Tutorial on variational approximation methods

Tommi S. Jaakkola MIT AI Lab
tommi@ai.mit.edu

Tutorial topics

- A bit of history
- Examples of variational methods
- A brief intro to graphical models
- Variational mean field theory
- Accuracy of variational mean field
- Structured mean field theory
- Variational methods in Bayesian estimation
- Convex duality and variational factorization methods
- Example: variational inference and the QMR-DT

Variational methods

- Classical setting: "finding the extremum of an integral involving a function and its derivatives"

Example: finding the trajectory of a particle under external field

- The key idea here is that the problem of interest is formulated as an optimization problem

Variational methods cont'd

- Variational methods have a long history in physics, statistics, control theory as well as economics.
- calculus of variations (physics)
- linear/non-linear moments problems (statistics)
- dynamic programming (control theory)
- Variational formulations appear naturally also in machine learning contexts:
- regularization theory
- maximum entropy estimation
- Recently variational methods been used and further developed in the context of approximate inference and estimation

Examples of variational methods

- In classical examples the formulation itself is given but for us this is one of the key problems
- We provide here a few examples that highlight

1. how to cast problems as optimization problems
2. how to find an approximate solution when the exact solution is not feasible

- The examples we use involve
a) finite element methods for solving differential equations
b) Iarge deviation methods (Chernoff bound)

Linear regression example

- n examples $\left\{\left(\mathrm{x}_{1}, y_{1}\right), \ldots,\left(\mathrm{x}_{n}, y_{n}\right)\right\}$

Find the parameter vector w that minimizes the squared error

$$
\min \sum_{t=1}^{n}\left(y_{t}-\mathbf{w}^{T} \mathbf{x}_{t}\right)^{2} \Rightarrow \mathbf{w}^{*}=\left(\sum_{t=1}^{n} \mathbf{x}_{t} \mathbf{x}_{t}^{T}\right)^{-1}\left(\sum_{t=1}^{n} \mathbf{x}_{i} y_{i}\right)
$$

Optimization problem desired solution

- We wish to find a (variational) optimization problem given the solution

Example: finite element method

- Consider the following simple 1-D Laplace (or Poisson) differential equation

$$
-u^{\prime \prime}(x)=f(x), \quad x \in(a, b)
$$

with homogeneous boundary conditions $u(a)=u(b)=0$.

- If $u^{*}(x)$ denotes the solution, we can recover it by minimizing the following "silly" functional

$$
J_{\text {silly }}(u)=\int_{a}^{b}\left(u^{* \prime}(x)-u^{\prime}(x)\right)^{2} d x
$$

subject to the boundary conditions.

Finite element method cont'd

- The "silly" functional is useful since we can evaluate the relevant part of it

$$
\begin{aligned}
J_{\text {silly }}(u) & =\int_{a}^{b}\left(u^{* \prime}(x)-u^{\prime}(x)\right)^{2} d x \\
& \ldots \\
& =\text { const. }+\underbrace{\int_{a}^{b} u^{\prime}(x)^{2} d x-2 \int_{a}^{b} u(x) f(x) d x}_{J(u)}
\end{aligned}
$$

where $J(u)$ only depends on $u(x)$ and the constant is defined in terms of the unknown solution $u^{*}(x)$.

- We typically cannot find the solution exactly but $J(u)$ still permits us to evaluate and rank approximate solutions

Finite element method cont'd

- To find an approximate solution, we specify a set of basis functions $\left\{\phi_{1}(x), \ldots, \phi_{n}(x)\right\}$ consistent with the boundary conditions and find the "best" solution of the form

$$
u(x)=c_{1} \phi_{1}(x)+\cdots+c_{n} \phi_{n}(x)
$$

- Substituting this tentative solution back into our (quadratic) objective $J(u)$ gives a quadratic objective for the coefficients

$$
J(c)=\sum_{i j} c_{i} c_{j} \underbrace{\left[\int_{a}^{b} \phi_{i}^{\prime}(x) \phi_{j}^{\prime}(x) d x\right]}_{A_{i j}}-2 \sum_{i} c_{i} \underbrace{\left[\int_{a}^{b} \phi_{i}(x) f(x) d x\right]}_{r_{i}}
$$

