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Abstract

We analyze directed, unweighted graphs ob-
tained from xi ∈ Rd by connecting vertex i
to j iff |xi − xj | < ε(xi). Examples of such
graphs include k-nearest neighbor graphs,
where ε(xi) varies from point to point, and,
arguably, many real-world graphs such as co-
purchasing graphs. We ask whether we can
recover the underlying Euclidean metric ε(xi)
and the associated density p(xi) given only
the directed graph and d.

We show that consistent recovery is possible
up to isometric scaling when the vertex de-
gree is at least ω(n2/(2+d) log(n)d/(d+2)). Our
estimator is based on a careful characteriza-
tion of a random walk over the directed graph
and the associated continuum limit. As an al-
gorithm, it resembles the PageRank central-
ity metric. We demonstrate empirically that
the estimator performs well on simulated ex-
amples as well as on real-world co-purchasing
graphs even with a small number of points
and degree scaling as low as log(n).

1 Introduction

Data for unsupervised learning is increasingly avail-
able in the form of graphs or networks. For exam-
ple, we may analyze gene networks, social networks,
or general co-occurrence graphs (e.g., built from pur-
chasing patterns). While classical unsupervised tasks
such as density estimation or clustering are naturally
formulated for data in vector spaces, these tasks have
analogous problems over graphs such as centrality and
community detection. We provide a step towards uni-
fying unsupervised learning by recovering the under-
lying density and metric directly from graphs.
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We consider “unweighted directed geometric graphs”
that are assumed to have been built from underly-
ing (unobserved) points xi, i = 1, . . . , n. In partic-
ular, we assume that graphs are formed by drawing
an arc from each vertex i to its neighbors within dis-
tance εn(xi). Note that the graphs are typically not
symmetric since the distance (the εn-ball) may vary
from point to point. By allowing εn(xi) to be stochas-
tic, e.g., depend on the set of points, the construc-
tion subsumes also typical k-nearest neighbor graphs.
Arguably, graphs from top k friends/products, or co-
association graphs may also be approximated in this
manner.

The key property of our family of geometric graphs is
that their structure is completely characterized by two
functions over the latent space: the local density p(x)
and the local scale ε(x). Indeed, global properties such
as the distances between points can be recovered by in-
tegrating these quantities. We show that asymptotic
behavior of random walks on the directed graphs re-
late to the density and metric. In particular, we show
that random walks on such graphs with minimal de-

gree at least ω(n2/(2+d) log(n)
d

d+2 ) can be completely
characterized in terms of p and ε using drift-diffusion
processes. This enables us to recover both the density
and distance given only the observed graph and the
(hypothesized) underlying dimension d.

The fact that we may recover the density (up to con-
stant scale) is surprising. For example, in k-nearest
neighbor graphs, each vertex has degree exactly k.
There is no immediate local information about the
density, i.e., whether the corresponding point lies in
a high-density region with small ball radii, or in a low-
density region with large ball radii. The key insight
of this paper is that random walks over such graphs
naturally drift toward higher density regions, allowing
for density recovery.

While the paper is primarily focused on the theoret-
ical aspects of recovering the metric and density, we
believe our results offer useful strategies for analyzing
real-world networks. For example, we analyzed the
Amazon co-purchasing graph where an edge is drawn
from an item i to j if j is among the top k co-purchased



Metric recovery from directed unweighted graphs

items with i. These Amazon products may be co-
purchased if they are similar enough to be comple-
mentary, but not so similar that they are redundant.
We extend our model to deal with connectivity rules
shaped like an annulus, and demonstrate that our esti-
mator can simultaneously recover product similarities,
product categories, and central products by metric em-
bedding.

1.1 Relation to prior work

The density estimation problem addressed by this pa-
per was proposed and partially solved by von Luxburg-
Alamgir in [14] using integration of local density gra-
dients over shortest paths. This estimator has since
been used for drawing graphs with ordinal constraints
in [14] and graph down-sampling in [1]. However,
the recovery algorithm is restricted to 1-dimensional
k-nearest neighbor graphs under the constraint k =
ω(n2/3 log(n)

1
3 ). Our paper provides an estimator that

works in all dimensions, applies to a more general
class of graphs, and strongly outperforms that of von
Luxburg-Alamgir in practice.

On a technical level, our work has similarities to the
analysis of convergence of graph Laplacians and ran-
dom walks on manifolds in [16, 6]. For example, in [13],
Ting-Huang-Jordan used infinitesimal generators to
capture the convergence of a discrete Laplacian to its
continuous equivalent on k-nearest neighbor graphs.
However, their analysis was restricted to the Lapla-
cian and did not consider the latent recovery problem.
In addition, our approach proves convergence of the
entire random walk trajectory and allows us to ana-
lyze the stationary distribution function directly.

