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Abstract

We present an approach to discretizing mul-
tivariate continuous data while learning the
structure of a graphical model. We derive
the joint scoring function from the princi-
ple of predictive accuracy, which inherently
ensures the optimal trade-off between good-
ness of fit and model complexity (including
the number of discretization levels). Us-
ing the so-called finest grid implied by the
data, our scoring function depends only on
the number of data points in the various dis-
cretization levels. Not only can it be com-
puted efficiently, but it is also invariant under
monotonic transformations of the continuous
space. Our experiments show that the dis-
cretization method can substantially impact
the resulting graph structure.

1 Introduction

Continuous data is often discretized as part of a more
advanced approach to data analysis, like, e.g., struc-
ture learning in graphical models. Discretization may
be carried out merely for computational efficiency, or
because background knowledge suggests that the un-
derlying variables are indeed discrete. While it is com-
putationally efficient to discretize the data in a pre-
processing step that is independent of the subsequent
analysis, e.g., [6, 11, 7], the impact of the discretization
policy on the subsequent analysis typically remains
unknown in this approach. For this reason, methods
have been developed that optimize the discretization
policy and the graphical model jointly, e.g., [3, 10].
However, the proposed algorithms are computationally
very involved, prohibiting their application to reason-
ably large real-world data sets.

We derive a novel scoring function that (1) allows one
to optimize the discretization policy and the struc-
ture of the graphical model jointly, and (2) can be

computed efficiently. We adopt predictive accuracy
as the objective, as this inherently ensures the opti-
mal trade-off between model fit and model complex-
ity. The two most common ways of assessing predictive
accuracy are cross-validation [17], and sequential ap-
proaches like prequential validation or stochastic com-
plexity [2, 13]. We focus on the predictive sequential
approach in this paper in the interest of space, and
omit our semi-predictive approach as well as the scor-
ing function based on cross-validation (cf. [16] for de-
tails).

In the next section, we present the basic sequential ap-
proach. Section 3 introduces the finest grid implied by
the data, which is conceptually essential for the sim-
plicity of our result. In Section 4, we derive the scor-
ing function for predictive discretization and discuss
its properties. Finally, we show in our experiments in
Section 6 that discretization can indeed have a crucial
impact on the resulting graph structure.

2 Sequential Approach

In this section, we introduce the basic idea of sequen-
tial assessment of predictive accuracy, together with
relevant notation. Let the n continuous variables in
the domain of interest be Y = (Y1, ..., Yk, ..., Yn), and
their instantiation y. The discretization of the con-
tinuous variable Y is determined by the discretiza-
tion policy Λ = (Λ1, ...,Λn). Concerning each vari-
able Yk, let Λk = (λk,1, ..., λk,rk−1) denote the dis-
cretization sequence such that λk,j < λk,j+1 for all
j = 1, ..., rk − 2, where rk is the number of discretiza-
tion levels. This determines the mapping fΛ : Y 7→ X,
where X = (X1, ..., Xk, ..., Xn) is the corresponding
discretized vector:

fΛk
(yk) =

 1 if yk < λk,1

j if λk,j−1 ≤ yk < λk,j for 1 < j < rk

rk if λk,rk−1 ≤ yk

(1)

For computational efficiency, we consider deterministic
discretization throughout this paper, i.e., each contin-



uous value y is mapped to exactly one discretization
level, xk = fΛk

(yk).