- Minimizing with respect to the coefficients c finally leads to the following "fixed point equations" chracterizing the best approximate solution:

$$
A c=r
$$

Summary of the example

- The key steps were:

1. We defined a natural objective with reference to the optimal solution
2. We identified the relevant portion of this objective so that it could be evaluated without reference to the unknown solution
3. The resulting objective permitted us to search for the best approximate solution within a parametric family
4. The best approximate solution were characterized by a set of fixed point equations

Large deviation example

- Let x_{1}, \ldots, x_{n} be a set of zero mean i.i.d. random variables distributed according to a known distribution P.
- In large deviation theory, we are interested in evaluating the probability that the sum $x_{1}+\ldots+x_{n}$ deviates substantially from its mean

$$
\operatorname{Prob}\left(\sum_{i} x_{i} \geq n \epsilon\right)=E\{\underbrace{\operatorname{step}\left(\sum_{i} x_{i}-n \epsilon\right)}_{\text {event indicator }}\}
$$

where $\operatorname{step}(z)=1$ for $z \geq 0$ and zero otherwise.

Large deviation example cont'd

$$
\operatorname{Prob}\left(\sum_{i} x_{i} \geq n \epsilon\right)=E\{\underbrace{\operatorname{step}\left(\sum_{i} x_{i}-n \epsilon\right)}_{\text {event indicator }}\}
$$

- To actually evaluate this probability, we make use of the following transformation

$$
\operatorname{step}(z)=\min _{\xi \geq 0} e^{\xi z}
$$

Large deviation example cont'd

$$
\begin{aligned}
\operatorname{Prob}\left(\sum_{i} x_{i} \geq n \epsilon\right) & =E\left\{\operatorname{step}\left(\sum_{i} x_{i}-n \epsilon\right)\right\} \\
& =E\left\{\min _{\xi} e^{\xi\left(\sum_{i} x_{i}-n \epsilon\right)}\right\} \quad \text { (introduce the transform) } \\
& \leq \min _{\xi} E\left\{e^{\xi\left(\sum_{i} x_{i}-n \epsilon\right)}\right\} \quad \text { (exchange the operations) }
\end{aligned}
$$

where we can finally evaluate the expectation since the argument factors across the independent variables

- "min" and " $E\{\cdot\}$ " do not commute and thus we get an upper bound.

Summary of the example

1. Even simple functions (such as the step function) can be cast as optimization problems
2. We can simplify computations by exchanging non-commutative operations ("min" and " $E\{\cdot\}$ ") and obtain a bound on the quantity of interest
3. The resulting bound can be optimized for accuracy

Note: we could have cast the large deviation example in a form similar to the previous example but this would have required a bit longer explanation...

Probabilistic inference

- Let $P\left(x_{1}, \ldots, x_{n}\right)$ be the distribution of interest over n variables We divide the set of variables into

1. "visible" variables x_{v} whose marginal distribution $P\left(x_{v}\right)$ we are interested in computing
2. "hidden" variables x_{h} whose posterior distribution $P\left(x_{h} \mid x_{v}\right)$ we want

Evaluating the marginal or posterior involves summing over all configurations of the hidden variables x_{h}

$$
P\left(x_{v}\right)=\sum_{x_{h}} P\left(x_{h}, x_{v}\right)
$$

- The complexity of this operation depends on the structure or factorization of the joint distribution P
- We try to capture the factorization explicitly in terms of graphs

Graph models: examples

- Bayesian networks:

The joint distribution factors according to nodes given their "parents" in the graph

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{4}\right) & =P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}\right) P\left(x_{4} \mid x_{2}, x_{3}\right) \\
& =\phi_{1}\left(x_{1}\right) \psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \psi_{234}\left(x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

- Normalization is local, i.e., each component in the product is properly normalized

Graph models: examples

- Markov random fields (undirected graph models):

The joint distribution factors across the "cliques" in the graph $P\left(x_{1}, \ldots, x_{4}\right)=\frac{1}{Z} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{34}\left(x_{3}, x_{4}\right)$

- Normalization is global

Graph models: complexity

- The complexity of exact inference in the graph model depends on the clique sizes of the triangulated graph

$$
P\left(x_{1}, \ldots, x_{4}\right)=\psi_{123}\left(x_{1}, x_{2}, x_{3}\right) \psi_{234}\left(x_{2}, x_{3}, x_{4}\right)
$$

(the clique size here is three)

Specific examples

HMMs and coupled HMMs

The clique size here is 2 and the graph is already triangulated

The clique size is 2 ; three after triangulation

- the shaded nodes denote "visible" variables
- the unshaded nodes are "hidden" variables

Exact methods for inference

- Forward-backward (chains)
- Belief propagation (trees)
- Junction tree algorithm (clique trees)

All the technigues heavily exploit the graph structure BUT...

