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Abstract

We address the problem of efficiently annotating
labels of objects when they are structured. Of-
ten the distribution over labels can be described
using a joint potential function over the labels
for which sampling is provably hard but efficient
maximum a-posteriori (MAP) solvers exist. In
this setting we develop novel entropy bounds that
are based on the expected amount of perturbation
to the potential function that is needed to change
MAP decisions. By reasoning about the entropy
reduction and cost tradeoff, our algorithm ac-
tively selects the next annotation task. As an ex-
ample of our framework we propose a boundary
refinement task which can used to obtain pixel-
accurate image boundaries much faster than tra-
ditional tools by focussing on parts of the image
for refinement in a multi-scale manner.

1 Introduction

High quality data sets are important to develop novel ap-
proaches that can accurately solve challenging tasks. As
current challenges become more and more complex, suc-
cessful selection of approaches largely depends on the
quality of annotations – a poor benchmark badly affects
the evaluations and conclusions. Unfortunately, attaining
high quality annotations for complex models, whether they
describe objects in images, parses in sentences, or molec-
ular structures in proteins, is a costly task as it involves an
expert annotator to process each instance.

Active learning algorithms may interactively choose which
data points to label in order to learn a labeling rule for
all data points while substantially reducing the number of
labels required [35]. Thus, it can be used to reduce the
amount of time that is required by the expert to obtain
high-quality annotations. Annotations for complex mod-

Appearing in Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik,
Iceland. JMLR: W&CP volume 33. Copyright 2014 by the au-
thors.

els are described by structured-labels, e.g., a sequence of
labels that are strongly correlated. Specifically, image an-
notations provide a semantic label for each pixel. Un-
fortunately, conventional active learning approaches such
as [10] assume the (pixels) labels are generated indepen-
dently, thus they cannot be applied to achieve high-quality
(image) annotations. These problems can be solved using
Bayesian active learning, also known as Bayesian experi-
mental design, since it relies on a probability model over
all possible labels. Such an approach requires assessing the
uncertainty of its probability model, a #P-hard problem in
general [41], thus it is currently limited to simple proba-
bility models such as Gaussian processes [24, 18]. Alter-
natively, non-Bayesian approaches utilize the most likely
or maximum a-posteriori (MAP) label rather than assess-
ing the uncertainty of its probability model, a task that is
substantially easier [44, 43, 36]. These approaches may
leverage the recent effort that has gone into developing al-
gorithms for recovering MAP assignments, either based on
specific parametrized restrictions such as super-modularity
[26] or by devising approximate methods based on linear
programming relaxations [37]. However, MAP-based ap-
proaches are limited when describing uncertainties in users
behavior and their annotations costs.

We propose a new uncertainty measure that can be ef-
ficiently computed by MAP perturbations. This mea-
sure provides a way to apply Bayesian active learning
to high dimensional complex models while enjoying effi-
cient MAP solvers such as graph-cuts or MPLP [3, 37].
While MAP perturbations have been considered recently
[31, 25, 38, 14, 15, 16, 32, 30, 11], their relation to uncer-
tainty measures has not. Specifically, we construct an upper
bound to the entropy function using the expected amount
of perturbation that is required to change the MAP deci-
sion. We show that this upper bound is an uncertainty mea-
sure, i.e., it is nonnegative, reaches its maximal value on the
uniform distribution and its minimal value on the zero-one
distribution. Our approach excels in cases where obser-
vations carry strong signals (local evidence), but are also
guided by strong consistency constraints (couplings). This
“high-signal, high-coupling” domain is typical in machine
learning applications and easy for MAP-solvers. Never-
theless, it creates ragged energy landscapes and classi-
cal sampling methods for estimating uncertainties, such as



Subhransu Maji, Tamir Hazan, Tommi Jaakkola

Markov chain Monte Carlo (MCMC) samplers, are prov-
ably hard [12, 46].

We begin by reviewing the previous work on interactive an-
notations and active learning approaches. We subsequently
describe the Bayesian active learning approach, followed
by our new upper bound for the entropy function that rely
on measuring the boundaries of MAP decisions. Addi-
tionally, we describe how to deal with data dependent cost
such as high curvature boundary annotation that is more ex-
pensive to annotate than straight lines. We conclude with
real-life experiments on annotating high-resolution image
boundaries showing significantly reductions in annotation
cost over traditional approaches.