In our sequential approach, we pretend that (continu-
ous) i.i.d. data D arrive in a sequential manner, and
then assess predictive accuracy regarding each data
point along the sequence. This is similar in spirit to
prequential validation or stochastic complexity [2, 13].
We recast the joint marginal likelihood of the dis-
cretization policy Λ and the structure m of a graphical
model in a sequential manner,

ρ(D|Λ,m) =
N∏

i=1

ρ(y(i)|D(i−1),Λ,m), (2)

where D(i−1) = (y(i−1), y(i−2), ..., y(1)) denotes the
data points seen prior to step i along the sequence.
Any sequential ordering of the data points may be
chosen for i.i.d. data D, lacking a natural ordering.
While the value of ρ(D|Λ,m) may depend on the cho-
sen sequential ordering, we outline in Section 4.2 that
it is independent of the ordering in good approxima-
tion for reasonably large data sets. Eq. 2 shows that
high predictive accuracy is inherently tied to a large
marginal likelihood ρ(D|Λ,m). Assuming determinis-
tic discretization, at each step i the predicted density
regarding data point y(i) factors,

ρ(y(i)|D(i−1),Λ,m) = ρ(y(i)|x(i),Λ) p(x(i)|D(i−1),m, Λ),

where x(i) = fΛ(y(i)) according to Eq. 1. When learn-
ing the structure m of a graphical model, it is desirable
that m indeed captures all the relevant (conditional)
dependences among the variables Y1, ..., Yn. We thus
make the assumption that the dependences among the
continuous variables Yk are described by the underly-
ing discretized distribution p(X|m,Λ, D); hence, any
two continuous variables Yk and Yk′ are independent
conditional on X,

ρ(y(i)|x(i),Λ) =
n∏

k=1

ρ(y(i)
k |x(i),Λk). (3)

The computational feasibility of this approach depends
crucially on the efficiency of the mapping between the
discretized space X and the continuous one, Y . The
simplest approach is obtained by assigning the same
density to all the points y and y′ that are mapped
to the same discretized state x, cf., e.g., [10]. As-
suming such a uniform probability density is a strin-
gent restriction on Eq. 3, as the latter requires only
independence of the variables Yk. When the data
points y are distributed non-uniformly according to
y ∼

∏n
k=1 ρ(Yk|x,Λk), the use of a uniform density

needlessly degrades the predictive accuracy.

3 Finest Grid implied by the Data

The finest grid implied by the data provides a sim-
ple mapping that (1) retains the desired indepen-
dence properties according to Eq. 3, allowing for
non-uniform densities, and (2) can be computed ef-
ficiently. It provides an implicit estimate of the den-
sities ρ(y(i)

k |x(i),Λk) in Eq. 3. While this grid is con-
ceptually important for deriving our predictive scoring
function, note that the resulting Eq. 9 turns out to be
(approximately) independent of it.

Roughly speaking, this grid is obtained by discretiz-
ing each continuous variable Yk (k = 1, ..., n) such
that there is exactly one data point in each discretiza-
tion level.We denote the discretization policy associ-
ated with the finest grid by Ω = (Ω1, ...., Ωn), where
the discretization sequence Ωk = (ωk,1, ..., ωk,N−1) is
such that, for all j = 1, ..., N−2, we have ωk,j < y

(i)
k <

ωk,j+1 for exactly one y
(i)
k ; N is the number of data

points.1 The threshold values ωk,j may be chosen to
be any value between neighboring data points.2 Note
that the finest grid is not unique because of this free-
dom in the choice of the threshold values. Analogously
to Eq. 1, the discretization policy Ω implies a deter-
ministic mapping to a new vector of discrete random
variables, say Z, fΩ : Y 7→ Z. Moreover, this also
determines the mapping fΩ,Λ : Z 7→ X between two
discrete spaces, based on the discretization policies Λ
and Ω

Let us introduce further notation for later use: let
[zk]Ωk

= [ωk,zk−1, ωk,zk
) for each zk = 1, ..., N denote

the intervals (in the continuous space) according to
the finest grid;3 and [z]Ω = ×n

k=1[zk]Ωk
the hyper-

rectangles in the n-dimensional space.

4 Predictive Discretization

Predictive discretization leads to a fair score, as the
density at data point y(i) is predicted strictly without
hindsight at each step i, i.e., only data D(i−1) is used.
Before we derive our new predictive scoring function in
Section 4.2, we first outline how the finest grid changes
along the sequence, as it can only be based on the data
D(i−1) seen prior to each step i.

