
New Outer Bounds on the Marginal Polytope

David Sontag Tommi Jaakkola
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

dsontag,tommi@csail.mit.edu

Abstract

We give a new class of outer bounds on the marginal polytope, and propose a
cutting-plane algorithm for efficiently optimizing over these constraints. When
combined with a concave upper bound on the entropy, this gives a new variational
inference algorithm for probabilistic inference in discrete Markov Random Fields
(MRFs). Valid constraints on the marginal polytope are derived through a series
of projections onto the cut polytope. As a result, we obtain tighter upper bounds
on the log-partition function. We also show empirically that the approximations of
the marginals are significantly more accurate when using the tighter outer bounds.
Finally, we demonstrate the advantage of the new constraints for finding the MAP
assignment in protein structure prediction.

1 Introduction

Graphical models such asMarkov Random Fields(MRFs) have been successfully applied to a wide
variety of fields, from computer vision to computational biology. From the point of view of in-
ference, we are generally interested in two questions: finding the marginal probabilities of specific
subsets of the variables, and finding theMaximum a Posteriori(MAP) assignment. Both of these
require approximate methods.

We focus on a particular class of variational approximation methods that cast the inference problem
as a non-linear optimization over themarginal polytope, the set of valid marginal probabilities. The
selection of appropriate marginals from the marginal polytope is guided by the (non-linear) entropy
function. Both the marginal polytope and the entropy are difficult to characterize in general, reflect-
ing the hardness of exact inference calculations. Most message-passing algorithms for evaluating
marginals, including belief propagation and tree-reweighted sum-product (TRW), operate instead
within the local consistency polytope, characterized by pairwise consistent marginals. For general
graphs, this is an outer bound of the marginal polytope. Various approximations have also been sug-
gested for the entropy function. For example, in the TRW algorithm [10], the entropy is decomposed
into a weighted combination of entropies of tree-structured distributions.

Our goal here is to provide tighter outer bounds on the marginal polytope. We show how this can
be achieved efficiently using acutting-plane algorithm, iterating between solving a relaxed problem
and adding additional constraints. Cutting-plane algorithms are a well-known technique for solving
integer linear programs. The key to such approaches is to have an efficient separation algorithm
which, given an infeasible solution, can quickly find a violated constraint, generally from a very
large class of valid constraints on the set of integral solutions.

The motivation for our approach comes from the cutting-plane literature for the maximum cut prob-
lem. Barahona et al. [3] showed that the MAP problem in pairwisebinary MRFs is equivalent to a
linear optimization over the cut polytope, which is the convex hull of all valid graph cuts. Tighter
relaxations were obtained by using a separation algorithm together with the cutting-plane method-
ology. We extend this work by deriving a new class of outer bounds on the marginal polytope for
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non-binaryandnon-pairwiseMRFs. The key realization is that valid constraints can be constructed
by a series ofprojectionsonto the cut polytope1. More broadly, we seek to highlight emerging
connections between polyhedral combinatorics and probabilistic inference.

2 Background

Markov Random Fields. Let x ∈ χn denote a random vector onn variables, where, for simplicity,
each variablexi takes on the values inχi = {0, 1, . . . , k − 1}. The MRF is specified by a set ofd
real valuedpotentialsor sufficient statisticsφ(x) = {φk(x)} and a parameter vectorθ ∈ Rd:

p(x; θ) = exp {〈θ, φ(x)〉 −A(θ)}, A(θ) = log
∑

x∈χnexp {〈θ, φ(x)〉}

where〈θ, φ(x)〉 denotes the dot product of the parameters and the sufficient statistics. Inpairwise
MRFs, potentials are restricted to be at most over the edges in the graph. We assume that the
potentials are indicator functions, i.e.,φi,s(x) = δ(xi = s), and make use of the following notation:
µi;s = Eθ[φi;s(x)] = p(xi = s; θ) andµij;st = Eθ[φij;st(x)] = p(xi = s, xj = t; θ).

