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ABSTRACT

Motivation: Gene expression profiling is a powerful approach to

identify genes that may be involved in a specific biological process

on a global scale. For example, gene expression profiling of mutant

animals that lack or contain an excess of certain cell types is a common

way to identify genes that are important for the development and

maintenance of given cell types. However, it is difficult for traditional

computational methods, including unsupervised and supervised

learning methods, to detect relevant genes from a large collection of

expression profiles with high sensitivity and specificity. Unsupervised

methods group similar gene expressions together while ignoring

important prior biological knowledge. Supervised methods utilize train-

ing data from prior biological knowledge to classify gene expression.

However, for many biological problems, little prior knowledge is

available, which limits the prediction performance of most supervised

methods.

Results: We present a Bayesian semi-supervised learning method,

called BGEN, that improves upon supervised and unsupervised

methods by both capturing relevant expression profiles and using

prior biological knowledge from literature and experimental validation.

Unlike currently available semi-supervised learning methods, this new

method trains a kernel classifier based on labeled and unlabeled

gene expression examples. The semi-supervised trained classifier

can then be used to efficiently classify the remaining genes in the data-

set. Moreover, we model the confidence of microarray probes and

probabilistically combine multiple probe predictions into gene predic-

tions. We apply BGEN to identify genes involved in the development

of a specific cell lineage in the C. elegans embryo, and to further

identify the tissues in which these genes are enriched. Compared to

K-means clustering and SVM classification, BGEN achieves higher

sensitivity and specificity. We confirm certain predictions by biological

experiments.

Availability: The results are available at http://www.csail.mit.edu/

~alanqi/projects/BGEN.html

Contact: hge@wi.mit.edu or gifford@mit.edu

1 INTRODUCTION

Gene expression profiling is a powerful approach to probe global

transcriptional programs underlying biological processes. However,

it is a challenge to identify candidate genes with high sensitivity and

specificity from large compendia of gene expression profiles.

For example, in order to uncover transcriptional changes relevant

to the development of certain cell types, gene expression profiles are

often compared between wild-type animals and mutants that lack or

contain an excess of the cell types (Reinke et al., 2000; Furlong
et al., 2001; Gaudet & Mango, 2002; Robertson et al., 2004; Baugh
et al., 2005). Genes that are spatially or temporally enriched can be

identified in this way and then tested to confirm their expression

patterns. In these cases, gene expression data are usually obtained

from whole animals instead of single cells, so differential expres-

sion may be partially masked.

Unsupervised clustering methods have been applied to expression

profiles to identify candidate genes (Eisen et al., 1998). Clustering

methods group together genes with similar expression profiles by

modeling the distribution of an entire dataset. However, they do not

incorporate knowledge about genes that are already known to be

differentially expressed. Consequently, genes clustered together are

coherent in terms of expression profiles, yet they may have diverse

biological functions.

Another approach to identify candidate genes is to use supervised

classification methods. These methods train a model using prior

biological knowledge of gene expression, including known regula-

tors and experimentally confirmed candidate genes, and use the

trained model for predictions on other genes. However, for many

biological processes, either only a few key regulators have been

identified, or only a few candidates are experimentally verified. Most

classification methods, including Support Vector Machines (SVMs),

use training data on known regulators and confirmed candidate

genes. Therefore, with a limited amount of training data, it is difficult

for supervised methods to achieve accurate predictions.

We propose a semi-supervised learning method that combines

the advantages of supervised classification with the benefits of

unsupervised clustering. We call this method BGEN (Bayesian�To whom correspondence should be addressed.
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GENeralization from examples). By using information from both

prior biological knowledge and the entire expression dataset, BGEN

allows us to perform accurate predictions even when we only

have scarce information about the known regulators. There have

been a large number of approaches proposed in recent years for

semi-supervised learning and the spectrum of these approaches

include random walks, spectral methods (Belkin & Niyogi, 2004;

Joachims, 2003; Zhou et al., 2004; Zhu et al., 2003), and

information-regularization (Szummer & Jaakkola, 2003). BGEN

differentiates itself from these previous semi-supervised learning

approaches in the following ways. First, it provides a principled

kernel classifier to classify new data points. Second, we offer

a computationally efficient way to choose parameters of the

method. Third, specific to microarray data, BGEN explicitly models

probe confidence and probabilistically combines predictions from

multiple probes corresponding to the same gene.