1For simplicity, we pretend that the grid is based on D
(with N data points) when introducing notation here. In

fact, the grid is based only on data D(i−1) at each step i
of our sequential approach, as outlined in detail in Section
4.1.

2As a special case, e.g., the midpoints may be selected.
3We define ωk,0 = ak and ωk,N = bk when Yk takes on

values in [ak, bk]; ak, bk finite.



4.1 Time-Evolution of Finest Grid

Our objective is to assess the predictive accuracy of the
pair (Λ,m) vs. the pair (Λ′,m′). We use two different
finest grids, each of which pertaining to (Λ,m) and
(Λ′,m′), respectively. In the following, we specify how
Ω(i−1)

Λ , i.e., the finest grid pertaining to (Λ,m), evolves
along the sequence (i = 1, ..., N); the other grid, and
hence Ω(i−1)

Λ′ , is defined analogously.

At i = 1, i.e., before any data is seen, let the finest
grid pertaining to the pair (Λ,m) be identical to the
grid implied by Λ, i.e., Ω(0)

Λ = Λ. Note that there is
exactly one hyper-rectangle [z]

Ω
(0)
Λ

that is mapped to
each x, although there is no data point in any of the
hyper-rectangles [z]

Ω
(0)
Λ

at this point.

As we proceed along the sequence, we update Ω(i−1)
Λ

in order to obtain Ω(i)
Λ as follows: if y

(i)
k lies in an

interval [zk]
Ω

(i−1)
Λ,k

that already contains a data point,

then a new threshold value is introduced that splits
[zk]

Ω
(i−1)
Λ,k

into two new intervals, [zk]
Ω

(i)
Λ,k

and [z′k]
Ω

(i)
Λ,k

,

each of which containing exactly one data point (for
all k = 1, ..., n). Note that there is the freedom of
choosing any particular threshold value between the
neighboring data points, so that we can select that
value as follows: if we can choose a threshold value
that coincides with one of the threshold values of the
other discretization policy Λ′, we do so; otherwise, we
choose any, but the same threshold value for both Ω(i)

Λ

and Ω(i)
Λ′ . Due to this choice of threshold values, there

exists a (rather small) i0 ≤ N such that Ω(i)
Λ = Ω(i)

Λ′

for all i ≥ i0, while Ω(i)
Λ 6= Ω(i)

Λ′ for i = 1, ..., i0−1. Ob-
viously, the value of i0 depends on the particular se-
quential ordering of the data points. Since i.i.d. data
lack an inherent sequential ordering, we may choose a
particular ordering of the data points. This is simi-
lar in spirit to stochastic complexity [13], where also
a particular sequential ordering is used. Our aim is
to choose such a sequential ordering that minimizes
i0 when we compare the pairs (Λ,m) and (Λ′,m′) to
each other: we require that, during a short initial
phase, at least one data point is assigned to each dis-
cretization level pertaining to the joint discretization
policy Λ∪ of Λ and Λ′.4,5Hence, we have the bound
i0 ≤ maxk(|Xk|Λ) + maxk(|Xk|Λ′), where | · |Λ/Λ′ de-
notes the number of discretization levels of Xk due
to Λ and Λ′, respectively. With the further assump-
tion that the number of discretization levels is bounded

4For k = 1, ..., n: Λ∪
k comprises the threshold values of

both Λk and Λ′
k.

5This entails a (slight) restriction on Λ and Λ′, as they
have to be such that there is at least one data point in
each bin pertaining to their joint discretization policy Λ∪.
However, this restriction can be resolved [16].

from above, we have i0 � N given a reasonably large
data set D. For i ≥ i0, we permit an arbitrary sequen-
tial ordering, as we have Ω(i)

Λ = Ω(i)
Λ′ .