Variational inference. The inference task is to evaluate the mean vectorµ = Eθ[φ(x)]. The
log-partition functionA(θ), a convex function ofθ, plays a critical role in these calculations. In
particular, we can write the log-partition function in terms of its Fenchel-Legendre conjugate [11]:

A(θ) = supµ∈M {〈θ, µ〉 −B(µ)} , (1)

whereB(µ) = −H(µ) is the negative entropy of the distribution parameterized byµ and is also
convex.M is the set of realizable mean vectorsµ known as themarginal polytope. More precisely,
M :=

{
µ ∈ Rd | ∃p(x) s.t.µ = Ep[φ(x)]

}
. The valueµ∗ ∈M that maximizes (1) is precisely the

desired mean vector corresponding top(x; θ).

BothM and the entropyH(µ) are difficult to characterize in general and have to be approximated.
We call the resulting approximate mean vectorspseudomarginals. Mean field algorithms optimize
over aninner boundon the marginal polytope (which is not convex) by restricting the marginal vec-
tors to those coming from simpler, e.g., fully factored, distributions. The entropy can be evaluated
exactly in this case (the distribution is simple). Alternatively, we can relax the optimization to be
over anouter boundon the marginal polytope and also bound the entropy function.

Most message passing algorithms for evaluating marginal probabilities obtain locally consistent
beliefs so that the pseudomarginals over the edges agree with the singleton pseudomarginals at the
nodes. The solution is therefore sought within thelocal marginal polytope

LOCAL(G) = {µ ≥ 0 |
∑

s∈χi
µi;s = 1,

∑
t∈χj

µij;st = µi;s } (2)

Clearly,M ⊆ LOCAL(G) since true marginals are also locally consistent. For trees,M =
LOCAL(G). Both LOCAL(G) andM have the same integral vertices for general graphs [11, 6].

Belief propagation can be seen as optimizing pseudomarginals over LOCAL(G) with a (non-convex)
Bethe approximationto the entropy [15]. The tree-reweighted sum-product algorithm [10], on the
other hand, uses a concave upper bound on the entropy, expressed as a convex combination of
entropies corresponding to the spanning trees of the original graph. The log-determinant relaxation
[12] is instead based on a semi-definite outer bound on the marginal polytope combined with a
Gaussian approximation to the entropy function. Since the moment matrixM1(µ) can be written
asEθ[(1 x)T (1 x)] for µ ∈ M, the outer bound is obtained simply by requiring only that the
pseudomarginals lie in SDEF1(Kn) = {µ ∈ R+ |M1(µ) � 0}.
Maximum a posteriori. The marginal polytope also plays a critical role in finding the MAP assign-
ment. The problem is to find an assignmentx ∈ χn which maximizesp(x; θ), or equivalently:

max
x∈χn

log p(x; θ) = max
x∈χn

〈θ, φ(x)〉 −A(θ) = sup
µ∈M
〈θ, µ〉 −A(θ) (3)

where the log-partition functionA(θ) remains a constant and can be ignored. The last equality holds
because the optimal value of the linear program is obtained at a vertex (integral solution). That is,
when the MAP assignmentx∗ is unique, the maximizingµ∗ is φ(x∗).

1For reasons of clarity, our results will be given in terms of the binary marginal polytope, also called the
correlation polytope, which is equivalent to the cut polytope of the suspension graph of the MRF [6].
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Algorithm 1 Cutting-plane algorithm for probabilistic inference
1: OUTER← LOCAL(G)
2: repeat
3: µ∗ ← argmaxµ∈OUTER{〈θ, µ〉 −B∗(µ)}
4: Choose projection graphGπ, e.g.single, k, or full
5: C ← Find Violated Inequalities(Gπ,Ψπ(µ∗))
6: OUTER← OUTER∩ C
7: until C = Rd (did not find any violated inequalities)