Example: medical diagnosis

- The QMR database (Middleton et al.)

Findings

- Probabilistic inference is in general NP-hard
- Even approximate inference is in general NP-hard

Approximate methods

- Belief propagation (even for graphs with cycles)
- Search algorithms
- Sampling methods
- Variational methods

Our focus is on variational methods...

Approximate methods and graph structure

- Approximate inference relies on additional factorization or structure in the probability model

1. small clique size in the original, not triangulated graph (e.g., in coupled HMMs)
2. parametric conditional probabilities as in the noisy-OR model

$$
\begin{aligned}
& P\left(x_{4}=0 \mid x_{2}, x_{3}\right)=e^{-\left(\theta_{0}+\theta_{1} x_{2}+\theta_{2} x_{3}\right)} \\
& P\left(x_{4}=1 \mid x_{2}, x_{3}\right)=1-e^{-\left(\theta_{0}+\theta_{1} x_{2}+\theta_{2} x_{3}\right)}
\end{aligned}
$$

(written here in an exponentiated form)

- There's little one can do (in general) if the model has large (unstructured) probability tables associated with the cliques

Probabilistic inference problem again

- $P\left(x_{1}, \ldots, x_{n}\right)$ is the distribution of interest and the variables are divided into sets of

1. "visible" variables x_{v} whose marginal distribution $P\left(x_{v}\right)$ we are interested evaluating and
2. "hidden" variables x_{h} whose posterior distribution $P\left(x_{h} \mid x_{v}\right)$ we want

Evaluating the marginal or posterior involves summing over all configurations of the hidden variables x_{h}

$$
P\left(x_{v}\right)=\sum_{x_{h}} P\left(x_{h}, x_{v}\right)
$$

- To find a variational solution we need to cast these computations as optimization problems

Variational probabilistic inference

- We start with a "silly" objective function:

$$
J(Q)=-K L\left(Q_{x_{h}} \| P_{x_{h} \mid x_{v}}\right)+\log P\left(x_{v}\right)
$$

where Q is a variational distribution over the hidden variables x_{h}.

1) If $Q\left(x_{h}\right)=P\left(x_{h} \mid x_{v}\right)$, the posterior probability over the hidden variables x_{h}, we recover the desired log-marginal $\log P\left(x_{v}\right)$.
2) $\log P\left(x_{v}\right) \geq J(Q)$ for all Q, i.e., the objective function is a lower bound on the desired quantity.
3) The slack in the bound is given by the KL-divergence between Q and the true posterior.

Variational probabilistic inference cont'd

- This objective function can be rewritten without reference to the posterior or the marginal

$$
\begin{aligned}
J(Q) & =-K L\left(Q_{x_{h}} \| P_{x_{h} \mid x_{v}}\right)+\log P\left(x_{v}\right) \\
& =\sum_{x_{h}} Q\left(x_{h}\right) \log P\left(x_{h}, x_{v}\right)+H(Q)
\end{aligned}
$$

where $H(Q)$ is the (Shannon) entropy of Q.

- Taking the logarithm of the joint distribution is attractive because of the factorization

$$
\log P\left(x_{h}, x_{v}\right)=\log \prod_{c \in C} \psi_{c}\left(x_{c}\right)=\sum_{c \in C} \log \psi_{c}\left(x_{c}\right)
$$

Variational mean field method

- The variational formulation is exact and thus not (yet) manageable
- We can, however, restrict the maximization of

$$
J(Q)=\sum_{x_{h}} Q\left(x_{h}\right) \log P\left(x_{h}, x_{v}\right)+H(Q)
$$

to some manageable class of distributions Q (cf. finite element methods)