We apply BGEN to analyze development and differentiation

of a specific cell lineage in the C. elegans embryo. C. elegans is

a free-living soil nematode widely used in developmental biology.

The adult nematode contains 959 somatic cells. Embryonic cell

divisions from a fertilized egg have been traced by microscopy

and the cell division patterns are invariant (Sulston et al., 1983).
The early asymmetric divisions produce six founder cells: AB, MS,

E, C, D and P4. Each of these founder cells maintain a distinct

pace of cell divisions and produce a specific subset of tissues and

cell types. In this paper, we focus on the differentiation of the C

lineage, which mainly gives rise to epidermis and muscle cells.

Using previously published expression profiles of wild-

type and mutantC. elegans embryos (Baugh et al., 2005), we identify
genes enriched in C lineage and compare the prediction results of

BGEN to those of K-means clustering and SVM classification.

BGEN outperforms them with improved sensitivity and

specificity. We further classify the candidate C-lineage genes

from the whole genome into two sub-categories: epidermis

enriched genes and muscle enriched genes. The classification is vali-

dated by the experimental results obtained by Baugh et al. (2005). To
further validate our methodology, we experimentally test one

gene predicted to be enriched in C-lineage epidermis cells

and one gene predicted to be enriched in C-lineage muscle

cells. Our experimental results are consistent with our predictions.

2 APPROACH

Webeginwith a gene expression compendium,X¼ {x1,.., xn+m} where

xi is the feature vector extracted from the gene expression of probe i.We

also have a few (n) labeled genes and their corresponding probes, for

which XL ¼ {x1, . . . ,xn} are labeled as tL¼{t1, . . . , tn}, and many

unlabeled probes XU ¼ {xn+1, . . . , xn+m}. Each label ti is a binary

variable. For identification of C-lineage specific genes, labels 1 and

�1 correspond to C-lineage and non-C-lineage genes, respectively.

For classification among C-lineage candidate genes, labels 1 and �1

correspond to epidermis and muscle enriched genes, respectively.

Similar to traditional classification methods, we will classify a

data point xi based on a classifier w. Given w, the probability of the

label ti ¼ 1 for xi in X is

pðti j xi‚wÞ ¼ QðtiwTfðxiÞÞ ð1Þ

where Q(·) is a link function that maps a continuous unbounded

value into a value between 0 and 1, and f(·) is a basis function,

allowing nonlinear separation of data points. Equation (1) is known

as the likelihood function of the data (ti, xi). We assume that the

data labels are conditionally independent of each other given

the input and the classifier, such that p(tL jXL, w) ¼Q
i:i2{1, 2, . . . , n}Q(tiwTf(xi)). Later, we will discuss the likelihood

function in more detail.

What distinguishes BGEN from traditional classification or

clustering methods is the following: while traditional methods

uses either labeled or unlabeled information, BGEN employs

the information in both labeled and unlabeled data points. We

achieve this by both assigning a data dependent prior p(w jX),
which contains the information in unlabeled data points XU, and

using the likelihood p(tL jXL, w), which encodes labeled infor-

mation. We fuse the information in labeled and unlabeled data

points by the Bayes rule to compute the posterior distribution

p(w jX, tL).
Unlike the maximum likelihood or maximum a posteriori

approach, which are both point estimates of w for prediction, we

average our predictions for ti based on the posterior distribution

p(w jX, tL) to classify unlabeled data points. Note that when given a
new data point that is not in the training setX, we can easily classify

it based on the classifier posterior p(w jX, tL).
Moreover, in microarray datasets, a gene often corresponds to

multiple probes. Therefore, we combine probabilistic predictions

of multiple probes to classify their corresponding gene as well as to

obtain classification confidence.

In the following subsections we present the prior and the likeli-

hood distributions, describe how to compute the posterior distribu-

tions for classifier w and for label ti, and show how to combine

multiple probe predictions for gene classification, and describe

experimental approaches to confirm our predictions.

2.1 From graph regularization to prior on classifiers

The prior plays a significant role in semi-supervised learning,

especially when there is only a small amount of labeled data. In

those cases, the prior greatly influences the posterior distribution,

since the information from the data likelihood is relatively weak.