Cycle inequalities. The marginal polytope can be defined by the intersection of a large number of
linear inequalities. We focus on inequalities beyond those specifying LOCAL(G), in particular the
cycle inequalities[4, 2, 6]. Assume the variables are binary. Given an assignmentx ∈ {0, 1}n,
(i, j) ∈ E is cut if xi 6= xj . The cycle inequalities arise from the observation that a cycle must
have an even (possibly zero) number of cut edges. Suppose we start at nodei, wherexi = 0. As we
traverse the cycle, the assignment changes each time we cross a cut edge. Since we must return to
xi = 0, the assignment can only change an even number of times. For a cycleC and anyF ⊆ C such
that|F | is odd, this constraint can be written as

∑
(i,j)∈C\F δ(xi 6= xj)+

∑
(i,j)∈F δ(xi = xj) ≥ 1.

Since this constraint is valid for all assignmentsx ∈ {0, 1}n, it holds also in expectation. Thus∑
(i,j)∈C\F

(µij;10 + µij;01) +
∑

(i,j)∈F

(µij;00 + µij;11) ≥ 1 (4)

is valid for anyµ ∈ M{0,1}, the marginal polytope of a binary pairwise MRF. For a chordless
circuit C, the cycle inequalities are facets ofM{0,1} [4]. They suffice to characterizeM{0,1} for a
graphG if and only if G has noK4-minor. Although there are exponentially many cycles and cycle
inequalities for a graph, Barahona and Mahjoub [4, 6] give a simple algorithm to separate the whole
class of cycle inequalities.

To see whether any cycle inequality is violated, construct the undirected graphG′ = (V ′, E′) where
V ′ contains nodesi1 andi2 for eachi ∈ V , and for each(i, j) ∈ E, the edges inE′ are:(i1, j1) and
(i2, j2) with weightµij;10 + µij;01, and(i1, j2) and(i2, j1) with weightµij;00 + µij;11. Then, for
each nodei ∈ V we find the shortest path inG′ from i1 to i2. The shortest of all these paths will not
use both copies of any nodej (otherwise the pathj1 to j2 would be shorter), and so defines a cycle in
G and gives the minimum value of

∑
(i,j)∈C\F (µij;10 + µij;01)+

∑
(i,j)∈F (µij;00 + µij;11). If this

is less than 1, we have found a violated cycle inequality; otherwise,µ satisfies all cycle inequalities.
Using Dijkstra’s shortest paths algorithm with a Fibonacci heap [5], the separation problem can be
solved in timeO(n2 log n + n|E|).

3 Cutting-plane algorithm

Our main result is the proposed Algorithm 1 given above. The algorithm alternates between solv-
ing for an upper bound of the log-partition function (see Eq. 1) and tightening the outer bound on
the marginal polytope by incorporating valid constraints that are violated by the current pseudo-
marginals. The projection graph (line 4) is not needed for binary pairwise MRFs and will be de-
scribed in the next section. We start the algorithm (line 1) with the loose outer bound on the marginal
polytope given by the local consistency constraints. Tighter initial constraints, e.g.,M1(µ) � 0, are
possible as well.

The separation algorithm returns a feasible setC given by the intersection of halfspaces, and we in-
tersect this withOUTER to obtain a smaller feasible space, i.e. a tighter relaxation. The experiments
in Section 5 use the separation algorithm for cycle inequalities. However, any class of valid con-
straints for the marginal polytope with an efficient separation algorithm may be used in line 5. Other
examples besides the cycle inequalities include the odd-wheel and bicycle odd-wheel inequalities
[6], and also linear inequalities that enforce positive semi-definiteness ofM1(µ). The cutting-plane
algorithm is in effect optimizing the variational objective (Eq. 1) over a relaxation of the marginal
polytope defined by the intersection of all inequalities that can be returned in line 5.

