suitable prior like the inverse
Wishart. The parameters α and σd do not appear in the
CRAFT objective since they vanish due to the asymptotics
and the appropriate setting of the hyperparameter θ. Re-
taining some of these parameters, in the absence of asymp-
totics, will lead to additional terms in the objective thereby
requiring more computational effort. Depending on the
available computational resource, one might also like to
achieve feature selection with the exact posterior instead of
a point estimate. CRAFT’s basic framework can gracefully
accommodate all such statistical-computational trade-offs.

4 Experimental Results

We first provide empirical evidence on synthetic data about
CRAFT’s ability to recover the feature subspaces. We then
show how CRAFT outperforms an enhanced version of
DP-means that includes feature selection on a real binary
dataset. This experiment underscores the significance of
having different measures for categorical data and numeric
data. Finally, we compare CRAFT with other recently pro-
posed feature selection methods on real world benchmarks.
In what follows, the fixed budget setting is where the num-
ber of features selected per cluster is held constant, and the
approximate budget setting is where the number of features
selected per cluster is allowed to vary across the clusters.
We set ρ = m(1 − m) − 0.01 in all our experiments to
facilitate cluster specific feature selection. In our experi-
ments, CRAFT continued to perform very well relative to

the other algorithms when the number of clusters was in-
creased. Therefore, we made the subjective choice to in-
clude results only up to 10 clusters since similar behavior
was observed for higher number of clusters.

Exact Subspace Recovery on Synthetic Data

We now show the results of our experiments on synthetic
data, in both the fixed and the approximate budget settings,
that suggest CRAFT has the ability to recover subspaces
on both categorical and numeric data with minimum pa-
rameter tuning, amidst noise, under different scenarios: (a)
disjoint subspaces, (b) overlapping subspaces including the
extreme case of containment of a subspace wholly within
the other, (c) extraneous features, and (d) non-uniform
distribution of examples and features across clusters.

Fixed Budget Setting: Fig. 2(a) shows a binary dataset
comprising 300 24-feature points, evenly split between 3
clusters that have disjoint subspaces of 8 features each.
We sampled the remaining features independently from a
Bernoulli distribution with parameter 0.1. Fig. 2(b) shows
that CRAFT recovered the subspaces with m = 1/3, as we
would expect. In Fig. 2(c) we modified the dataset to have
(a) an unequal number of examples across the different
clusters, (b) a fragmented feature space each for clusters 1
and 3, (c) a completely noisy feature, and (d) an overlap
between second and third clusters. As shown in Fig. 2(d),
CRAFT again identified the subspaces accurately.

Fig. 3(a) shows the second dataset comprising 300 36-
feature points, evenly split across 3 clusters, drawn from
independent Gaussians having unit variance and means 1,
5 and 10 respectively. We designed clusters to comprise
features 1-12, 13-24, and 22-34 respectively so that the first
two clusters were disjoint, whereas the last two had some
overlapping features. We added isotropic noise by sam-
pling the remaining features from a Gaussian distribution
having mean 0 and standard deviation 3. Fig. 3(b) shows
that CRAFT recovered the subspaces with m = 1/3. We
then modified this dataset in Fig. 3(c) to have cluster 2 span
a non-contiguous feature subspace. Additionally, cluster 2
was designed to have one partition of its features overlap
partially with cluster 1, while the other was subsumed com-
pletely within the subspace of cluster 3. Several extraneous
features were not contained within any cluster. CRAFT re-
covered the subspaces on these data too (Fig. 3(d)).

Approximate Budget Setting: We now show CRAFT may
recover the subspaces even when we allow a different num-
ber of features to be selected across the different clusters.
We modified the original categorical synthetic dataset to
have cluster 3 (a) overlap with cluster 1, and more impor-
tantly, (b) significantly overlap with cluster 2. We obtained
the configuration, shown in Fig. 4(a), by splitting cluster 3
(8 features) evenly in two parts, and increasing the number
of features in cluster 2 (16 features) considerably relative
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to cluster 1 (9 features), thereby making the distribution
of features across the clusters non-uniform. We observed
(Fig. 4(b)) that for εc ∈ [0.76, 1), the CRAFT algorithm
for the approximate budget setting recovered the subspace
exactly for a wide range of m, more specifically for all val-
ues, when m was varied in increments of 0.1 from 0.2 to
0.9. This implies the procedure essentially requires tuning
only εc. We easily found the appropriate range by search-
ing in decrements of 0.01 starting from 1. Fig. 4(d) shows
the recovered subspaces for a similar set-up for the numeric
data shown in Fig. 4(c). We observed that for εv ∈ [4, 6],
the recovery was robust to selection ofm ∈ [0.1, 0.9], simi-
lar to the case of categorical data. Specifically, we searched
for εv in increments of 0.5 from 1 to 9, since empirically
the global variance was found to be close to 9. Thus, with
minimal tuning, we recovered subspaces in all cases.