4.2 Predictive Scoring Function

Concerning the pair (Λ,m), and analogously for
(Λ′,m′), we can now obtain an efficient mapping be-
tween Y and X, namely via Z at each step i: each
term in Eq. 3 decomposes like

ρ(y(i)
k |x(i),Λk,Ω(i−1)

Λ,k )

= ρ(y(i)
k |z(i)

k ,Ω(i−1)
Λ,k ) p(z(i)

k |x(i),Λk,Ω(i−1)
Λ,k ). (4)

Regarding the mapping between Y and Z, we allow for
any strictly positive density ρ(Yk|Zk,Ω(i−1)

Λ,k ). In order
to efficiently map the probability mass predicted for
x(i) to the finest grid (Z) we make one more simplifi-
cation, namely that the probability mass predicted for
x(i) is divided evenly among all the hyper-rectangles
[z]

Ω
(i−1)
Λ

that are mapped to x(i), irrespectively of their
possibly different volumes. This simplification can be
motivated as follows: the definition of the finest grid
implied by the data entails immediately that the vol-
umes of the hyper-rectangles [z]

Ω
(i−1)
Λ

tend to be larger
in those regions of the continuous space where the data
points y(1), ..., y(i−1) are sparser; hence, this mapping
automatically tends to predict a lower probability for
regions with a lower density of data points, which is
desirable. With this assumption, we immediately ob-
tain

p(z(i)
k |x(i),Λk,Ω(i−1)

Λ,k ) =
1

N
(i−1)
+ (x(i)

k )
, (5)

where x
(i)
k = fΩk,Λk

(z(i)
k ); N

(i−1)
+ (x(i)

k ) =
max{1, N (i−1)(x(i)

k )} arises from the fact that,
at small i ≤ i0, there is at least one hyper-rectangle
mapped to each x(i), even if it does not contain a data
point (yet);6 N (i−1)(·) denotes the counts based on
the discretized data D

(i−1)
Λ seen before step i. This is

because the finest grid, and hence Ω(i−1)
Λ , is based on

D(i−1).

Our predictive scoring function for the pair (Λ,m) fol-
lows now immediately by substituting the above equa-
tions into Eq. 2:

ρ(D|Λ,m) =
p(DΛ|m)
G(D,Λ)

·

(
N∏

i=1

n∏
k=1

ρ(y(i)
k |z(i)

k ,Ω(i−1)
Λ,k )

)
, (6)

where z
(i)
k = fΩk

(y(i)
k ). Some comments on each of

the three terms are in order. p(DΛ|m) is the marginal
6Note that this is different from using a prior (e.g., un-

like in [1, 8]).



likelihood of the graph m in light of the data DΛ dis-
cretized according to Λ. In a Bayesian approach, it
can be calculated easily for various graphical models,
e.g., see [1, 8] concerning discrete Bayesian networks.
G(D,Λ) originates from Eq. 5, i.e., from the mapping
between X (discretized by Λ) and the finest grid (Z)
and reads

G(D,Λ) =
n∏

k=1

∏
xk

Γ(N(xk)). (7)

The Gamma function, Γ(N(xk)) = [N(xk) − 1]!, is
well-defined because N(xk) = N+(xk) ≥ 1 due to our
assumption in footnote 5. Note that Eq. 7 is indepen-
dent of the finest grid. The third term in Eq. 6 is due
to the mapping between the finest grid (Z) and the
continuous space (Y ). It can be decomposed like(

N∏
i=i0+1

ρ(y(i)|z(i),Ω(i−1)
Λ )

)
·

(
i0∏

i=1

ρ(y(i)|z(i),Ω(i−1)
Λ )

)
,

(8)
which depends on the exact sequential ordering. How-
ever, the first term (i > i0) is identical concerning
both Λ and Λ′, and is hence irrelevant when compar-
ing those two discretization policies to each other. Due
to the second term in Eq. 8, our predictive scoring
function hence depends only on the sequential order-
ing during a (short) initial phase (i ≤ i0). Because of
i0 � N (cf. Section 4.1), the second term in Eq. 8
becomes negligible compared to the terms that grow
with N for large N . Given a reasonably large data
set (maxk(|Xk|Λ) + maxk(|Xk|Λ′) � N), we can thus
obtain a good approximation by ignoring the second
term in Eq. 8 as well.