2 Previous work

Large data sets in computer vision often rely on crowd-
sourcing for obtaining annotations. Some examples include
LabelMe [34] and ImageNet [9]. However quality control
and cost effectiveness are important concerns in this set-
ting. Our work differs as it suggests to use active learning
to interact with the annotator in order to reduce the crowd-
sourcing costs of acquiring high quality annotations.

Theoretical aspects of active learning has been investigated
in machine learning [10, 40, 8, 1, 13]. Generally, these
works assume binary classification of the data, whose la-
bels are independent and identically distributed (i.i.d.) ac-
cording to some distribution. This setting does not fit to
analyze pixel-wise image annotations, since the pixels la-
bels of the same image introduce dependencies to the sta-
tistical process. Recently, active learning approaches were
applied to complex structured labels, thus effectively using
non-i.i.d. setting [33, 44, 4, 43, 36]. These approaches rely
on efficient max-solvers that find the best structured label,
or equivalently the MAP assignment. Unfortunately, these
approaches do not allow to consider elaborate user behav-
ior that is important to attain high quality annotations while
minimizing their costs. In our work we use random pertur-
bations to estimate the MAP decision boundaries in order
to attain a better understanding of the uncertainties in the
model.

Bayesian approaches to active learning are extensively ap-
plied to deal with uncertainties of models. Stemming from
experimental design [5], Bayesian approaches consider a
probability model over the all possible labels (e.g., anno-
tations), and active learning is applied to design an experi-
ment (e.g., annotation of sub-area of the image) that mini-
mizes the expected loss of the probability model. [21, 39]
use Dirichlet distributions and the entropy as their loss
function. Alternatively, Gaussian processes have emerged
as effective probability models for complex tasks. [6] use
them and their variance as their loss function, while [24]
use both their variance and their mean to measure their
annotation cost, and [27, 18, 20] use their entropies to

measure their loss. Obtaining high quality annotations re-
quires more elaborate loss functions. In our work we sug-
gest to use both the uncertainty of the probability model
as well as the workload on the annotator. Recently, a few
works consider the more elaborate setting of Bayesian ac-
tive learning and crowdsourcing. [42] introduce loss func-
tions that include model uncertainty as well as the anno-
tation effort. Alternatively, [45] introduce loss functions
that include model uncertainty and the annotator’s ability.
In contrast, we focus on annotations of structured-labels
while measuring the uncertainty of probability distributions
over all possible labels in an exponentially large space of
possible annotations. In our work we devise a new uncer-
tainty measure that can be efficiently computed using MAP
solvers. Thus we are able to utilize the efficient graph-cuts
and MPLP algorithms in Bayesian active learning.

Perturb-max probability models that are defined by MAP
perturbations have been recently introduced by [31], their
sampling and learning approaches were described by [38,
11] and their generalization properties in [25, 16]. Their
relations to the Gibbs distributions and their normaliza-
tion constant (the partition functions) were discussed in
[15, 14, 30]. However, none of these works considered un-
certainty measures using MAP perturbations. In this work
we present new upper bounds on the entropy function that
can be efficiently computed using MAP perturbations. We
also show that these upper bounds are uncertainty mea-
sures, since they are: (i) nonnegative, (ii) attain their maxi-
mal value for the uniform distribution, and (iii) attain their
minimal value for the zero-one distribution. Thus mini-
mizing these uncertainty measures is an intuitive and effi-
cient approach to active learning, since minimizing these
uncertainties also minimizes the entropy of the probabil-
ity model. Recently, complex models were used in active
learning [32, 28] focusing on labeling pixels, using stan-
dard approaches to evaluate the loss of a single pixel label.
Our approach considers image patches thus requires to rea-
son about exponentially many structured-labels within each
patch. For this purpose we introduce new upper bounds
to the entropy function to efficiently reason about images
patches. In addition, we consider elaborate cost functions
for annotating the boundaries of these image patches in
multi-scale selection, thus providing a coarse-to-fine inter-
active annotation approach.

3 Active annotation framework

Image annotation is a costly procedure that currently pro-
hibits from constructing large data sets that are crucial for
developing better machine learning approaches. This is es-
pecially true for complex label spaces such as pixel labels
for images, or location of joint positions in images of peo-
ple. Often the structure over the label space can be com-
pactly described using a probability distribution that cap-
tures the correlations between the labels. For pixels labels
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these can be described using Markov random fields (MRFs)
that enforce consistency between adjacent labels. For joint
positions these priors can be derived from the kinematic
structure of the underlying skeleton.