- The simplest choice is the class of completely factored or mean field distributions

$$
Q\left(x_{h}\right)=\prod_{i \in h} Q_{i}\left(x_{i}\right)
$$

Variational mean field method cont'd

- We want to approximate a complicated graph model with a simple factored model

- The measure of distance between the two models is the KLdivergence

$$
K L\left(Q_{x_{h}} \| P_{x_{h} \mid x_{v}}\right)
$$

Variational mean field method: updates

- How do we optimize the simple variational distribution?
- We derive mean field equations (updates) by maximizing

$$
J(Q)=\sum_{x_{h}} Q\left(x_{h}\right) \log P\left(x_{h}, x_{v}\right)+H(Q)
$$

with respect to each of the marginals $Q_{i}\left(x_{i}\right)$ in

$$
Q\left(x_{h}\right)=\prod_{i \in h} Q_{i}\left(x_{i}\right)
$$

while keeping the remaining marginals fixed.

Variational mean field updates cont'd

Simple model
$\mathrm{Q}\left(\mathrm{x}_{1}\right) \quad \mathrm{Q}\left(\mathrm{x}_{2}\right)$

factored approximation

- The updates are made "locally" by geometrically averaging the ignored dependencies with respect to the other component distributions

$$
Q_{1}\left(x_{1}\right) \leftarrow \frac{1}{Z_{1}} \times \exp \left(\sum_{x_{2}} Q_{2}\left(x_{2}\right) \log P\left(x_{1}, x_{2}\right)\right)
$$

where Z_{1} normalizes the right hand side across x_{1}.
In other words, each x_{i} only sees the "mean effect" of the dependencies

- These update equations are the "fixed point equations"

Variational mean field updates cont'd

- Example: coupled HMMs

$$
\begin{aligned}
Q_{i}\left(x_{i}\right) \leftarrow & \frac{1}{Z_{i}} \times \overbrace{\psi_{i v}\left(x_{i}, x_{v i}^{*}\right)}^{\text {evidence at }} i \times \overbrace{\exp \left(\sum_{x_{j}} Q_{j}\left(x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)\right)}^{\text {within chain dependencies }} \\
& \times \underbrace{\exp \left(\sum_{x_{k}} Q_{k}\left(x_{k}\right) \log \phi_{i k}\left(x_{i}, x_{k}\right)\right)}_{\text {between chains dependencies }}
\end{aligned}
$$

Accuracy of variational mean field

- General thoughts:
- weak dependence (near independence) \Rightarrow good accuracy
- accurate even for large systems with weak interactions (Iaw of large numbers)
- strong dependencies \Rightarrow poor approximation
- We'll analyze the accuracy a bit in the context of the following simple example

(no visible nodes)

Simple example

factored approximation

- Since there are no visible variables the log-marginal we are trying to approximate is

$$
\log \sum_{\mathrm{x}_{h}} P\left(x_{1}, x_{2}\right)=\log \sum_{x_{1}, x_{2}} P\left(x_{1}, x_{2}\right)=\log 1=0
$$

- The variational mean field approximation does not achieve this value, however, but rather

$$
J(Q)=-K L\left(Q_{x_{1}, x_{2}} \| P_{x_{1}, x_{2}}\right)+0
$$

unless the factored approximation

$$
Q\left(x_{1}, x_{2}\right)=Q_{1}\left(x_{1}\right) Q_{2}\left(x_{2}\right)
$$

equals $P\left(x_{1}, x_{2}\right)$

Simple example cont'd

factored approximation

- There are two notions of accuracy:

1. How close the lower bound $J(Q)$ is to zero (or more generally to the log-marginal $\log P\left(x_{v}\right)$)
2. How close $Q_{1}\left(x_{1}\right)$ and $Q_{2}\left(x_{2}\right)$ are to the true marginals $P_{1}\left(x_{1}\right)$ and $P_{2}\left(x_{2}\right)$

- The two notions of accuracy need not be strongly correlated (and indeed they are not)

Simple example cont'd

- We introduce a single parameter p that characterizes the dependence between x_{1} and x_{2} in a simple symmetric model:

$$
\begin{array}{|l|l|}
\hline P(0,0)=(1-p) / 2 & P(0,1)=p / 2 \\
\hline P(1,0)=p / 2 & P(1,1)=(1-p) / 2 \\
\hline
\end{array}
$$

Note that the marginals $P_{1}\left(x_{1}\right)$ and $P_{2}\left(x_{2}\right)$ are uniform (equal to 0.5) regardless of the value of p.