Any entropy approximationB∗(µ) can be used so long as we can efficiently solve the optimization
problem in line 3. The log-determinant and TRW entropy approximations have two appealing fea-
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Figure 1: Illustration of the projectionΨπ for one edge(i, j) ∈ E whereχi = {0, 1, 2} and
χj = {0, 1, 2, 3}. The projection graphGπ, shown on the right, has 3 partitions fori and 7 forj.

tures. First, as upper bounds they permit the algorithm to be used for obtaining tighter upper bounds
on the log-partition function. Second, the objective functions to be maximized are convex and can
be solved efficiently using conditional gradient or other methods.

When the algorithm terminates, we can use the lastµ∗ vector as an approximation to the single node
and edge marginals. The results given in Section 5 use this method. The algorithm for MAP is the
same, excluding the entropy function in line 3; the optimization is simply a linear program. Since all
integral vectors in the relaxationOUTER are extreme points of the marginal polytope, any integral
µ∗ is the MAP assignment.

4 Generalization to non-binary MRFs

In this section we give a new class of valid inequalities for the marginal polytope of non-binary and
non-pairwise MRFs, and show how to efficiently separate this exponentially large set of inequalities.
The key theoretical idea is to project the marginal polytope onto different binary marginal polytopes.
Aggregation and projection are well-known techniques in polyhedral combinatorics for obtaining
valid inequalities [6]. Given a linear projectionΦ(x) = Ax, any valid inequalityc′Φ(x) ≤ b for
Φ(x) also gives the valid inequalityc′Ax ≤ b for x. We obtain new inequalities by aggregating the
valuesof each variable.

For each variablei, let πq
i be apartition of its values into two non-empty sets, i.e., the mapπq

i :
χi → {0, 1} is surjective. Letπi = {π1

i , π2
i , . . .} be acollection of partitionsof variablei. Define

the projection graphGπ = (Vπ, Eπ) so that there is a node for eachπq
i ∈ πi, and nodesπq

i and
πr

j are connected if(i, j) ∈ E. We call the graph consisting of all possible variable partitions the
full projection graph. In Figure 1 we show part of the full projection graph corresponding to one
edge(i, j), wherexi has three values andxj has four values. Intuitively, a partition for a variable
splits its values into two clusters, resulting in a binary variable. For example, the (new) variable
corresponding to the partition{0, 1}{2} of xi is 1 if xi = 2, and 0 otherwise. The following gives
a projection of marginal vectors of non-binary MRFs onto the marginal polytope of the projection
graphGπ, which has binary variables for each partition.

Definition 1. The linear mapΨπ takes µ ∈ M and for each nodev = πq
i ∈ Vπ as-

signs µ′v;1 =
∑

s∈χi s.t.πq
i (s)=1 µi;s and for each edgee = (πq

i , πr
j ) ∈ Eπ assignsµ′e;11 =∑

si∈χi,sj∈χj s.t.πq
i (si)=πr

j (sj)=1 µij;sisj
.

To construct valid inequalities for each projection we need to characterize the image space. Let
M{0,1}(Gπ) denote the binary marginal polytope of the projection graph.

Theorem 1. The image of the projectionΨπ isM{0,1}(Gπ), i.e. Ψπ :M→M{0,1}(Gπ).

Proof. SinceΨπ is a linear map, it suffices to show that, for every extreme pointµ ∈ M, Ψπ(µ) ∈
M{0,1}(Gπ). The extreme points ofM correspond one-to-one with assignmentsx ∈ χn. Given an
extreme pointµ ∈ M and variablev = πq

i ∈ Vπ, definex′(µ)v =
∑

s∈χi s.t.πq
i (s)=1 µi;s. Sinceµ

is an extreme point,µi;s = 1 for exactly one values, which implies thatx′(µ) ∈ {0, 1}|Vπ|. Then,
Ψπ(µ) = E[φ(x′(µ))], showing thatΨπ(µ) ∈M{0,1}(Gπ).