Let y = (y1, ..., yn) be a set of structured labels that we
wish to obtain for a given instance x. The joint probability
distribution over the labels y is p(y) ∝ exp(θ(y;x,At)).
Here At = {a1, ..., at} is the set of annotations obtained
till time t. Bayesian experimental design is a natural frame-
work for actively seeking user inputs. Given a function
U(A) that measures the uncertainty of the labels given
previous annotations, and a function C(a) that measures
the cost of an annotation a, Bayesian experimental design
seeks to pick the annotation a that has the highest utility,
i.e., uncertainty decrease per unit cost

at = argmax
a∈A

U (At−1)− U (At−1 ∪ a)
C(a)

(1)

The uncertainty U(At) = H (p), is defined as the entropy,
a commonly used uncertainty measure, over the label space

H(p) = −
∑
y

p(y) log p(y) (2)

Thus, the Bayesian active annotation approach jointly min-
imizes the cost of annotations while reducing the uncer-
tainty in the probability model. The main bottleneck in
picking optimal annotations is the computation of the en-
tropy, which is provably hard for general distributions. Un-
like the entropy function, obtaining the best scoring anno-
tation that is usually referred as the maximum a-posteriori
(MAP) prediction, is often easier:

(MAP ) arg max
y1,...,yn

θ(y1, ..., yn;x,At)

A notable example is the graph-cuts algorithm for binary
pixel labeling problems in images. Significant effort has
been spent on developing efficient solvers for commonly
occurring problems. Motivated by this we propose a new
way of computing entropy using MAP perturbations.

4 MAP perturbations

The quantities we are interested in can be computed when-
ever we can sample y according from the Gibbs distribu-
tion, p(y) ∝ exp(θ(y)). We use θ(y) to refer to θ(y;x,A)
in the interest of brevity. In high dimensional complex
models sampling from the Gibbs distribution is provably
hard whenever the model considers nonzero local evidence
[22, 12]. Successful machine learning approaches strongly
rely on informative local potentials, as they incorporate the
data signal, e.g., image information. In this setting the re-
sulting Gibbs probability landscape is often “ragged”; in

such landscapes Markov chain Monte Carlo (MCMC) ap-
proaches to sampling from the Gibbs distribution may be-
come prohibitively expensive. This is in contrast to the suc-
cess of MCMC approaches in other settings (e.g., [23, 19])
where no data term (signal) exists. As an alternative, we
suggest to use perturb-max models as posterior distribu-
tions [31]. The perturb-max models rely on random func-
tions γi : Yi → R for every pixel i. These random func-
tions associate a random variable γi(yi) for each yi ∈ Yi.
Thus these random perturbations may be used to measure
the amount of change in the boundary of MAP decision:

p(ŷ) = Pγ

(
ŷ = argmax

y

{
θ(y) +

n∑
i=1

γi(yi)
})

(3)

Computing the entropy function (Equation (2)) is pro-
hibitively expensive as it requires to sum over all possi-
ble labels, which are exponential in n. Here we propose
to use an uncertainty measure that upper bounds the en-
tropy and can be computed efficiently using MAP solvers.
These upper bounds allow us to use Bayesian approaches
for active learning efficiently even for exponentially large
space of annotations. Our suggested entropy bounds mea-
sure the expected amount of change that is required in order
to change the MAP decision.

Theorem 1 Let p(y) be a perturb-max probability distri-
bution and let {γi(yi)} be a collection of i.i.d. random
variables, each following the Gumbel distribution with zero
mean, i.e., P (γi(yi) ≤ t) = exp(− exp(−(t+ c))), where
c ≈ 0.5772 is the Euler-Mascheroni constant. Let y∗γ be
the perturbed MAP solution with respect to θ(y), i.e.,

y∗γ = argmax
y

{
θ(y) +

n∑
i=1

γi(yi)
}

For simplifying the notation we denote y∗γ by y∗ while im-
plicitly referring to its dependence on {γi(yi)}. Then the
following entropy bound holds:

H(p) ≤ Eγ
[ n∑
i=1

γi(y
∗
i )
]

Proof: logZ(θ) = log
(∑

y exp(θ(y))
)

is the conjugate
dual of the (minus) entropy function.