Ignoring irrelevant terms, we obtain the (approximate)
predictive scoring function for the pair (Λ,m), and
analogously for (Λ′,m′):

LP(Λ,m) = log p(DΛ|m)− log G(D,Λ). (9)

This scoring function has several interesting proper-
ties (cf. [16] for more details). First, Eq. 9 is an
absolute scoring function of (Λ,m), i.e., it is indepen-
dent of (Λ′,m′). This allows us to compare several
discretization policies directly to each other, irrespec-
tive of the underlying fact that each pair is possibly
compared with respect to a different sequential order-
ing. Second, the difference between log p(DΛ|m) and
log G(D,Λ) determines the trade-off dictating the op-
timal number of discretization levels, threshold values
and graph structure. As both terms increase with a di-
minishing number of discretization levels, log G(D,Λ)
can be viewed as a penalty for small numbers of dis-
cretization levels. Third, as expected for i.i.d. data,
the resulting scoring function LP(Λ,m) is independent
of the particular ordering chosen in our sequential ap-
proach.

Fourth, LP(Λ,m) depends on the number of data
points in the different discretization levels only. This
has several interesting implications. First, all dis-
cretization policies that lead to the same number of
data points in each discretization level, but possibly
differ in the particular threshold values, are assigned
the same score (and are hence equivalent w.r.t. our
scoring function). Second, this approach includes as
a special case quantile discretization, namely when
all the variables are independent of each other (m =
mempty). The number of states is then chosen to opti-
mize predictive accuracy (one state being optimal un-
less constraints are imposed). Third, and most impor-
tant from a practical point of view, it renders efficient
computations possible: as the search space of Λ’s is
huge, it is particularly important that the scoring func-
tion can be evaluated efficiently for any Λ during the
search process. Fourth, LP(Λ,m) is independent of the
particular choice of the finest grid. Fifth, LP(Λ,m) is
invariant under monotonic transformations of the con-
tinuous variables. Obviously, this can lead to consid-
erable loss of information, particularly when the (Eu-
clidean) distances among the various data points in
the continuous space govern the discretization. On the
other hand, the results of our scoring function are not
degraded if the data is given w.r.t. an inappropriate
metric. In fact, the optimal discretization w.r.t. our
scoring function is based on statistical dependence of
the variables, rather than on the distances w.r.t. the
metric (cf. [16] for further details).

5 Optimizing our Scoring Function

This section provides only the main steps of our heuris-
tic aimed to find the maximum of our scoring function
(Eq. 9), as the focus of this paper is on the scoring
function itself. Instead of using a search strategy in
the joint space of graphs and discretization policies —
the theoretically best, but computationally most in-
volved approach — we optimize the graph m and the
discretization policy Λ alternately in a greedy way for
simplicity: given the discretized data DΛ, we use lo-
cal search to optimize the graph m, like in [8]; given
m, we optimize Λ iteratively by improving the dis-
cretization policy regarding a single variable given its
Markov blanket at a time. The latter optimization is
carried out in a hierarchical way over the number of
discretization levels and over the threshold values of
each variable. Local maxima are a major issue when
optimizing the predictive scoring function due to the
(strong) interdependence between m and Λ. As a sim-
ple heuristic, we alternately optimize Λ and m only
slightly at each step.



6 Experiments

We first present several experiments on 2-dimensional
toy data, as this allows us to visualize the data points
for validation of the learned discretization policy and
to explore the properties of our predictive scoring func-
tion in a well-defined setting. Finally, we apply our
approach to high-dimensional gene-expression data.