This result allows valid inequalities forM{0,1}(Gπ) to carry over toM. In general, the projec-
tion Ψπ will not be surjective. Suppose every variable hask values. Thesingle projection graph,
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where|πi| = 1 for all i, has one node per variable andis surjective. The full projection graph has
O(2k) nodes per variable. A cutting-plane algorithm may begin by projecting onto a small graph,
then expanding to larger graphs only after satisfying all inequalities given by the smaller one. The
k−projection graphGk = (Vk, Ek) hask partitions per variable corresponding to each value versus
all the other values.

These projections yield a new class of cycle inequalities for the marginal polytope. Consider a single
projection graphGπ, a cycleC in G, and anyF ⊆ C such that|F | is odd. Letπi be the partition
for nodei. We obtain the following valid inequality forµ ∈ M by applying the projectionΨπ and
the cycle inequality: ∑

(i,j)∈C\F

µπ
ij(x

′
i 6= x′j) +

∑
(i,j)∈F

µπ
ij(x

′
i = x′j) ≥ 1, (5)

where
µπ

ij(x
′
i 6= x′j) =

∑
si∈χi,sj∈χj s.t.πi(si) 6=πj(sj)

µij;sisj (6)

µπ
ij(x

′
i = x′j) =

∑
si∈χi,sj∈χj s.t.πi(si)=πj(sj)

µij;sisj . (7)

It is revealing to contrast (5) with
∑

(i,j)∈C\F δ(xi 6= xj) +
∑

(i,j)∈F δ(xi = xj) ≥ 1. Forx ∈ χn,
the latter holds only for|F | = 1. We can only obtain the more general inequality by fixing a partition
of each node’s values.
Theorem 2. For every single projection graphGπ and every cycle inequality arising from a chord-
less circuitC onGπ, ∃µ ∈ LOCAL(G)\M such thatµ violates that inequality.

Proof. For each variablei ∈ V , choosesi, ti s.t. πi(si) = 1 andπi(ti) = 0. Assignµi;q = 0
for q ∈ χi\{si, ti}. Similarly, for every(i, j) ∈ E, assignµij;qr = 0 for q ∈ χi\{si, ti} and
r ∈ χj\{sj , tj}. The polytope resulting from the projection ofM onto the remaining values (e.g.
µi;si

) is isomorphic toM{0,1} for the graphGπ. Barahona and Mahjoub [4] showed that the cycle
inequality on the chordless circuitC is facet-defining forM{0,1}. SinceC is over≥ 3 variables from
G, this cannot be a facet ofLOCAL(G). Let LOCAL{0,1} be the projection of LOCAL(G) onto the
remaining values. Thus,∃µ′ ∈ LOCAL{0,1}\M{0,1}, and we can assignµ accordingly.

Note that the theorem implies that the projected cycle inequalities are strictly tighter than
LOCAL(G), but it does not characterize how much is gained.

If all n variables havek values, then there areO((2k)n) different single projection graphs. However,
since for every cycle inequality in the single projection graphs there is an equivalent cycle inequality
in the full projection graph, it suffices to consider just the full projection graph. Thus, even though
the projection is not surjective, the full projection graph, which hasO(n2k) nodes, allows us to
efficiently obtain a tighter relaxation than any combination of projection graphs would give. In
particular, the separation problem for all cycle inequalities (5) for all single projection graphs, when
we allow some additional valid inequalities forM (arising from the cycle using more than one
partition for some variables), can now be solved in timeO(poly(n, 2k)).

Related work. In earlier work, Althaus et al. [1] analyze theGMEC polyhedron, which is equivalent
to the marginal polytope. They use a similar value-aggregation technique to derive valid constraints
from the triangle inequalities. Koster et al. [8] investigate thePartial Constraint Satisfaction Prob-
lem polytope, which is also equivalent to the marginal polytope. They used value-aggregation to
show that a class of cycle inequalities (corresponding to Eq. 5 for|F | = 1) are valid for this poly-
tope, and give an algorithm to separate the inequalities for a single cycle. Interestingly, both papers
showed that these constraints are facet-defining.