H(p) = min
θ

{
logZ(θ)−

∑
y

p(y)θ(y)
}

Set W (θ) = Eγ
[
maxy{θ(y) +

∑n
i=1 γi(yi)

]
, then

logZ(θ) ≤ W (θ) whenever we consider the Gumbel per-
turbations, as shown in [14]. Therefore

H(p) ≤ min
θ

{
W (θ)−

∑
y

p(y)θ(y)
}
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Finally, for perturb-max models

p(ŷ) = Pγ

(
ŷ = argmax

y

{
θ̂(y) +

n∑
i=1

γi(yi)
})

there holds

min
θ

{
W (θ)−

∑
y

p(y)θ(y)
}
=W (θ̂)−

∑
y

p(y)θ̂(y).

Recalling that W (θ̂) = Eγ
[
maxy{θ̂(y) +

∑n
i=1 γi(yi)

]
we deduceW (θ̂) =

∑
y p(y)θ̂(y)+Eγ

[∑n
i=1 γi(y

∗
i )
]

and
conclude the result. �

This entropy bound motivates the use of perturb-max poste-
rior models. The computation of this bound relies on MAP
solvers, thus it is significantly faster than the computation
of the entropy itself whose complexity is generally expo-
nential in n.

Using the linearity of expectation we may alternate sum-
mation and expectation. Thus the above theorem bounds
the entropy by summing the expected change of MAP
perturbations, H(p) ≤

∑
iEγ [γi(y

∗
i )]. This bound

resembles to the independence bound for the entropy
H(p) ≤

∑
iH(pi), where pi(yi) =

∑
y\yi p(y) are the

marginal probabilities [7]. The advantage of MAP per-
turbation bound over previous entropy bounds is that it
only computes MAP assignments, while the standard en-
tropy bounds require to compute the marginal probabilities,
thus may be unpractical in high dimensional complex mod-
els. The independence bound is tight whenever the joint
probability p(y) is composed of independent systems, i.e.,
p(y) =

∏
i pi(yi). interestingly, also the bound in Theo-

rem 1 is tight in this setting.

Corollary 1 Consider the setting in Theorem 1 and the in-
dependent probability distribution p(y) =

∏
i pi(yi). Then

H(p) = Eγ
[∑

i

γi(y
∗
i )
]

Proof: Set θi(yi) = log p(yi). Since logZ(θi) = 0 it
follows from [14] that Eγi

[
maxxi

{θi(yi) + γi(yi)}
]
= 0.

Since we are using i.i.d. Gumbel random variables

Eγi
[
max
yi
{θi(yi)+γi(yi)}

]
=
∑
yi

p(yi)θi(yi)+Eγi
[
γi(y

∗
i )
]

while the left hand side equals zero, and the right hand side
contains the quantities of interest. We conclude while set-
ting θ(y) =

∑
i θi(yi). �

There are two special cases for independent systems. First,
the zero-one probability model, for which p(y) = 0 ex-
cept for a single configuration p(ŷ) = 1. The entropy of
such probability distribution is minimal, i.e., zero, as they
have no uncertainty. In this case, the MAP perturbation

entropy bound assigns y∗γ = ŷ for all random functions
γi. Since these random variables have zero mean, it fol-
lows that Eγ

[∑
i γi(ŷi)

]
= 0. Another important case

is for the uniform distribution, p(y) = 1/|Y | for every
y ∈ Y . The entropy of such a probability distribution is
maximal, i.e., log |Y |, as it has maximal uncertainty. To
estimate our entropy bound for the uniform distribution we
first note that since Y = Y1 × · · ·Yn is a discrete product
space log |Y | =

∑
i log |Yi|. Also, the uniform distribu-

tion is coupled with θ(y) ≡ 0 thus the MAP perturbation
entropy bound equals to

∑
iEγi

[
maxyi γi(yi)

]
. Since the

random perturbations follow the Gumbel distribution, this
entropy bound is tight, i.e., Eγi

[
maxyi γi(yi)

]
= log |Yi|

(cf. [14]). This suggests that the MAP perturbations can be
used as an alternative uncertainty measure:

Corollary 2 Consider the setting in Theorem 1. Set

U(p) = Eγ
[∑

i

γi(y
∗
i )
]

(4)

Then U(p) is an uncertainty measure, i.e., it is non-
negative, it attains its minimal value for the zero-one distri-
bution and its maximal value for the uniform distribution.