- We might expect that increasing $p \geq 0.5$ gradually degrades the accuracy of the variational approximation

Simple example: results

- The variational marginals undergo spontaneous symmetry breaking as the dependence increases.
- The rate at which the lower bound $J(Q)$ deteriorates slows down when the symmetry is broken

Simple example: results without symmetry

- The phase transition disappears when the problem is no longer exactly symmetrical (e.g., $P_{1}\left(x_{1}=1\right)>0.5$)
- The variational marginals still deteriorate rapidly after some critical point p^{*}

Summary of the simple example

- What can we conclude?
- The variational marginals remain accurate when the dependencies are relatively weak
- Larger models offer more opportunities for degradation (symmetries, frustration, explaining away etc.)
- The variational lower bound can remain fairly accurate even in larger systems
- We should be able improve both forms of accuracy if we dispense with the completely factored (mean field) assumption

Structured mean field approach

- In a structured mean field approach, we want to approximate a complicated graph model with a tractable graph model

- The measure of distance between the two models is the KLdivergence as before

$$
K L\left(Q_{x_{h}} \| P_{x_{h} \mid x_{v}}\right)
$$

Structured mean field approach cont'd

- We can restrict the maximization of

$$
J(Q)=\sum_{x_{h}} Q\left(x_{h}\right) \log P\left(x_{h}, x_{v}\right)+H(Q)
$$

to any manageable class of distributions Q.

- In a structured approximation, we partition the hidden variables x_{h} into disjoint sets of variables $x_{h_{1}}, \ldots, x_{h_{m}}$
- The variational distribution now factors across these sets but no constraints are imposed within the sets

$$
Q\left(x_{h}\right)=\prod_{i=1}^{m} Q_{h_{i}}\left(x_{h_{i}}\right)
$$

As a result we incorporate any interactions within each partition exactly while performing a mean field approximation across the partitions

Structured mean field method

- Simple example (all hidden variables):

Original graph

structured approximation

$$
\begin{aligned}
& P(x)=\frac{1}{Z} \psi_{12}\left(x_{1}, x_{2}\right) \psi_{23}\left(x_{1}, x_{3}\right) \psi_{34}\left(x_{3}, x_{4}\right) \psi_{42}\left(x_{4}, x_{2}\right) \\
& Q(x)=Q_{12}\left(x_{1}, x_{2}\right) Q_{34}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

Example cont'd

- Simple example (only hidden variables):

Original graph

structured approximation

$$
\begin{aligned}
Q_{12}\left(x_{1}, x_{2}\right) \leftarrow \frac{1}{Z_{12}} \overbrace{\psi_{12}\left(x_{1}, x_{2}\right)}^{\text {exact potential }} & \times \overbrace{\exp \left(\sum_{x_{3}} Q_{34}\left(x_{3}\right) \log \psi_{13}\left(x_{1}, x_{3}\right)\right)}^{\text {mean 1-3 dependence }} \\
& \times \underbrace{\exp \left(\sum_{x_{4}} Q_{34}\left(x_{4}\right) \log \psi_{42}\left(x_{4}, x_{2}\right)\right)}_{\text {mean } 2-4 \text { dependence }}
\end{aligned}
$$

Example: coupled HMMs

- Factored approximation across chains: $Q\left(x_{h}\right)=Q_{h_{1}}\left(x_{h_{1}}\right) Q_{h_{2}}\left(x_{h_{2}}\right)$

$$
\begin{aligned}
Q_{h_{1}}\left(x_{h_{1}}\right) \leftarrow \frac{1}{Z_{h_{1}}} & \times(\text { first HMM model }) \\
& \times \underbrace{\prod_{i} \exp \left(\sum_{x_{k}} Q_{h_{2}}\left(x_{k}\right) \log \phi_{i k}\left(x_{i}, x_{k}\right)\right)}
\end{aligned}
$$

mean dependencies between the chains

Coupled HMMs

Structured approximation

Extensions

1. The components need not be disjoint (e.g., spanning trees)
2. We can use directed graph models as variational approximating distributions
3. etc.