Experimental Setup for Real Datasets

In order to compare the non-parametric CRAFT algorithm
with other methods (where the number of clusters K is not
defined in advance), we followed the farthest-first heuris-
tic used by the authors of DP-means [14], which is rem-
iniscent of the seeding proposed in methods such as K-
means++ [3] and Hochbaum-Shmoys initialization [10]:
for an approximate number of desired clusters k, a suitable
λ is found in the following manner. First a singleton set T
is initialized, and then iteratively at each of the k rounds,
the point in the dataset that is farthest from T is added to T .
The distance of a point x from T is taken to be the small-
est distance between x and any point in T , for evaluating
the corresponding objective function. At the end of the k
rounds, we set λ as the distance of the last point that was
included in T . Thus, for both DP-means and CRAFT, we
determined their respective λ by following the farthest first
heuristic evaluated on their objectives: K-means objective
for DP-means and entropy based objective for CRAFT.

Kulis and Jordan [14] initialized T to the global mean for
DP-means. We instead chose a point randomly from the
input to initialize T for CRAFT. In our experiments, we of-
ten found this strategy to be more effective than using the
global mean since the cluster centers tend to be better sepa-
rated. To highlight the failure of the squared Euclidean dis-
tance based objective to deal with categorical data sets, we
also conducted experiments on DP-means with a random
selection of the initial cluster center from the data points.
We call this method DP-means(R) where R indicates ran-
domness in selecting the initial center.

Evaluation Criteria For Real Datasets

To evaluate the quality of clustering, we used datasets with
known true labels. We employed two standard metrics, pu-
rity and normalized mutual information (NMI), to measure
the clustering performance [19, 24]. Assessing the qual-
ity of unsupervised methods by comparing with underlying

labels using NMI and purity, whenever available, is a stan-
dard and well-established practice, see for instance, DP-
means [14], NDFS [15], and MCFS [6]. To compute purity,
each full cluster is assigned to the class label that is most
frequent in the cluster. Purity is the proportion of examples
that we assigned to the correct label. Normalized mutual
information is the mutual information between the cluster
labeling and the true labels, divided by the square root of
the true label entropy times the clustering assignment en-
tropy. Both purity and NMI lie between 0 and 1 – the closer
they are to 1, the better the quality of the clustering.

Henceforth, we use Algorithm 1 with the fixed budget set-
ting in our experiments to ensure a fair comparison with the
other methods, since they presume a fixed m.

Comparison with DP-means

We now provide evidence that CRAFT outperforms DP-
means on categorical data, using the Splice junction deter-
mination dataset [26] that has all categorical features. We
treated feature values 1 and 2 with 0, and 3 and 4 with 1 to
create a binary dataset. We borrowed the feature selection
term from CRAFT to extend DP-means(R) to include fea-
ture selection, and retained its squared Euclidean distance
measure. Recall that, in a special case, the CRAFT objec-
tive degenerates to DP-means(R) on numeric data when all
features are retained, and cluster variances are all the same
(see the Supplementary). Fig. 5 shows the comparison re-
sults on the Splice data for different values of m. CRAFT
outperforms extended DP-means(R) in terms of both pu-
rity and NMI, showing the importance of the entropy term
in the context of clustering with feature selection.

Comparison with Feature Selection Methods

We now demonstrate the benefits of cluster specific feature
selection accomplished by CRAFT. Table 1 and Table 2
show how CRAFT compares with two state-of-the-art un-
supervised feature selection methods – Multi-Cluster/Class
Feature Selection (MCFS) [6] and Nonnegative Discrimi-
native Feature Selection (NDFS) [15] – besides DP-means
and DP-means(R) on several datasets [26], namely Bank,
Spam, Wine, Splice (described above), and Monk-3, when
m was set to 0.5 and 0.8 respectively. MCFS derives its in-
spiration from manifold learning and L1-regularized mod-
els, and solves an optimization problem involving a sparse
eigenproblem and a L1-regularized least squares problem.
NDFS exploits the discriminative information in unsuper-
vised scenarios by performing spectral clustering to learn
the cluster labels of the input samples, while simultane-
ously performing the feature selection step.