Proof: It is nonnegative since it upper bounds the entropy
function. U(p) attain its minimal value when p(y) is the
zero-one distribution since U(p) = 0 in this case (see
discussion above). Lastly, we prove that U(p) attains its
maximal value for the uniform distribution, or equivalently
when θ(y) ≡ c for any constant c. Assume the contrary,
thus there are y, ŷ for which θ(y) < θ(ŷ). Thus there are∑
i γi(y) >

∑
i γi(ŷi) although y∗ = ŷ, a contradiction.

�

The advantage of using the MAP perturbations uncertainty
measure over standard Bayesian active learning approaches
is that it does not require MCMC sampling procedures.
Therefore, our approach well fits high dimensional com-
plex models that currently dominate machine learning ap-
plications such as computer vision. It addition, the MAP
perturbations uncertainty measure upper bounds the en-
tropy thus reducing its uncertainty effectively reduces the
entropy.

5 Active boundary annotation

The ability to sample and reason about uncertainties pro-
vides a powerful framework for active annotations of struc-
tured labels. In particular complex annotation tasks with
varying costs can be considered. To illustrate this, we con-
sider the task of obtaining pixel accurate boundaries of ob-
jects in images. In typical high-resolution images labeling
a accurate boundary can take an order of magnitude more
time than a coarse one. In our approach we start with a
coarse boundary and actively refine it. As seen in Fig. 1, at
each step the user is shown an region of the image α and
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initial boundary final boundary

refinedcurrent refinedcurrent

…

…

Figure 1: We actively suggest regions for boundary re-
finement based on label uncertainty and annotation cost.
Naively annotating the boundary on the right requires 20×
more points than the initial one.

is asked to refine the boundary represented as a piecewise-
linear polygon by moving the points on the boundary. Once
the annotation a for the region α is obtained, it is incorpo-
rated into the model to obtain the new probability distribu-
tion over pixel labels.

In contrast to previous approaches for active labeling where
the annotation task is to mark a pixel labels [32], our
task is more intuitive and provides labels for many pix-
els simultaneously. Labelling “super pixels” is another ap-
proach, but suffers if the initial segmentation misses the
true boundaries. For objects with thin structures this can
be a challenge. Brush strokes, and other input modalities
present a challenge on how to model the space of user in-
put. See [29] for a discussion on interactive segmentation
systems. Boundaries on the other hand can be compactly
described by a starting and end point on the curve and are
naturally multi-scale. This allows us to reason over the
space of possible annotations in a coarse-to-fine manner
while considering complex cost functions that depend on
the boundary complexity.

From a labeling of a subset of pixels one can obtain a
full labeling using the “grabcut” model [3, 2]. In this set-
ting a possible annotation for an image x with n pixels
is describe by the n−tuple y = (y1, ..., yn). Each pixel
label is either foreground or background, namely, yi ∈
{−1, 1}. The local potential functions θi(yi;x) are derived
from Gaussian mixtures on the pixel color values to model
logP (yi|x) that provide an initial foreground/background
preference for every pixel. The pairwise potential func-
tions θi,j(yi, yj ;x) = exp(−(xi−xj)2)yiyj , where xi de-
notes the intensity of image x at pixel i, encourage adjacent
pixels with the same color to share the same labels. The
quality of each labeling is described by the global potential
functions

θ(y1, ..., yn;x) =

n∑
i=1

θi(yi;x) +
∑

(i,j)∈E

θi,j(yi, yj ;x) (5)

The best scoring labeling for a given image is the maximum
a-posteriori (MAP) prediction, which in our setting my be
derived using the graph-cuts algorithm. The MAP predic-
tion approach is computationally appealing. Although the

Image + initial boundary Per-pixel entropy bound

Figure 2: Pixel-wise entropy bound estimated on the im-
age using 100 samples from perturb-max model visualized
as a heat map (red is high, black is low). The model is un-
certain in the regions near the wings, nose, and the wheels.

total number of possible annotations is exponential in n,
the graph-cuts algorithm recovers the MAP prediction in a
linear time.

The uncertainty in labels after annotating an image patch α
at iteration t is the expected uncertainty of the labels given
the annotation according to the “user model” Pu, i.e.,

Ut(α) = Ea∼Pu(a;α)U(At−1 ∪ a) (6)

where, U(At−1 ∪ a) is defined in Eqn. 2. Fig. 2 shows the
uncertainty (entropy) computed using our method given the
image and the initial boundary visualized as a heat map.