Our first experiment shows that our predictive scor-
ing function can indeed identify the correct number
of discretization levels. We generated data sets where
the number of clusters varied between 2 and 10, each
of which contained 100 points. The data with all 10
clusters present is sketched in Figure 1. Obviously, the
optimal discretization policy is such that every cluster
is assigned to a separate state. This is indeed favored
by our predictive score, as shown in Figure 2: the cor-
rect number of discretization levels obtained the high-
est predictive score. Moreover, Figure 2 shows that,
when the score is optimized, it decreased quickly to the
left of the correct number of discretization levels, while
it dropped quite slowly to its right. The reason for the
slow decrease to the right is that the ’excess’ levels
beyond the optimum number are almost empty (our
approach forbids that they are completely empty) due
to the optimization of the threshold values, i.e., the
resulting discretization is very similar to the optimal
one. Even though the decrease to the right of the opti-
mum is less pronounced than to the left, the decrease
still appears significant: for instance, given 5 clusters
in the data, the predictive scores of 4, 5, 6, 7, 8, 9 and
10 levels are 649.0, 783.9, 776.5, 774.0, 764.8, 758.8 and
752.2, respectively. Note that a difference in the log-
score of 3 is considered ’strong’, and 5 ’very strong’ ev-
idence in the statistics literature, e.g., [9]. Concerning
the other data sets with 2,...,10 clusters, the log-score
of the correct number of clusters was also supported
by ’very strong’ evidence over both the smaller and
larger numbers of discretization levels. The reason for
the steep decrease to the left of the optimum is that the
optimum choice of threshold values cannot compensate
much for having too few discretization levels available.
When the threshold values do not get optimized, cf.
dashed lines in Figure 2), the predictive score drops
considerably both to the right and to the left of the
optimum, as expected. Moreover, when the fraction
1/r of points gets assigned to each of the r discretiza-
tion levels (r = 2, ..., 10), the number of states that are
multiples or divisors of the optimal number tend to be
local optima of the predictive score, as expected. Note
that this simple heuristic finds the optimum w.r.t. our
predictive scoring function in these toy data sets sim-
ply because each cluster contains the same number of
points.

The second experiment illustrates that the optimum
discretization w.r.t. our predictive scoring function is
based on statistical dependence between the variables
rather than on clusters in the metric space. Consider
the top two panels in Fig. 3: when the variables are
independent, our approach may not find the discretiza-
tion suggested by the clusters; instead, our approach
assigns the same number of data points to each dis-
cretization level (with the minimum number of dis-
cretization levels being optimal). Note that discretiza-
tion of independent variables is, however, quite irrele-
vant when learning graphical models: the optimal dis-
cretization of each variable Yk depends on the variables
in its Markov blanket, and Yk is (typically strongly)
dependent on those variables. When the variables are
dependent in Fig. 3 (top right), our scoring function
favors the ”correct” discretization (solid lines), as this
entails best predictive accuracy (even when disregard-
ing the metric). However, dependence of the variables
itself does not necessarily ensure that our scoring func-
tion favors the ”correct” discretization, as illustrated
in the bottom two panels in Fig. 3 (as a constraint,
we require two discretization levels): given low noise
levels, our scoring function assigns the same number
of data points to each discretization level; however, a
sufficiently high noise level in the data can actually be
beneficial, permitting our approach to find the ”cor-
rect” discretization, cf. Fig. 3 (bottom right).

While the clusters were well-separated on the top right
panel in Figure 3, Figure 4 illustrates the situation
where the clusters overlap with respect to variable Y0.
As a result, the overlap region spurs the creation of
additional discretization levels. This makes sense, as
separating the overlap region from the well-separated
regions increases predictive accuracy in the discretized
domain. Learning from re-sampled data, we noticed
that the optimum number of discretization levels of Y0

varied between 3 and 5 states for this data set, i.e., the
additional states created in the overlap region varied
between 1 and 3.