- These extensions require additional search for the structure of the approximating distribution (difficult)

Bayesian estimation

- Bayesian estimation is inference
- In principle, the variational methods we have discussed so far should be applicable to such inference problems
- We distinguish here two cases of Bayesian estimation

1. no hidden variables
2. with hidden variables

- The case with hidden variables is often considerably more involved (the posterior has multiple modes)

Bayesian estimation without hidden variables

- The mean field/structured mean field approach does not directly help us here since there's no additional (explicit) factorization of θ
- We could, alternatively, impose parametric constraints on the variational posterior distribution $Q(\theta)$ (e.g., Gaussian).
- We may also use variational methods to impose additional factorization (discussed later)

Bayesian estimation with hidden variables

- a Bayesian mixture model

$$
P(x, k, \theta)=\left[\prod_{i=1}^{n} P\left(k_{i}\right) P\left(x_{i} \mid k_{i}, \theta\right)\right] P(\theta)
$$

where we assume for simplicity that the parameters θ only influence the conditionals $P\left(x_{i} \mid k_{i}, \theta\right)$ and not the mixing proportions $P\left(k_{i}\right)$.

Bayesian mixture model cont'd

factored approximation

- Our factored approximation is

$$
Q(k, \theta)=Q(k) Q(\theta)=\left[\prod_{i=1}^{n} Q_{i}\left(k_{i}\right)\right] Q(\theta)
$$

Bayesian mixture model: updates

1. Variational posterior over mixing variables

$$
Q_{i}\left(k_{i}\right) \leftarrow \frac{1}{Z_{i}} \times P\left(k_{i}\right) \times \overbrace{\exp \left(\int Q(\theta) \log P\left(x_{i} \mid k_{i}, \theta\right) d \theta\right)}^{\text {mean } \theta-k_{i} \text { dependence }}
$$

2. Variational posterior over parameters

$$
Q(\theta) \leftarrow \frac{1}{Z} \times P(\theta) \times \prod_{i=1}^{n} \overbrace{\exp \left(\sum_{k_{i}} Q_{i}\left(k_{i}\right) \log P\left(x_{i} \mid k_{i}, \theta\right)\right)}^{\text {mean } \theta-k_{i} \text { dependence }}
$$

factored approximation

Bayesian mixture model: discussion

- Imposing any factorization of the form

$$
Q(k, \theta)=Q(k) Q(\theta)
$$

makes the solution liable to sudden deterioration of the component marginals (as in the context of the simple example presented earlier)

- This may happen if the mixing variables and the parameters are strongly dependent in the true posterior
- Since in Bayesian estimation we really want the marginals (or at least $Q(\theta)$), we need to be a bit more careful...

Additional factorization

- Success of approximate inference/estimation depends in part on additional structure in the probability model beyond what is visible in the graph (pairwise potentials, parametric conditional probabilities, etc.)
- We can rely on such additional structure to impose further factorization of the joint distribution
- Useful factorization "decouples" dependent variables as in

$$
P\left(x_{i} \mid x_{p a_{i}}\right) \approx \prod_{j \in p a_{i}} \psi_{i j}\left(x_{i}, x_{j}\right)
$$

where $x_{p a_{i}}$ denotes the "parents" of x_{i} in a Bayesian network.

- When can we impose such factorization? in a principled way?

Imposing additional factorization cont'd

Theorem (factorization theorem)
Assuming x_{i} and all its parents $x_{p a_{i}}$ are discrete variables, then we can always find a variational transform of the form

$$
P\left(x_{i} \mid x_{p a_{i}}\right)=\min _{\xi}\left\{\prod_{j \in p a_{i}} \psi_{i j}\left(x_{i}, x_{j} ; \xi\right)\right\}
$$

(analogous formulation holds for "max")

- Unfortunately the mere existence of such transforms is not sufficient; we need transforms that lead to accurate approximations and they are much harder to find

Factorization via convex duality

- Basic idea: for a concave function $f(x)$ any tangent plane serves as a bound

$$
f(x) \leq \lambda x-f^{*}(\lambda)
$$

- The bound is exact for one of the tangents

$$
f(x)=\min _{\lambda}\left\{\lambda x-f^{*}(\lambda)\right\}
$$

(the conjugate function $f^{*}(\lambda)$, also concave, can be similarly expressed in terms of $f(x)$, hence the duality)