Similarly the cost of annotating a patch α is the expected
cost of annotating α according to the user model, i.e.

C(α) = Ea∼Pu(a;α)C(a) (7)

where, C(a) measures the cost of labeling a segmentation.
Since our annotation task is boundary marking, the cost is
more appropriately measured as the boundary complexity
of the segmentation. This is estimated by approximating
the boundary of the segmentation with a piecewise-linear
curve that is within τ (the desired precision level) of the
original boundary. The cost is the number of points in the
polygon approximation.

In practice since we don’t have access to the user model we
approximate this using the model θ(y). Concretely we first
sample y ∼ θ(y) using the perturb-max framework, and
restrict the labels to the patch α. This is then resized to the
desired display resolution. Note that α may be of any size,
thus it allows us to annotate image patches in any scale.

Intuitively, our Bayesian active learning approach for
boundary annotation suggests the human expert an image
patch that is easy (or cheap) to annotate, yet the algorithm is
uncertain about its correct annotation. Fig. 3 shows an ex-
ample of how the quantities such as cost and certainties are
computed using the perturb-max framework. The sampled
segmentations approximate what a user might have anno-
tated. From these samples the average boundary annotation
cost and certainties are computed.
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Figure 3: Uncertainty and cost tradeoffs computed for three different regions α in the image shown in blue in the leftmost
image. In the middle are samples generated according to p(yα|x,A), shown along with the inferred user annotated bound-
ary (in blue), exact boundary (in red), as well as the figure, ground, and unknown regions as white, black, and gray pixels
respectively. While the region near the front wheel offers higher reductions in uncertainty, it is expensive to annotate. On
the other hand, the region near the nose is cheap to annotate, but offers lower reductions in uncertainty. The region near
the wing offers the best tradeoff between uncertainty and cost among the three, and will be picked by the active learner.
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Figure 4: (Left) Performance of various active learning strategies. (Middle) Image and the initial boundary. (Right)
The regions sampled by active learning strategies for refinement in the first 10 iterations of the algorithm based on cost,
uncertainty, and utility=uncertainty/cost.
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5.1 Experimental evaluation

We present experiments on a dataset of airplane images1 for
which we have obtained pixel accurate annotations. Man-
made objects like airplanes have complex structures and
obtaining pixel accurate boundaries is painstakingly slow –
it took about 15 minutes on average to annotate each image
of the 10 images. In stark contrast, obtaining approximate
boundaries takes less than 30 seconds.

We present an experimental study where we assume that
the annotator provides a piecewise-linear approximation of
the ground-truth boundary for the specified region within a
specified tolerance τ = 1% of the size of the display win-
dow. This closely approximates our annotation tool where
the annotators can mark the boundaries as polygons. At
any step in the annotation process we can measure the er-
ror as total number of incorrectly assigned pixels with re-
spect to the accurate ground-truth segmentation divided by
the length of the ground-truth boundary. We can also mea-
sure the cost as the total number of points on the bound-
ary that have been annotated so far. Since we have access
to the ground truth, we can compute these quantities auto-
matically and report performance of various techniques in
terms of ‘pixel error vs. cost’ tradeoff curves.

We consider two baselines, oracle that achieves error equal
to the ground truth boundary at cost n, where n is the
number of points in the piecewise-linear representation of
the boundary of the exact annotation, and agnostic which
achieves zero error at cost m, where m is the number of
points in the boundary of the annotation at the resolution
of the image. Typically we have m >> n. The ora-
cle is equivalent to annotator who can automatically zoom
in to the right regions and annotate boundaries based on
the complexity of the boundary, whereas agnostic simply
traces the boundary at the pixel level and provides a upper
bound on the cost. This would not be possible without a
very high resolution display. Note that the oracle does not
use bottom-up image information and the user has to trace
boundaries along high-curvature regions to obtain precise
boundaries, even though they may have high figure-ground
contrast, thereby wasting effort.

We consider three active learning strategies that try to min-
imize the pixel error. First strategy called active-certain
picks regions that provide the reduction in uncertainty, the
second picks regions that are cheapest to annotate active-
cost, and the last strategy called active-util picks regions
that provide the highest reduction in uncertainty per unit
cost (Equation (1)).