Non-pairwise Markov random fields. These results could be applied to non-pairwise MRFs by
first projecting the marginal vector onto the marginal polytope of a pairwise MRF. More generally,
suppose we include additional variables corresponding to the joint probability of a cluster of vari-
ables. We need to add constraints enforcing that all variables in common between two clusters have
the same marginals. For pairwise clusters these are simply the usual local consistency constraints.
We can now apply the projections of the previous section, considering various partitions of each
cluster variable, to obtain a tighter relaxation of the marginal polytope.
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Figure 2: Accuracy of single node marginals on 10 node complete graph (100 trials).

5 Experiments

Computing marginals. We experimented with Algorithm 1 using both the log-determinant [12] and
the TRW [10] entropy approximations. These trials are onIsing models, which are pairwise MRFs
with xi ∈ {−1, 1} and potentialsφi(x) = xi for i ∈ V andφij(x) = xixj for (i, j) ∈ E. Although
TRW can efficiently optimize over the spanning tree polytope, for these experiments we simply use a
weighted distribution over spanning trees, where each tree’s weight is the sum of the absolute value
of its edge weightsθij . The edge appearance probabilities for this distribution can be efficiently
computed using the Matrix Tree Theorem [13]. We optimize the TRW objective with conditional
gradient, using linear programming after each gradient step to project ontoOUTER. We used the
glpkmex and YALMIP optimization packages within Matlab, and wrote the separation algorithm
for the cycle inequalities in Java.

In Figure 2 we show results for 10 node complete graphs withθi ∼ U [−1, 1] andθij ∼ U [−x, x],
where the coupling strength is varied along thex-axis of the figure. For each data point we averaged
the results over 100 trials. They-axis shows the average`1 error of the single node marginals. These
MRFs are highly coupled, and loopy belief propagation (not shown) with a .5 decay rate seldom con-
verges. The TRW and log-determinant algorithms, optimizing over the local consistency polytope,
give pseudomarginals only slightly better than loopy BP. Even adding the positive semi-definite
constraintM1(µ) � 0, for which TRW must be optimized using conditional gradient and semi-
definite programming for the projection step, does not improve the accuracy by much. However,
both entropy approximations give significantly better pseudomarginals when used by our algorithm
together with the cycle inequalities (see “TRW + Cycle” and “Logdet + Cycle” in the figures). For
small MRFs, we can exactly represent the marginal polytope as the convex hull of its2n vertices.
We found that the cycle inequalities give nearly as good accuracy as the exact marginal polytope
(see “TRW + Marg” and “Logdet + Marg”).

Our work sheds some light on the relative value of the entropy approximation compared to the
relaxation of the marginal polytope. When the MRF is weakly coupled, both entropy approximations
do reasonably well using the local consistency polytope. This is not surprising: the limit of weak
coupling is a fully disconnected graph, for which both the entropy approximation and the marginal
polytope relaxation are exact. With the local consistency polytope, both entropy approximations
get steadily worse as the coupling increases. In contrast, using the exact marginal polytope, we
see a peak atθ = 2, then a steady improvement in accuracy as the coupling term grows. This
occurs because the limit of strong coupling is the MAP problem, for which using the exact marginal
polytope will give exact results. The interesting region is near the peakθ = 2, where the entropy
term is neither exact nor outweighed by the coupling. Our algorithm seems to “solve” the part of
the problem caused by the local consistency polytope relaxation: TRW’s accuracy goes from .33 to
.15, and log-determinant’s accuracy from .17 to .076. The fact that neither entropy approximation
can achieve accuracy below .07, even with the exact marginal polytope, motivates further research
on improving this part of the approximation.
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Figure 3: Accuracy of single node marginals with TRW entropy,θi ∈ U [−1, 1] andθij ∈ U [−4, 4].
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Figure 4: MAP for protein side-chain prediction with Rosetta energy function.