Our experiments clearly highlight that CRAFT (a) works
well for both numeric and categorical data, and (b) com-
pares favorably with both the global feature selection al-
gorithms and clustering methods, such as DP-means, that
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Figure 2: (Fixed budget) CRAFT recovered the subspaces on categorical datasets.
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Figure 3: (Fixed budget) CRAFT recovered the subspaces on numeric datasets.
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Figure 4: (Approximate budget) CRAFT recovered the subspaces on both the categorical data shown in (a) and the
numeric data shown in (c). The subspaces were recovered with minimal tuning even when m was incorrectly specified.

do not select features. Besides, the CRAFT algorithm ex-
hibited low variance across runs, thereby suggesting that
the method is robust to initialization. Similar results were
obtained for other values of m - we omit the details here.

Arguably, setting threshold to control the number of clus-
ters for nonparametric methods (CRAFT, DP-means) in or-
der to compare them to parametric models (MCFS, NDFS)
is not exactly fair, since they can better model the data by
generating more clusters than the number of true clusters
(e.g. when the clusters are not unimodal). Interestingly,
despite being at a slight disadvantage due to this heuris-
tic, we observe that CRAFT performs very well on several
datasets. We found CRAFT to perform well in terms of
the macro F1-score too. For instance, on the Wine dataset,
we obtained the following macro F1-scores for m = 0.5
- CRAFT: 0.55, MCFS: 0.51, NDFS: 0.50, DP-means(R):
0.29, and DP-means: 0.19. Similarly, on Spam, we ob-
served the following scores - CRAFT: 0.65, MCFS: 0.19,
NDFS: 0.19, DP-means: 0.01, and DP-means(R): 0.01.

Finally, we found that besides these criteria, CRAFT also
showed good performance in terms of time. For instance,
on the Spam dataset for m = 0.5, CRAFT required an av-

erage execution time of only 0.4 seconds, compared to 1.8
and 61.4 seconds by MCFS and NDFS respectively. This
behavior can be attributed primarily to the benefits of the
scalable K-means style algorithm employed by CRAFT, as
opposed to MCFS and NDFS that require solving compu-
tationally expensive spectral problems. This scalability as-
pect of CRAFT becomes even more prominent with a larger
number of data points. For instance, MCFS and NDFS
failed to scale to the Adult dataset (a.k.a Census Income
Data), which consists of about 50,000 examples. In con-
trast, CRAFT converged quickly to a good solution.

5 Conclusion

CRAFT’s framework incorporates cluster-specific feature
selection and handles both categorical and numeric data.
The objective obtained from MAP asymptotics is inter-
pretable, and informs simple algorithms for both the fixed
budget setting and the approximate budget setting.

Our work opens up several theoretical and practical direc-
tions. One direction would be to investigate the various
noise conditions under which the model is able to recover
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Figure 5: Purity (a-c) and NMI (d-f) results on Splice. DP-RF is DP-means(R) with feature selection.

Table 1: CRAFT versus DP-means and state-of-the-art feature selection methods when half of the features were selected
(i.e. m = 0.5). We abbreviate MCFS to M, NDFS to N, DP-means to D, and DP-means(R) to DR to fit the table within
margins. DP-means and DP-means(R) do not select any features. The number of clusters was chosen to be same as the
number of classes in each dataset. The CRAFT algorithm exhibited low variance across runs (not shown here).