The marginal likelihood p(DΛ|m), which is part of our
scoring function, contains a free parameter, namely
the so-called scale-parameter α regarding the Dirich-
let prior over the model parameters, e.g., cf. [8]. As
outlined in [14], its value has a decisive impact on the
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Figure 1: Toy data with all 10 clusters present.
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Figure 2: Each panel is based on a different data set, with the number of clusters increasing from 2 to 10 from
the top left panel to the bottom right one (line by line). Each panel displays our predictive score as a function
of the number of discretization levels: the maximum score after optimizing the threshold values (solid line); and
the score when simply assigning the fraction 1/r of points to each of the r = 2, ..., 10 discretization levels (dashed
line), i.e., without optimization of the threshold values.

resulting number of edges in the network, and must
hence be chosen with care. When considering α as an
additional parameter to be learned from the data, we
found for the optimal values α = 1, ...., 10 in our toy
data sets. It appeared that a growing value of α tended
to result in an increased number of discretization lev-
els. However, this increase did not appear monotonic
(possibly, the search heuristic got trapped in local op-
tima of the predictive scoring function), cf. Fig. 4.

The next experiment shows that the optimal number
of discretization levels in the ’overlap region’ increases
as the number of data points grows. In the data set
depicted in the inset of Figure 5, there is only a single
cluster, sampled from a joint normal distribution with
correlation corr(Y0, Y1) = 1/

√
2. As this distribution

does not imply a ’natural’ number of discretization lev-
els, our predictive scoring function yields the optimal
’effective’ number of discretization levels, with the goal
to maximize the degree of dependence between dis-
cretized variables, accounting for regularization. Fig.
5 shows that our predictive scoring function favored an
increasing number of discretization levels as the sam-
ple size increased, as expected from a regularization
point of view. Moreover, the learned graph structure
implied independence of Y0 and Y1 when given very
small samples (fewer than 30 data points in our exper-
iment), while Y0 and Y1 are found to be dependent for
all larger sample sizes. Our scoring function thus fa-
vored less complex models (i.e., sparser graphs and
fewer discretization levels) when given smaller data
sets. This is desirable in order to avoid overfitting
when learning from small samples, leading to better

predictive accuracy.

Our final experiment illustrates that the discretiza-
tion policy can have a crucial impact on the learned
Bayesian network structure. We re-analyzed gene
expression data concerning the pheromone response
pathway in yeast [7], comprising 320 measurements
for 32 continuous variables (genes) as well as the mat-
ing type (binary variable). In computational biology,
Bayesian networks have been used to model regulatory
networks, and their structures were learned from gene-
expression data discretized in a pre-processing step,
e.g., [6, 12, 7]. As to account for model uncertainty
due to the small data set, we used a non-parametric
re-sampling method instead of Markov Chain Monte
Carlo methods, as the former is independent of any
model assumptions. While the bootstrap has been
used in [5, 4, 6, 12], we prefer the jackknife when
learning the graph structure, i.e., conditional indepen-
dences. The reason is that the bootstrap procedure
can easily induce spurious dependencies when given
a small data set D; as a consequence, the resulting
network structure can be considerably biased towards
denser graphs [15]. The jackknife avoids this prob-
lem. We obtained very similar results using three dif-
ferent variants of the jackknife: delete-1, delete-30,
and delete-64. Assessing predictive accuracy by means
of 5-fold cross validation, we determined the optimal
scale-parameter of the Dirichlet prior to be α ≈ 25 in
our scoring function.