Next, we looked at the number of iterations (in terms of the loop in Algorithm 1) the algorithm takes
before all cycle inequalities are satisfied. In each iteration we add toOUTER at most2 n violated
cycle inequalities, coming from then shortest paths. In Figure 3 we show boxplots of thel1 error
of the single node marginals for both 10x10 grid MRFs (40 trials) and 20 node complete MRFs (10
trials). We also show whether the pseudomarginals are on the correct side of .5, which is important if
we were doing prediction based on the results from approximate inference. The middle line gives the
median, the boxes show the upper and lower quartiles, and the whiskers show the extent of the data.
Iteration 1 corresponds to TRW with only the local consistency constraints. For the grid MRFs, all of
the cycle inequalities were satisfied within 10 iterations. We observed the same convergence results
on a 30x30 grid, although we could not assess the accuracy due to the difficulty of exact marginals
calculation. For the complete graph MRFs, the algorithm took many more iterations before all cycle
inequalities were satisfied.

Protein side-chain prediction. We next applied our algorithm to the problem of predicting protein
side-chain configurations. Given the 3-dimensional structure of a protein’s backbone, the task is to
predict the relative angle of each amino acid’s side-chain. The angles are discretized into at most
45 values. Yanover et al. [14] showed that minimization of the Rosetta energy function corresponds
to finding the MAP assignment of a non-binary pairwise MRF. They also showed that the tree-
reweighted max-product algorithm [9] can be used to solve the LP relaxation given by LOCAL(G),
and that this succeeds in finding the MAP assignment for 339 of the 369 proteins in their data set.
However, the optimal solution to the LP relaxation for the remaining 30 proteins, arguably the most
difficult of the proteins, is fractional.

Using thek-projection graph and projected cycle inequalities, we succeeded in finding the MAP
assignment for all proteins except for the protein ‘1rl6’. We show in Figure 4 the number of cutting-
plane iterations needed for each of the 30 proteins. In each iteration, we solve the LP relaxation,
and, if the solution is not integral, run the separation algorithm to find violated inequalities. For the
protein ‘1rl6’, after 12 cutting-plane iterations, the solution was not integral, and we could not find
any violated cycle inequalities using thek-projection graph. We then tried using the full projection
graph, and found the MAP after just one (additional) iteration. Figure 4 shows one of the cycle
inequalities (5) in the full projection graph that was found to be violated. The cut edges indicate
the 3 edges inF . The violatingµ hadµ36;s = .1667 for s ∈ {0, 1, 2, 3, 4, 5}, µ38;6 = .3333,
µ38;4 = .6667, µ43;s = .1667 for s ∈ {1, 2, 4, 5}, µ43;3 = .3333, and zero for all other values of
these variables. This example shows that the relaxation given by the full projection graph is strictly
tighter than that of thek-projection graph.

2Many fewer inequalities were added, since not all cycles inG′ are simple cycles inG.
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The commercial linear programming solver CPLEX 10.0 solves each LP relaxation in under 75 sec-
onds. Using simple heuristics, the separation algorithm runs in seconds, and we find each protein’s
MAP assignment in under 11.3 minutes. Kingsford et al. [7] found, and we also observed, that
CPLEX’s branch-and-cut algorithm for solving integer linear programs also works well for these
problems. One interesting future direction would be to combine the two approaches, using our new
outer bounds within the branch-and-cut scheme. Our results show that the new outer bounds are
powerful, allowing us to find the MAP solution for all of the MRFs, and suggesting that using them
will also lead to significantly more accurate marginals for non-binary MRFs.

6 Conclusion

The facial structure of the cut polytope, equivalently, the binary marginal polytope, has been well-
studied over the last twenty years. The cycle inequalities are just one of many large classes of valid
inequalities for the cut polytope for which efficient separation algorithms are known. Our theoretical
results can be used to derive outer bounds for the marginal polytope from any of the valid inequalities
on the cut polytope. Our approach is particularly valuable because it takes advantage of the sparsity
of the graph, and only uses additional constraints when they are guaranteed to affect the solution.
An interesting open problem is to develop new message-passing algorithms which can incorporate
cycle and other inequalities, to efficiently do the optimization within the cutting-plane algorithm.
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