Factorization via convex duality: example

- Factorization transform for the noise-OR model

$$
\begin{aligned}
P(f=1 \mid d, \theta) & =\left[1-e^{-\left(\theta_{1} d_{1}+\ldots+\theta_{n} d_{n}\right)}\right] \\
& =e^{\log \left[1-e^{-\left(\theta_{1} d_{1}+\ldots+\theta_{n} d_{n}\right)}\right]} \\
& \leq e^{\lambda\left(\theta_{1} d_{1}+\ldots+\theta_{n} d_{n}\right)-f^{*}(\lambda)}
\end{aligned}
$$

since $f(x)=\log \left[1-e^{-x}\right]$ is a concave (convex down) function.

- This is exactly the type of factorization we have discussed

$$
P(f=1 \mid d, \theta)=\min _{\lambda}\left\{\prod_{j=1}^{n} e^{\lambda \theta_{j} d_{j}-f^{*}(\lambda) / n}\right\}
$$

- Similar transforms can be derived for logistic and other models

The QMR belief network
 (Shwe et al. 1991)

Diseases

- Contains over 600 significant diseases and about 4000 associated findings in internal medicine.
- Embodies extensive expert (and statistical) knowledge.

QMR: Statistical assumptions

- The assumptions:
(1) The diseases are marginally independent.
(2) The findings are conditionally independent.
(3) "Causal" independence (noisy-OR)

$$
\begin{aligned}
P\left(f_{k}^{-} \mid d\right) & =e^{-\left(\theta_{k 1} d_{1}+\ldots+\theta_{k n} d_{n}\right)} \\
P\left(f_{k}^{+} \mid d\right) & =1-e^{-\left(\theta_{k 1} d_{1}+\ldots+\theta_{k n} d_{n}\right)}
\end{aligned}
$$

Diagnostic inference

- The inference problem:

Compute the posterior probabilities for the diseases given the instantiated findings.
the order in which the evidence is absorbed from the findings is immaterial.

Evidence from positive findings

Findings

$$
\begin{aligned}
P\left(d \mid f_{k}^{+}\right) & =c P\left(f_{k}^{+} \mid d\right) P(d) \\
& =c\left[1-e^{-\left(\theta_{k 1} d_{1}+\ldots+\theta_{k n} d_{n}\right)}\right] P(d)
\end{aligned}
$$

- Marginal independence no longer holds.
- Absorbing the evidence from positive findings is (typically) exponentially costly in the number of positive findings.

Evidence from positive findings

Diseases

Findings
Variational evidence

- We can transform the positive evidence according to

$$
\begin{aligned}
P\left(f_{k}^{+} \mid d\right) & =\left[1-e^{-\left(\theta_{k 1} d_{1}+\ldots+\theta_{k n} d_{n}\right)}\right] \\
& =e^{\log \left[1-e^{-\left(\theta_{k 1} d_{1}+\ldots+\theta_{k n} d_{n}\right)}\right]} \\
& \leq e^{\lambda\left(\theta_{k 1} d_{1}+\ldots+\theta_{k n} d_{n}\right)-f^{*}(\lambda)}
\end{aligned}
$$

since $f(x)=\log \left[1-e^{-x}\right]$ is a convex down function.

Evidence from positive findings

With every variational transformation

- we lose some accuracy
- we reduce the computation time by a factor of two.
\Rightarrow We can balance the accuracy of inference with the available computational resources

Performance on actual medical cases

12 findings treated exactly 16 findings treated exactly

bounds on log-likelihood

comparison to sampling

The QMR belief network: conclusions

- The approximation results are closed form expressions and can be analyzed for reliability.
- We may also use more sophisticated variational methods to obtain rigorous upper and lower bounds on the desired disease marginals (practical?)

Discussion

- There are a number of variational methods we did not discuss
- recursive variational algorithms
- on-line variational methods for Bayesian estimation
- variational methods for structured Bayesian estimation (with hyperparameters)
- etc.
- Current and future directions:
- smooth combination of variational methods with other methods (e.g., junction tree, sampling)
- better characterization of the accuracy of variational approximation methods
- new formulations

References

(please see the references in the associated tutorial paper)