For each image, typically of size 105-106 pixels, we start
with an initial approximate boundary and actively suggest
regions of maximum dimensions between 50-250 pixels
for refinement. There are a very large number of possi-

1downloaded from http://airliners.net

ble regions in the image to consider, so we approximate the
scheme by randomly sampling 10 non-overlapping regions
from the image and pick the best one (depending on the
criteria) at each time step. For speed we update the unary
potentials only when there is a significant change in the
number of pixels that have changed their labels.

5.2 Active annotation results

Fig. 5(a) shows the results of active annotation for vari-
ous methods averaged over the images dataset. From the
figure we can see that the active learning strategies active-
util/certain outperform the active-cost. Fig. 4 shows the
regions sampled by different active learning strategies on
several images.The strategy based on cost focusses on the
linear segments as they are inexpensive to annotate but may
not be uncertain to benefit from refinement. On the other
hand, methods based on the certainty and utility refines re-
gions with high errors and achieve faster error reduction.

The active learning strategies outperform the oracle for ob-
taining pixel-accurate boundary, i.e., pixel error = 1, show-
ing the advantage of using bottom-up image cues. The ac-
tive learning strategies based on utility and certainty require
about 50 points on average compared to the oracle that
requires 75 points (Fig. 5(a)). Moreover, the active strat-
egy makes for an intuitive annotation tool as as it automat-
ically suggests regions to refine instead of the user having
to manually zoom in. A preliminary user study suggests
that this can save up to 4× in annotation time. Moreover,
non-overlapping regions can be refined in parallel making
it more suitable for crowdsourcing.

How well do the predicted uncertainty and cost match
the truth? Fig. 5(c)-(d) show scatterplots of the expected
and actual costs, as well as those for errors. The error is
predicted quite well, but the cost of annotation is typically
over-estimated. This is because MAP estimation tends to
produce segmentations with jagged edges. Better cost esti-
mates may be obtained by conducting user studies.

Does multi-scale annotation help? Our active learning
strategy considers regions across multiple scales, adap-
tively zooming in on regions based on the uncertainty and
cost tradeoff they offer. As a comparison we also compute
results by restricting the sizes of the selected to a smaller
range of a maximum width of 75-125 pixels, compared to
50-250 pixels. Fig. 5(b) shows that the multi-scale strategy
can provides a saving of about 20% in cost.

6 Conclusion and future work
High quality training data sets are important to develop
novel approaches that can solve challenging tasks. Un-
fortunately, attaining high quality annotations for complex
models is an expensive and time consuming task as it in-

http://airliners.net
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Figure 5: (a) Error vs. cost tradeoffs for various annotation methods. Using active learning we are able to annotate the
boundaries within an avg. error of 1 pixel at about 66% of the cost required for annotating using the oracle. (b) Effect of
multi-scale. Multi-scale selection of regions provide a saving of about 20% in cost over single-scale regions. (c,d) Quality
of error and cost estimation. Scatter plot of predicted and true error (c), and same for the cost (d).

volves an expert annotator to process each instance. In this
work we use Bayesian active learning to suggest simpler
annotation tasks sequentially in order to reduce the cost and
show its application for precise boundary labeling.

To avoid the expensive MCMC sampling techniques we
propose a new uncertainty measure that is based on MAP
perturbations: by randomly perturbing the boundary of de-
cision, the algorithm is able to estimate its uncertainty. This
results in a novel upper bound for the entropy, which is
different than the standard entropy bounds that are defined
over marginal probabilities. Since entropy has influenced
research in many fields, this entropy bound might be of in-
dependent research beyond the scope of active learning.

Our approach uses MAP solver as a building block to com-
pute uncertainty, thus we are able to apply Bayesian active
learning in order to achieve high-quality boundary annota-
tions of images. We show that our approach significantly
reduce the cost and the run-time of expert annotators. The
results here can be taken in several different directions.
Theoretically, it would be interesting to provide MAP per-
turbations entropy bounds with higher dimensional pertur-
bations. These bounds might compensate overlapping per-
turbations by their covering number, e.g., [17].

Finally, our approach of Bayesian active learning is appli-
cable whenever MAP perturbation can be solved efficiently.
We aim to explore problems beyond super-modular poten-
tial functions in the context of active learning. For example
reasoning over matchings using our MAP perturbations to
annotate machine translation data sets faster.
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