It is not an easy task to design a sensible prior on w that incor-

porates the information in the data X. So instead of finding a

good prior on w directly, we first introduce a latent vector to w,

for which it is relatively easy to assign a prior that contain the data

information. Specifically, we introduce a latent vector y ¼
[y1, . . . , yn+m]

T:

yi ¼ wTfðxiÞ

where yi can be viewed as a soft label for the data point xi and can

be converted into the hard label ti through the link function Q(·).
Setting H ¼ [f(x1), . . . ,f(xn+m)] yields

y ¼ HTw ð2Þ

If we give a prior on the label y conditional on the data X, we

can then transform the prior p(y jX) to the prior p(w jX) on the

classifier w.

Intuitively, we want the prior p(y jX) to impose a smoothness

constraint on the soft labels and to encourage similar labels between

similar data points. Inspired by graph regularization (Zhou et al.,
2004) we use similarity graphs and their transformed Laplacian to

induce priors on the soft labels y.
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To construct the prior p(y jX), we first form an undirected

similarity graph over the data points. The data points are the

nodes of the graph and the edge-weights between the nodes are

based on similarity. This similarity is usually captured using a

kernel function k(xi, xj). Examples of kernels include Gaussian

and polynomials kernels. For Gaussian kernels, k(xi, xj) ¼
exp(kxi�xjk2/s2) where the kernel width s controls the similarity

between xi and xj. Given the dataset X and a kernel, we can con-

struct an (n +m) · (n +m) kernel matrix K, where Kij ¼ k(xi, xj) for
all i, j2{1, . . . ,n+m}. Note that the kernel matrix for semi-

supervised learning involves both labeled and unlabeled data points.

This is different from SVM kernels, which are defined by labeled

data points only.

Given the similarity graph, we transform the kernel matrix K

associated with the graph into the combinatorial Laplacian or the

normalized Laplacian. Let us construct a matrix ~KK the same as the

matrix K, except that the diagonal elements of ~KK are set to zero,

and define a diagonal matrix G where Gii ¼
P

j
~KKij. The combina-

torial Laplacian D and the normalized Laplacian ~DD of the graph are

defined as

D ¼ G � ~KK ð3Þ

~DD ¼ I � G�1
2 ~KKG�1

2 ð4Þ

where I is the identity matrix. Both the Laplacians are symmetric

and positive semidefinite. For brevity, we slightly abuse the

notation by using D for both the Laplacians. The construction of

these Laplacian matrices are based on graph regularization theories.

We impose a regularizer preferring soft labeling for which the norm

yTDy is small. In a Bayesian framework, we assign a Gaussian prior

distribution on y:

pðy jXÞ / e�
1
2
yTDy / Nðy j 0‚D�1Þ ð5Þ

where N (· j 0, D�1) denotes a Gaussian probability function

with mean 0 and variance D�1. We can adjust the Laplacian mat-

rices by changing their eigen-spectrum. Here, we use the normal-

ized Laplacian matrices and add diagonal matrices with small

values to them, avoiding the matrix inversion singularity.

Given the Gaussian prior on the labels y, we construct the prior

on the classifier w as follows:

S ¼ ðHTÞ�1D�1ðHTÞ�1 ð6Þ

pðw jXÞ ¼ N ðw j 0‚SÞ ð7Þ

where (HT)�1 is the pseudo-inverse of HT. This prior p(w jX) is
consistent with the prior p(y jX) under the constraint between y and
w, i.e., y ¼ HTw. Again, we add some small positive values to

the diagonal elements of S to enhance its stability.

2.2 Modeling probe confidence by likelihood

Assuming conditional independence of the observed labels, we have

the factorized likelihood function pðtL j yÞ ¼
Qn

i¼1 QðtiwTfðxiÞÞ.
The likelihood function QðtifðxiÞTwÞ for each data point models

the probabilistic relation between the observed label ti and the input
feature vector f(xi). Gene expression datasets often contain noise,

which may lead to labeling errors. Also, the qualities of different

probes may vary. To model the probe confidence, we adopt the

following flipping-error likelihood:

QðtiwTfðxiÞÞ ¼ eið1 � stepðtiwTfðxiÞÞÞ
+ ð1 � eiÞstepðtiwTfðxiÞÞ

¼ ei + ð1 � 2eiÞstepðtiwTfðxiÞÞ
ð8Þ

where step(·) is a step function such that step(tiw
T(fxi)) ¼ 1 if

tiw
Tf(xi) >¼ 0 and step(tiw

Tf(xi)) ¼ 0 if tiw
Tf(xi) < 0, and ei

models the uncertainty from the noise. This admits labeling errors

with probability {ei}. In our dataset, we have multiple probes that

correspond to the same gene. The probe that is the closest to the

most 30 end of a gene more accurately measures the expression level

of the given gene than the other probes, because the reverse tran-

scription and amplification procedures introduce a bias against

probes that are further away from the 30 end. To model this effect,

we set

ei ¼
el if probe i is most 30

eh if probe i is not most 30

(

where el > eh. By doing so, we give non-3
0 probes a higher error rate

than 30 probes. Since this likelihood (8) explicitly models the label-

ing error rate, the model should be more robust to the presence of

labeling noise in the data.

2.3 Computing the classifier posterior

Given the prior and the likelihood, the classifier posterior is

pðw jX‚ tLÞ / pðw jXL‚ XUÞ
Yn
i¼1

QðtifðxiÞTwÞ ð9Þ

Because of the nonlinear likelihood terms, we can not compute the

exact posterior in a closed form. Instead of using computationally

expensive Monte Carlo methods, we apply an efficient deterministic

Bayesian approximation technique, expectation propagation (EP)

(Minka, 2001; Qi, 2004), to obtain a Gaussian approximation of the

posterior p(w jX, tL). By exploiting the multiplication form (9) of

the posterior, we iteratively refine the approximation of each like-

lihood term, eventually achieving an accurate approximate poster-

ior. The algorithmic details for EP approximation of Gaussian

classifiers can be found in Minka (2001).

2.4 Computing and combining probe predictions

Asmentioned before, multiple probes are used tomeasure the expres-

sion levels of the same gene in the dataset we analyze. BGEN can

classify each probe based on the classifier posterior p(w jX, tL). To
combine multiple probe predictions, we use a soft decision procedure.

Instead of simply averaging the binary probe classification results, we

compute the predictive posterior probability for each probe and

average these predictive posteriors for all corresponding probes to

obtain the prediction for each gene. Specifically, given the approxi-

mate classifier posterior p(w jX, tL)�N (w jmw,Vw), wheremw and

Vw are obtained from the EP approximation, we compute the

predictive posterior for a probe as follows:

pðti jX‚tLÞ ¼
Z

pðti jwÞpðw jX‚ tLÞdw ð10Þ

¼ ei + ð1 � 2eiÞwðzÞ ð11Þ
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where

z ¼ tifðxiÞTmwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðxiÞTVwfðxiÞ

q ð12Þ

and w(·) is the cumulative distribution function of a Gaussian

with mean 0 and variance 1. Equation (12) shows that the predictive

posterior is controlled not only by the posterior mean mw of the

classifier, but also by the uncertainty, the varianceVw for the trained

classifier. We average the predictive posteriors of the probes

corresponding to the same gene k to obtain a gene predictive

probability p(genek jX, tL). Note that non-30 probes contribute

less to the gene prediction, since with a larger ei their predictive

posteriors are less informative than the predictive posteriors of

30 probes.

2.5 Automatic hyperparameter tuning

BGEN has a few hyperparameters, including kernel width s and

probe confidence levels el and eh. To achieve a good test perfor-

mance, we need to tune these hyperparameters. Here we adopt

an automatic procedure to estimate them in a principled way. As

a side-product of EP for our Bayesian learning, we estimate the

approximate-leave-one-out error count or probability without car-

rying out leave-one-out cross-validation. The details can be found in

Qi et al. (2004). We use the approximate leave-one-out error proba-

bility to estimate these hyperparameters.

2.6 Experimental validation of gene expression

patterns

We examine gene expression patterns by using a reporter assay.

We fuse selected gene promoters to yellow fluorescence protein

(YFP) and a dominant rol-6 gene by PCR (Hobert, 2002). 50

genomic sequences up to the next upstream gene are used as pro-

moters. YFP is amplified from pPD132.112 (Fire et al., 1990). The
rol-6 gene, a co-transformation marker, is amplified from pRF4

(Mello et al., 1991). Transgenic lines are obtained by injection

of the reporter constructs. Chromosomal integration is performed

by gamma irradiation. Using fluorescence microscopes we observe

expression patterns of reporter genes in embryos from integrated

transgenic lines.