Dataset Average Purity Average NMI
CRAFT M N DR D CRAFT M N DR D

Bank 0.67 0.65 0.59 0.61 0.61 0.16 0.06 0.02 0.03 0.03
Spam 0.72 0.64 0.64 0.61 0.61 0.20 0.05 0.05 0.00 0.00
Splice 0.75 0.62 0.63 0.61 0.52 0.20 0.04 0.05 0.05 0.01
Wine 0.71 0.72 0.69 0.66 0.66 0.47 0.35 0.47 0.44 0.44

Monk-3 0.56 0.55 0.53 0.54 0.53 0.03 0.02 0.00 0.00 0.00

Table 2: CRAFT versus DP-means and state-of-the-art feature selection methods (m = 0.8).
Dataset Average Purity Average NMI

CRAFT M N DR D CRAFT M N DR D
Bank 0.64 0.61 0.61 0.61 0.61 0.08 0.03 0.03 0.03 0.03
Spam 0.72 0.64 0.64 0.61 0.61 0.23 0.05 0.05 0.00 0.00
Splice 0.74 0.68 0.63 0.61 0.52 0.18 0.09 0.05 0.05 0.01
Wine 0.82 0.73 0.69 0.66 0.66 0.54 0.42 0.42 0.44 0.44

Monk-3 0.57 0.54 0.54 0.54 0.53 0.03 0.00 0.00 0.00 0.00

the subspaces. We do not know whether the algorithm we
presented is guaranteed to converge to a solution, since
the interspersing of clustering and feature selection steps
makes the analysis hard. We could plausibly devise alter-
native algorithms that are guaranteed to monotonically de-
crease the asymptotic objective. Despite the good time per-
formance of our algorithm, there is further scope for scal-
ability. The procedure samples new Bernoulli feature vec-
tors during each iteration, and this randomness allows it to
explore different regions of data. However, it would slow

down the procedure for very high dimensional problems.
It would be interesting to analyze whether the previously
sampled random vectors can be reused once the algorithm
has seen “enough” data. Finally, since most steps in our
algorithm can be executed in parallel, it would be useful to
apply CRAFT to real applications in a distributed setting.
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CRAFT: ClusteR-specific Assorted Feature selecTion (Supplementary)

6 Supplementary Material

We now derive the various objectives for the CRAFT
framework. We first show the derivation for the generic ob-
jective that accomplishes feature selection on the assorted
data. We then derive the degenerate cases when all features
are retained and all data are (a) numeric, and (b) binary
categorical. In particular, when the data are all numeric,
we recover the DP-means objective [14].

6.1 Main Derivation: Clustering with Assorted
Feature Selection

We have the total number of features,D = |Cat|+|Num|.
We define SN,k to be the number of points assigned to
cluster k. First, note that a Beta distribution with mean

c1 and variance c2 has shape parameters
c21(1− c1)

c2
− c1

and
c1(1− c1)2

c2
+ c1 − 1. Therefore, we can find the

shape parameters corresponding to m and ρ. Now, recall
that for numeric data, we assume the density is of the form
f(xnd|vkd)

=
1

Zkd
e
−

vkd (xnd − ζkd)2

2σ2
kd

+(1−vkd)
(xnd − ζd)2

2σ2
d


, (3)

where Zkd ensures that the area under the density is 1. As-
suming an uninformative conjugate prior on the (numeric)
means, i.e. a Gaussian distribution with infinite variance,
and using the Iverson bracket notation for discrete (categor-
ical) data, we obtain the joint probability distribution given
in Fig. 6 for the underlying graphical model shown in Fig.
1. Note that joint distribution factorizes into a product of
posterior distributions (e.g. the beta prior on the features
conjugates with the feature likelihood to yield one poste-
rior. We will show that under asymptotic conditions, min-
imizing the joint negative log-likelihood yields an intuitive
objective function via simplification of the log-posteriors.

The total contribution of (3) to the negative joint log-
likelihood

=

K+∑
k=1

∑
d∈Num

∑
n:zn,k=1

[
vkd

(xnd − ζkd)2

2σ2
kd

(5)

+ (1− vkd)
(xnd − ζd)2

2σ2
d

]
+

K+∑
k=1

∑
d∈Num

log Zkd.

The contribution of the selected categorical features de-
pends on the categorical means of the clusters, and is given
by

− log

K+∏
k=1

∏
n:zn,k=1

∏
d∈Cat:vkd=1

∏
t∈Td

η
I(xnd=t)
kdt

 .

On the other hand, the categorical features not selected
are assumed to be drawn from cluster-independent global
means, and therefore contribute

− log

K+∏
k=1

∏
n:zn,k=1

∏
d∈Cat:vkd=0

∏
t∈Td

η
I(xnd=t)
0dt

 .

Thus, the total contribution of the categorical features is

−
K+∑
k=1

∑
n:zn,k=1

[ ∑
d∈Cat:vkd=1

∑
t∈Td

I(xnd = t) log ηkdt

+
∑

d∈Cat:vkd=0

∑
t∈Td

I(xnd = t) log η0dt

]
.