2 Main results and proof outline

2.1 Problem setup

Let X = {x1, x2, . . .} be an infinite sequence of latent
coordinate points drawn independently from a distri-
bution with probability density p(x) in Rd. Let εn(xi)
be a radius function which may depend on the draw
of X . In this paper, we fix a single draw of X and an-
alyze the quenched setting. Let Gn = (Xn, En) be the
unweighted directed neighborhood graph with vertex
set Xn = {x1, . . . , xn} and with a directed edge from i
to j if and only if |xi − xj | < εn(xi).

Fix now a large n. We consider the random directed
graph model given by observing the single graph Gn.
The model is completely specified by the latent func-
tion p(x) and the possibly stochastic εn(x). Under
the conditions (?) to be specified below, we solve the
following problem:

Given only Gn and d, form a consistent estimate of
p(xi) and |xi−xj | up to proportionality constants.

In the case that the graph is disconnected, we will
recover the corresponding quantity up to scaling for
each separate connected component.

The conditions we impose on p(x), εn(x), and the sta-
tionary density function πXn

(x) of the simple random
walk Xn(t) on Gn are the following, which we refer to
as (?). We assume (?) holds throughout the paper.

• The density p(x) is differentiable with bounded
∇ log(p(x)) on a path-connected compact domain
D ⊂ Rd with smooth boundary ∂D.

• There is a deterministic continuous function
ε(x) > 0 on D and scaling constants gn satisfying

gn → 0 and gnn
1

d+2 log(n)−
1

d+2 →∞

so that, a.s. in the draw of X , g−1n εn(x) converges
uniformly to ε(x).

• The rescaled density functions nπXn
(x) are a.s.

uniformly equicontinuous.

Remark. We conjecture that the last condition in (?)
holds for any p and ε satisfying the other conditions
in (?) (see Conjecture S1.1).

Let NBn(x) denote the set of out-neighbors of x so that
y is in NBn(x) if there is a directed edge from x to y.
The second condition in (?) implies for all x ∈ Xn that

|NBn(x)| = ω(n
2

d+2 log(n)
d

d+2 ). (1)

2.2 Statement of results

Our approach is based on the simple random walk
Xn(t) on the graphGn. Let πXn

(x) denote the station-
ary density of Xn(t). We first show that when appro-
priately renormalized, πXn

(x) converges to an explicit
function of p(x) and ε(x) up to a scaling constant c.

Theorem 2.1. Given (?), a.s. in X , we have

nπXn
(x)→ c

p(x)

ε(x)2
, (2)

for the normalization constant c−1 =
∫
p(x)2ε(x)−2dx.

Combining this result with an estimate on the out-
degree of points in Gn gives our general result on re-
covery of density and scale. Let Vd be the volume of
the unit d-ball.
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Corollary 2.2 (Density and metric estimator). As-
suming (?), the estimators

c1|NBn(x)|
2

d+2πXn
(x)

d
d+2 → p(x) and

c2|NBn(x)|
1

d+2πXn(x)−
1

d+2 → ε(x) with

c1 =

(
n

d−2
d

cV
2/d
d g2n

) d
d+2

c2 =

(
1

cd/2Vdn2gdn

) 1
d+2

consistently recover the underlying density a.s. in X
up to a scale depending on the normalizer c defined in
(2) which cannot be identified from the graph alone.

Proof. Immediate from the out-degree estimate
p(x)εn(x)dVd = |NBn(x)|/n and Theorem 2.1.

Remark. If εn(x) is constant, every edge is bidirec-
tional, so πXn

(x) is proportional to the degree of x,
and we recover the standard ε-ball density estimator.

Our estimator for the density p(x) closely resembles
the PageRank algorithm without damping [10]. For
the k-nearest neighbor graph, it gives the same rank
ordering as PageRank and reduces to PageRank as
d→∞.

For the k-nearest neighbor density estimation problem
posed by von Luxburg-Alamgir in [14], we obtain the
following.

Corollary 2.3. If εn(x) is selected via the k-nearest

neighbors procedure with k = ω(n
2

d+2 log(n)
d

d+2 ) and
satisfies the first and last conditions in (?), for c1 and
c2 depending on c as in Corollary 2.2 we have a.s in
X that

c1πXn
(x)

d
d+2 → p(x) and

c2πXn(x)−
1

d+2 → ε(x).