3 RESULTS

This section describes the expression profile dataset used for

our task, presents our prediction results for genes enriched in the

C lineage, and compare the prediction accuracy of BGENs with

those of K-means and SVMs. Finally, we confirm some predictions

with biological experiments.

3.1 Summary of expression dataset

Baugh et al. (2005) profiled global gene expression for wild-type

C. elegans embryos and two types of mutant embryos at 0, 23, 41,

53, 66, 83, 101, 122, 143, and 186 minutes after 4-cell stage.

Embryos of the pie-1;pal-1 (RNAi) genotype lack C-lineage

cells, while embryos of the mex-3;skn-1 (RNAi) genotype bear

excess C-lineage cells (Figure 1).

Expression patterns of selected reporter genes in C. elegans
embryos reflected whether these candidates were specific to the

C lineage, and the confirmed candidates could be further classified

as epidermis or muscle enriched (Baugh et al., 2005). Among the

40 candidates tested, 25 were confirmed to be C-lineage enriched. A

non-specific gene list comes from an RNAi screen that identified

661 genes required for the first two cell divisions of the C. elegans
embryo (Sonnichsen et al., 2005). The first two cell divisions

occur well before the development of C lineage and these genes

are believed to encode proteins for the basic mitotic machinery.

Therefore, these genes are likely not to be specific to any lineage

development.

3.2 Semi-supervised learning and comparison with

K-means clustering and SVM classification

We use experimentally confirmed C-lineage genes reported by

Baugh et al. (2005) as labeled positive examples, and use the

non-specific genes required for early cell divisions as labeled

negative examples.

For each gene, we calculate the difference of its expression

levels in mex-3;skn-1 (RNAi) embryos and pie-1;pal-1 (RNAi)

embryos at each time point, and use the ratios of this difference

over the expression level in wild-type embryos as extracted features

for clustering and classification. The maximum value of the ratios

during development is also used as an extracted feature.

Fig. 1. Use ofwild-type andmutant embryos to identify genes enriched inC lineage (adapted fromBaugh et al. (2005)). Cell lineages are illustrated forwild-type

embryos (middle), embryos of pie-1;pal-1 (RNAi) genotype (left), and embryos ofmex-3;skn-1 (RNAi) genotype (right). C and EMS lineages are shown in red

and purple, respectively.
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We compare BGEN with K-means clustering and SVM classi-

fication. First, we perform K-means clustering, which does not

use the labeled information at all. The performance of K-means

depends on the number of clusters which is unknown a priori. We

use Silhouette scores to determine the optimal number of clusters

(Kaufman & Rousseeuw, 1990). The Silhouette scores measure

the tightness of a cluster and the separation of the given cluster

from other clusters. More specifically, the Silhouette scores show

how close a data point in one cluster is to data points in the

neighboring clusters. The score ranges from +1, indicating that

data points in one cluster are close to one another and are distant

from data points in neighboring clusters, to �1, indicating the

opposite. We compute the average Silhouette scores for all

genes in the dataset. K-means with 2 clusters has the highest

average score 0.8481. This score suggests that the two clusters

obtained by K-means are coherent among themselves and

well-separated from each other. To evaluate the capability of

K-means to detect C-lineage genes, we designate a cluster to

be C-lineage cluster if the ratio of labeled C-lineage genes to

all genes in that cluster exceeds a specified threshold between

0 and 1; otherwise we designate it as a non C-lineage cluster.

Genes in a C-lineage cluster are predicted to be C-lineage

genes, and vice versa. We vary the threshold value and average

the detection results over 200 runs with random initializations. The

Receiver Operating Characteristic (ROC) curve from the averaged

detection results is shown in Figure 2. K-means clustering

performs poorly in terms of detecting C-lineage genes, though

the clustering achieves a high average Silhouette score. The under-

lying reason may come from the fact that K-means clustering

ignores any prior biological knowledge and purely depends on

the expression dataset, and that C-lineage expression profiles

are diverse.