The Bernoulli likelihood on vkd couples with the conjugate
Beta prior on νkd. To avoid having to provide the value
of νkd as a parameter, we take its point estimate to be the
mean of the resulting Beta posterior, i.e., we set

νkd =

(
m2(1−m)

ρ
−m

)
+ vkd

m(1−m)

ρ

=
akd

akd + bkd
, (6)

where

akd =
m2(1−m)

ρ
−m+ vkd, and

bkd =
m(1−m)2

ρ
+m− vkd.

Then the contribution of the posterior to the negative log
likelihood is

−
K+∑
k=1

D∑
d=1

[
log

(
akd

akd + bkd

)akd
+log

(
bkd

akd + bkd

)bkd ]
,

or equivalently,

K+∑
k=1

D∑
d=1

[
log (akd + bkd)

(akd+bkd) − log aakdkd − log bbkdkd

]
︸ ︷︷ ︸

F (vkd)

.
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P(x, z, v, ν, η, ζ,m)

= P(x|z, v, η, ζ)P(v|ν)P(z)P(η)P(ν;m, ρ)

=

K+∏
k=1

∏
n:zn,k=1

[( ∏
d∈Cat:vkd=1

∏
t∈Td

η
I(xnd=t)
kdt

)( ∏
d∈Cat:vkd=0

∏
t∈Td

η
I(xnd=t)
0dt

)
( ∏
d′∈Num

1

Zkd′
e−[vkd′ (xnd′−ζkd′ )2/(2σ2

kd′ )+(1−vkd′ )(xnd′−ζd′ )
2/(2σ2

d′ ))]

)]

·

K+∏
k=1

D∏
d=1

νvkdkd (1− νkd)1−vkd

 ·
θK+−1 Γ (θ + 1)

Γ (θ +N)

K+∏
k=1

(SN,k − 1)!

 (4)

·

K+∏
k=1

∏
d∈Cat

Γ
(∑

t∈Td
αkdt
K+

)
∏
t∈Td Γ

(αkdt
K+

) ∏
t′∈Td

η
(αkdt′/K

+)−1
kdt′



·
K+∏
k=1

D∏
d=1

Γ

(
m(1−m)

ρ
− 1

)
ν

m2(1−m)

ρ
−m−1


kd (1− νkd)

m(1−m)2

ρ
−(2−m)



Γ

(
m2(1−m)

ρ
−m

)
Γ

(
m(1−m)2

ρ
− (1−m)

)

Figure 6: Joint probability distribution for the generic case (both numeric and categorical features).

Since vkd ∈ {0, 1}, this simplifies to

K+∑
k=1

D∑
d=1

F (vkd) =

K+∑
k=1

D∑
d=1

[vkd(F (1)− F (0)) + F (0)]

=

K+∑
k=1

D∑
d=1

vkd

∆F +K+DF (0), (7)

where ∆F = F (1) − F (0) quantifies the change when a
feature is selected for a cluster.

The numeric means do not make any contribution since we
assumed an uninformative conjugate prior over R. On the
other hand, the categorical means contribute

− log

K+∏
k=1

∏
d∈Cat

Γ
(∑

t∈Td
αkdt
K+

)
∏
t∈Td Γ

(αkdt
K+

) ∏
t′∈Td

η
(αkdt′/K

+)−1
kdt′

 ,
which simplifies to

K+∑
k=1

∑
d∈Cat

[
− log

Γ
(∑

t∈Td
αkdt
K+

)
∏
t∈Td Γ

(αkdt
K+

)
−
∑
t′∈Td

(αkdt′
K+

− 1
)

log ηkdt′

]
. (8)

Finally, the Dirichlet process specifies a distribution over
possible clusterings, while favoring assignments of points

to a small number of clusters. The contribution of the cor-
responding term is

− log

θK+−1 Γ (θ + 1)

Γ (θ +N)

K+∏
k=1

(SN,k − 1)!

 ,
or equivalently,

−(K+ − 1) log θ − log

 Γ (θ + 1)

Γ (θ +N)

K+∏
k=1

(SN,k − 1)!