Using the optimal value of α, Figure 6 summarizes the
learned network structures for different discretization
policies: when the number of discretization levels is
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Figure 3: Top two panels: each cluster comprises 100
points sampled from a Gaussian distribution; Y0 and
Y1 are independent on the left, and dependent on the
right. Bottom two panels: when Y0 and Y1 are depen-
dent, noise may help in finding the ’correct’ discretiza-
tion.
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Figure 4: 4 overlapping clusters with 100 points each:
the optimal discretization (left); the other two panels
show the dependence of the maximum score and of
the number of discretization levels of Y0 on the scale-
parameter α of the Dirichlet prior, cf. text for details.

not optimized, but set to a fixed number r (which we
chose to be identical for all the variables), the number
of edges in the network increases with a decreasing
value of r. The reason is that the (standard) posterior
probability of discrete Bayesian network structures im-
plicitly contains a penalty term for model complexity
that grows with the number of independent variables
in the model (cf. Bayesian Information Criterion): as-
suming that all discretized variables Xk have the same
number of states r for simplicity, this number is given
by
∑

k(r−1) · r# parentsk ; as it increases exponentially
with the number of parents, a large number of dis-
cretization levels thus entails the model complexity to
grow quickly with the number of edges, forcing the
network structure to be extremely sparse. Moreover,
when the threshold values are optimized w.r.t. our
predictive scoring function, then the learned number
of edges is consistently larger—thus recovering more
relevant dependences—than the one obtained by as-
signing a fraction 1/r of points to each discretization
level (i.e., without optimizing the threshold values).
Moreover, when both the number of discretization lev-
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Figure 5: The number of discretization levels (mean
and standard deviation, averaged over 10 samples of
each size) depends on the sample size (cf. text for
details).

els and the threshold values are optimized, our predic-
tive scoring function yields 65.7± 8 edges; most of the
variables had about 4 discretization levels (on aver-
age over the jackknife samples), except for the genes
MCM1, MFALPHA1, KSS1, STE5, STE11, STE20,
STE50, SWI1, TUP1 with about 3 states, and the
genes BAR1, MFA1, MFA2, STE2, STE6 with ca. 5
states. Apart from that, the increase in the standard
deviation indicates that our (simple) heuristic search
strategy may get trapped in local optima in the differ-
ent jackknife samples.

Figure 7 shows the composite graph we learned from
the gene expression data, employing our predictive
scoring function, cf. Eq. 9.7 The graph is compiled by
averaging over several Bayesian network structures in
order to account for model uncertainty: the solid ones
are present with probability > 50%, and the dashed
ones with probability > 34%. The orientation of an
edge is indicated only if one direction is at least twice
as likely as the contrary one. The crucial impact of
the used discretization policy Λ and scale-parameter
α on the resulting network structure becomes appar-
ent when our network structure are compared to the
one reported in [7]: their network structure resembles
a naive Bayesian network, where the mating type is
the root variable. Obviously, their network structure
is notably different from ours in Figure 7, and hence
has very different (biological) implications. Unlike in
[7], we have optimized the discretization policy Λ and
the network structure m jointly, as well as the scale-
parameter α. As the value of the scale-parameter
α mainly affects the number of edges present in the
learned graph [14], this suggests that the major differ-
ences in the obtained network structures are actually
due to the discretization policy.

7We imposed no constraints on the network structure
in Figure 7.



# thresholds optimized
levels no yes

3 68.5 ± 2 76.8 ± 3
4 50.7 ± 2 59.2 ± 3
5 39.8 ± 2 44.0 ± 3

Figure 6: Number of edges(±std)
in learned network structure for
different discretization policies
(average of 100 delete-30 jackknife
samples). See text for details.
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7 Conclusions

We have derived a simple, yet principled and compu-
tationally efficient approach for determining the reso-
lution at which to represent continuous observations.
Our new scoring function relies on predictive accu-
racy in the prequential sense and employs the so-called
finest grid implied by the data as the basis for finding
the appropriate levels. Our experiments show its cru-
cial impact on both the learned discretization policy
as well as on the resulting graph structure.
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