For BGEN and SVM, we use experimentally confirmed C-lineage

genes reported by Baugh et al. (2005), excluding genes used as

positive training data, to evaluate the sensitivity. We use the non-

specific genes required for early cell divisions, excluding genes used

as negative training data, to assess the specificity.

For SVM training, we construct a pool of representative positive

labels: pal-1, vab-7, cwn-1, elt-1, elt-3, mab-21, hnd-1 and hlh-1.
Each time 4 genes are randomly selected from this pool and serve as

positive training examples. We randomly select 20 genes as nega-

tive training examples from the non-specific genes. We test the

SVM prediction performance on the rest of the labeled data points.

For BGEN, we use the same labeled examples, as well as about

900 unlabeled examples for training. We repeat this training and

prediction procedure 10 times. We use Gaussian kernels for both

SVM and BGEN. The regularization and kernel widths of SVM are

tuned by leave-one-out cross-validations. For BGEN, both the

kernel width and probe confidence levels are tuned based on the

approximate leave -one-out error probability without actually car-

rying out leave-one-out cross -validations, as described in section

2.5. Based on the averaged prediction results, we plot ROC curves

for BGEN and SVM (Figure 2). Overall BGEN performs sig-

nificantly better than SVM. For example, with the same 80%

specificity (i.e.,20% false positive rate), BGEN achieves 99%

sensitivity (i.e., true positive rate), while SVM achieves only

82% sensitivity. Moreover, BGEN clearly outperforms K-means

clustering in terms of detecting C-lineage genes as shown in

Figure 2.

3.3 Whole genome prediction of C-lineage genes

Having tested the efficacy of BGEN, we predict C-lineage genes

in the whole genome. We use 20 negative examples and all positive

examples except for pal-1, because pa1-1 is a maternally-supplied

regulator while we are interested in identifying genes which are

active in zygotic transcription during development. With 97%

specificity evaluted by the non-specific gene set, we predicted

317 genes as enriched in C lineage, in addition to the previously

confirmed C-lineage genes.

Our whole genome prediction is highly efficient in the sense that

we use a kernel classifier pre-trained in a semi-supervised fashion

to classify whole genome. This is different from many previous

semi-supervised learning methods (Joachims, 2003; Zhou et al.,
2004; Zhu et al., 2003), where either a re-training or a simple

nearest-neighbor classifier is needed to classify new data points

in addition to the training set.

BGEN may reduce potential false-positives from the original

analysis. For example, F45E4.9(hmg-5), a HMG-box containing

protein, which was previously predicted to be enriched in C lineage

while our method classifies it as a non-C- lineage gene with a

probabilistic confidence of 0.10. The experimental result showed

that the expression pattern of F45E4.9 is not specific to the C

lineage. This is also consistent with other reports in the literature

that F45E4.9 is ubiquitously expressed inC. elegans embryos (Im &

Lee, 2003). Another example is Y71F9AL.17, an uncharacterized

gene that may be involved in intracellular trafficking and vesicular

transport. Y71F9AL.17 was previously identified as a C-lineage

candidate gene. In our analysis this gene receives a probabilistic

confidence of 0.46 and is classified as non-C-lineage (Figure 3). The

result of biological experiment was consistent with our prediction.

To visualize our predictions, we plot representative expression

profiles for C-lineage genes and non-C-ineage genes with high pre-

diction confidence (Figure 3). D1005.2 and F54D7.4 (the first

column), two high-confidence C-lineage genes, are up- regulated
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Fig. 2. Receiver OperatingCharacteristic (ROC) curves of BGEN, SVM, and

K-means. Our semi-supervised learning method BGEN outperforms both

SVM and K-means.
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in mex-3; skn-1 (RNAi) embryos during development. F52E4.7 and

F36A2.6 (the second column), two high-confidence non-C-lineage

genes, do not exhibit such up-regulation of expression. The two

examples of false-positives (F45E4.9 and Y71F9AL.17) by the pre-

vious analysis are also plotted. These two genes are prone to mis-

prediction since they are up-regulated in mex-3; skn-1 (RNAi)

embryos. These examples illustrate the capability of BGEN to

distinguish C-lineage genes from non-C-lineage genes even in

some subtle cases.