 . (9)

The total negative log-likelihood is just the sum of terms in
(5), (6), (7), (8), and (9). We want to maximize the joint
likelihood, or equivalently, minimize the total negative log-
likelihood. We would use asymptotics to simplify our ob-
jective. In particular, letting σd →∞, ∀k ∈ [K+] and d ∈
Num, and αkdt → K+, ∀t ∈ Td, d ∈ Cat, k ∈ [K+],
setting log θ to

−

λ+

K+∑
k=1

∑
d∈Cat

log |Td| −
K+∑
k=1

∑
d∈Num

log Zkd

K+ − 1

 ,

and ignoring the term containing SN,k that contributes
O(1), we obtain our objective for assorted feature selec-
tion:
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arg min
z,v,η,ζ,σ

K+∑
k=1

∑
n:zn,k=1

∑
d∈Num

vkd(xnd − ζkd)2

2σ2
kd︸ ︷︷ ︸

Numeric Data Discrepancy

+ (λ+DF0)K+︸ ︷︷ ︸
Regularization Term

+

K+∑
k=1

D∑
d=1

vkd

F∆︸ ︷︷ ︸
Feature Control

+

K+∑
k=1

∑
d∈Cat

[
vkd

 ∑
n:zn,k=1

−I(xnd = t) log ηkdt)


︸ ︷︷ ︸

Categorical Discrepancy Term I

+ (1− vkd)
∑

n:zn,k=1

∑
t∈Td

−I(xnd = t) log η0dt

]
︸ ︷︷ ︸

Categorical Discrepancy Term II

,

where ∆F = F (1) − F (0) quantifies the change when a
feature is selected for a cluster, and we have renamed the
constants F (0) and ∆F as F0 and F∆ respectively.

6.1.1 Setting ρ

Reproducing the equation for νkd from (6), since we want
to ensure that νkd ∈ (0, 1), we must have

0 <

(
m2(1−m)

ρ
−m

)
+ vkd

m(1−m)

ρ

< 1.

Since vkd ∈ {0, 1}, this immediately constrains

ρ ∈ (0,m(1−m)).

Note that ρ guides the selection of features: a high value of
ρ, close to m(1 −m), enables local feature selection (vkd
becomes important), whereas a low value of ρ, close to 0,
reduces the influence of vkd considerably, thereby resulting
in global selection.

6.2 Degenerate Case: Clustering Binary Categorical
Data without Feature Selection

In this case, the discrete distribution degenerates to
Bernoulli, while the numeric discrepancy and the feature
control terms do not arise. Therefore, we can replace the
Iverson bracket notation by having cluster means µ drawn
from Bernoulli distributions. Then, the joint distribution of
the observed data x, cluster indicators z and cluster means

µ is given by P(x, z, µ)

= P(x|z, µ)P(z)P(µ)

=

K+∏
k=1

∏
n:zn,k=1

D∏
d=1

µxndkd (1− µkd)1−xnd


︸ ︷︷ ︸

(A)

·

θK+−1 Γ (θ + 1)

Γ (θ +N)

K+∏
k=1

(SN,k − 1)!


︸ ︷︷ ︸

(B)

(10)

·

K+∏
k=1

D∏
d=1

Γ
( α

K+
+ 1
)

Γ
( α

K+

)
Γ(1)

µ
α

K+−1

kd (1− µkd)0


︸ ︷︷ ︸

(C)

.

The joint negative log-likelihood is

− logP(x, z, µ) = −[log (A) + log (B) + log (C)].

We first note that log (A)

=

K+∑
k=1

∑
n:zn,k=1

D∑
d=1

xnd logµkd + (1− xnd) log(1− µkd)

=

K+∑
k=1

∑
n:zn,k=1

D∑
d=1

xnd log

(
µkd

1− µkd

)
+ log(1− µkd)

=

K+∑
k=1

∑
n:zn,k=1

D∑
d=1

[
log(1− µkd) + µkd log

(
µkd

1− µkd

)

+ xnd log

(
µkd

1− µkd

)
− µkd log

(
µkd

1− µkd

)]

=

K+∑
k=1

∑
n:zn,k=1

D∑
d=1

[
(xnd − µkd) log

(
µkd

1− µkd

)

+ µkd logµkd + (1− µkd) log(1− µkd)
]

=

K+∑
k=1

∑
n:zn,k=1

D∑
d=1

(xnd − µkd) log

(
µkd

1− µkd

)
−H(µkd),

where

H(p) = −p log p− (1− p) log(1− p) for p ∈ [0, 1].