3.4 Predictions of C epidermis and C muscle genes

During embryonic development, C-lineage cells differentiate

into epidermis and muscle cells. Epidermis and muscle enriched

genes are likely to exhibit slightly different expression profiles in

wild-type and mutant embryos. Given our whole genome predic-

tions of C-lineage genes, we apply BGEN to further distinguish the

C- lineage genes as epidermis or muscle enriched. Baugh et al.
(2005) showed by reporter assay that among the confirmed

C-lineage genes, 15 were specifically expressed in epidermis

cells and 4 were specifically expressed in muscle cells. We use

this information to train and evaluate K-means, SVM, and

BGEN. In addition to the normalized features used in 3.3,

2-level Daubechies wavelet decomposition of the difference

features that explicitly represents the temporal and frequency

information in the data is also computed as features.

Similar to what we have done before, we use the Silhouette

scores to determine the number of clusters for K-means. For

SVM and BGEN, we randomly select 6 epidermis and 2 muscle-

genes and use them as training data. We use the rest of

experimentally confirmed genes as the test set, which includes

9 epidermis genes and 2 muscle genes for each run. We repeat

this procedure 5 times.

We evaluate the average area under the ROC curves for these three

methods. For K-means, we compute the ROC curve using the same

method as in the previous section. The average area under the ROC

curve of BGEN is 0.80, indicating its prediction potential. The aver-

age areas achieved by K-means and SVM are only 0.56 and 0.50

respectively, indicating the failure of the K-means and SVM predic-

tions. This further demonstrates the advantage of our semi- super-

vised learning method. For the run in which BGEN achieves the

largest area under the ROC curve, we correctly predict all 9 epidermis

genes and 2 muscle genes in the test set. The prediction accuracy

achieved by BGEN suggests the epidermis genes and muscle genes

may be separable from each other in terms of expression profiles.

However, this prediction accuracy should not be over- interpreted,

because both the training and testing datasets are small. In the future,

more labeled data and additional microarray datasets may be

integrated to improve the predictions. The lists of predicted C

epidermis and C muscle genes can be downloaded at http://www.

csail.mit.edu/~alanqi/~projects/BGEN.html.

3.5 Experimental verification of predictions

We predict K01A2.5 and R11A5.4, two uncharacterized genes,

as enriched in C lineage. These two genes were also identified

in previous analysis as C-lineage candidates but were not tested

(Baugh et al., 2005). We further identify K01A2.5 as epidermis

enriched and R11A5.4 as muscle enriched. We examine their

expression patterns by reporter assay. The expression patterns

Fig. 3. Expression profiles of prediction examples. Red lines represent expression profiles in mex-3;skn-1 (RNAi) embryos. Green lines represent expression

profiles in pie-1;pal-1 (RNAi)embryos. Blue dotted lines represent expression profiles in wild-type embryos. D1005.2 and F54D7.4 are high-confidence

predictions of C-lineage genes. They receive confidence scores of 0.99 and 0.98, respectively. F52E4.7 and F36A2.6 are high-confidence predictions of non-C-

lineage genes. They both receive confidence scores of 0.01. F45E4.9 and Y71F9AL.17 are less obvious examples. They receive confidence scores of 0.10 and

0.46, respectively, and are classified as non-C-lineage specific genes. Baugh et al. (2005) identified F45E4.9 and Y71F9AL.17 as C -lineage genes in their data

analysis, but subsequent experimental results showed that these two genes were not specific to the C lineage.
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of reporter genes in C. elegans embryos are consistent with our

predictions (Figure 4). The reporter gene that contains K01A2.5

promoter is expressed in C epidermis cells, and the reporter gene

that contains R11A5.4 promoter is expressed in C muscle cells. The

experimental results support that our methodology yields relevant

biological insights to elucidate developmental processes.

4 CONCLUSIONS

We have developed BGEN, a novel semi-supervised learning

method, which utilizes both large-scale expression datasets and

prior biological knowledge to identify target genes. Using

BGEN, we have predicted genes enriched in C lineage during

C. elegans embryonic development, and have further classified

C-lineage candidate genes according to tissues where they are

enriched. In comparison with unsupervised K-means clustering

and supervised SVM classification, our semi-supervised learning

method achieves higher sensitivity and specificity. We experi-

mentally confirm two examples from our predictions, which further

supports our methodology. As a powerful computational tool,

BGEN can be used to refine target selection from large-scale

expression datasets for many other biological problems in the

future.
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