log (B) and log (C) can be computed via steps analogous
to those used in assorted feature selection. Invoking the
asymptotics by letting α→ K+, setting

θ = e
−

λ+
K+D

K+ − 1
log

( α

K+

)
,
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and ignoring the term containing SN,k that contributes
O(1), we obtain the following objective:

argmin
z,µ

K+∑
k=1

λK+

+
∑

n:zn,k=1

∑
d

[
H(µkd) + (µkd − xnd) log

(
µkd

1− µkd

)]
︸ ︷︷ ︸

(Binary Discrepancy)

,

where the term (Binary Discrepancy) is an objective for
binary categorical data, similar to the K-means objective
for numeric data. This suggests a very intuitive procedure,
which is outlined in Algorithm 3.

Algorithm 3 Clustering binary categorical data
Input: x1, . . . , xN ∈ {0, 1}D: binary categorical data,

and λ > 0: cluster penalty parameter.
Output: K+: number of clusters and l1, . . . , lK+ : cluster-

ing.

1. Initialize K+ = 1, l1 = {x1, . . . , xN} and the
mean µ1 (sample randomly from the dataset).

2. Initialize cluster indicators zn = 1 for all n ∈ [N ].

3. Repeat until convergence

• Compute ∀k ∈ [K+], d ∈ [D]:

H(µkd) = −µkd logµkd − (1− µkd) log(1− µkd).

• For each point xn

– Compute the following for all k ∈ [K+]:

dnk =

D∑
d=1

[
H(µkd) + (µkd − xnd) log

(
µkd

1− µkd

)]
.

– If min
k
dnk > λ, setK+ = K+ +1, zn =

K+, and µK+ = xn.

– Otherwise, set zn = argmin
k
dnk.

• Generate clusters l1, . . . , lK+ based on
z1, . . . , zK+ : lk = {xn | zn = k}.

• For each cluster lk, update µk =
1

|lk|
∑
x∈lk

x.

In each iteration, the algorithm computes “distances” to the
cluster means for each point to the existing cluster centers,
and checks if the minimum distance is within λ. If yes,
the point is assigned to the nearest cluster, otherwise a new

cluster is started with the point as its cluster center. The
cluster means are updated at the end of each iteration, and
the steps are repeated until there is no change in cluster
assignments over successive iterations.

We get a more intuitively appealing objective by noting that
the objective (11) can be equivalently written as

argmin
z

K+∑
k=1

∑
n:zn,k=1

∑
d

H(µ∗kd) + λK+, (11)

where µ∗kd denotes the mean of feature d computed by us-
ing points belonging to cluster k. characterizes the uncer-
tainty. Thus the objective tries to minimize the overall un-
certainty across clusters and thus forces similar points to
come together. The regularization term ensures that the
points do not form too many clusters, since in the absence
of the regularizer each point will form a singleton cluster
thereby leading to a trivial clustering.

6.3 Degenerate Case: Clustering Numerical Data
without Feature Selection (Recovering DP-means)

In this case, there are no categorical terms. Furthermore,
assuming an uninformative conjugate prior on the numeric
means, the terms that contribute to the negative joint log-
likelihood are

K+∏
k=1

∏
d′

1

Zkd′
e
−

vkd′(xnd′ − ζkd′)2

(2σ2
kd′)

+(1−vkd′ )
(xnd′ − ζd′)2

(2σ2
d′)


,

and

θK
+−1 Γ (θ + 1)

Γ (θ +N)

K+∏
k=1

(SN,k − 1)!.

Taking the negative logarithms on both these terms and
adding them up, setting log θ to

−

λ+

K+∑
k=1

∑
d′

log Zkd′

K+ − 1

 ,

and vkd′ = 1 (since all features are retained), letting σd′ →
∞ for all d′, and ignoring the O(1) term containing SN,k,
we obtain

argmin
z

K+∑
k=1

∑
n:zn,k=1

∑
d

(xnd − ζ∗kd)2

2σ∗2kd
+ λK+, (12)

where ζ∗kd and σ∗2kd are, respectively, the mean and variance
of the feature d computed using all the points assigned to
cluster k. This degenerates to the DP-means objective [14]
when σ∗kd = 1/

√
2, for all k and d. Thus, using a com-

pletely different model and analysis to [14], we recover the
DP-means objective as a special case.
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