Proof. By [4], the empirical εn(x) induced by the k-
nearest neighbors procedure satisfies the second con-
dition of (?) with

ε(x) =
1

V
1/d
d p(x)1/d

and gn = (k/n)1/d.

2.3 Outline of approach

Our proof proceeds via the following steps.

1. As n→∞, the simple random walk Xn(t) on Gn
converges weakly to an Itô process Y (t), yielding
weak convergence of stationary measures. (Theo-
rem 3.4)

2. The stationary density πY (x) is explicitly deter-
mined via Fokker-Planck equation. (Lemma 4.1)

3. Uniform equicontinuity of nπXn(x) yields conver-
gence in density after rescaling. (Theorem 2.1)

An intuitive explanation for our results is as follows.
For large n, the simple random walk on Gn, when
considered with its original metric embedding, closely
approximates the behavior of a drift-diffusion process.
Both the process and the approximating walk move
preferentially toward regions where p(x) is large and
diffuse more slowly out of regions where ε(x) is small.
Occupation times therefore give us information about
p(x) and ε(x) which allow us to recover them.

Formally, the convergence of Xn(t) to Y (t) follows by
verifying the conditions of the Stroock-Varadhan cri-
terion (Theorem 3.1) for convergence of discrete time
Markov processes to Itô processes [12]. This criterion
states that if a process reflects at the boundary and
the variance an, expected value bn, and higher order
moments ∆n,α of a jump are continuous and well-
controlled in the limit, the process converges to an
Itô process. Via the Fokker-Planck equation, we can
express the stationary density of this process solely in
terms of p(x) and |NBn(x)|. This allows us to estimate
the density using only the unweighted graph.

Let D and ∂D be the closure and boundary of the
support D of p(x). Let B(x, ε) be the ball of radius
ε centered at x. Let hn = g2n be the time rescaling
necessary for Xn(t) to have equal timescale to Y (t).

3 Convergence of the simple random
walk to an Itô process

We will verify the regularity conditions of the Stroock-
Varadhan criterion (see [12, Section 6]).

Theorem 3.1 (Stroock-Varadhan). Let Xn(t) be
discrete-time Markov processes defined over a domain
D with boundary ∂D. Define the discrete time drift
and diffusion coefficients by

aijn (s, x) =
1

hn

∑
y∈NBn(x)

1

|NBn(x)|
(yi − xi)(yj − xj)

bin(s, x) =
1

hn

∑
y∈NBn(x)

1

|NBn(x)|
(yi − xi)

∆n,α(s, x) =
1

hn

∑
y∈NBn(x)

1

|NBn(x)|
|y − x|2+α.

If we have aijn (s, x)
a.s−−→ aij(s, x), bin(s, x)

a.s−−→ bi(s, x),

∆n,1(s, x)
a.s−−→ 0, and regularity conditions to ensure

reflection at ∂D (Theorem S2.2 and Theorem S2.3),
the time-rescaled stochastic processes Xn(bt/hnc) con-
verge weakly in Skorokhod space D([0,∞), D) to an Itô
process with reflecting boundary condition

dY (t) = σ(t, Y (t))dWt + b(t, Y (t))dt,
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with Wt a standard d-dimensional Brownian motion
and σ(t, Y (t))σ(t, Y (t))T = a(t, Y (t)).

Remark. The original result of Stroock-Varadhan
was stated for D([0, T ], D) for all finite T ; our version
for D([0,∞), D) is equivalent by [15, Theorem 2.8].

The technical conditions of Theorem 3.1 enforcing
reflecting boundary conditions are checked in Theo-
rem S2.8 to Theorem S2.12. We focus on convergence
of the drift and diffusion coefficients.

Lemma 3.2 (Strong LLN for local moments). For a
function f(x) such that supx∈B(0,ε) |f(x)| < ε, given
(?) we have uniformly on x ∈ Xn that

1

hn

∑
y∈NBn(x)

1

|NBn(x)|
f(y − x)

a.s.−−→ 1

hn

∫
y∈B(x,εn(x))

f(y − x)
p(y)

pεn(x)(x)
dy.

Proof. Denote the claimed value of the limit by
µ(x). For convergence in expectation, we condition
on |NBn(x)| and apply iterated expectation to get

E

 1

hn

∑
y∈NBn(x)

1

|NBn(x)|
f(y − x)


= E

[
1

hn
E
[
f(y − x)

∣∣|NBn(x)|
]]

= µ(x).

For y ∈ B(x, εn(x)), we have |f(y − x)| ≤ εn(x), so
Hoeffding’s inequality yields

P

(∣∣∣∣ 1

hn

∑
y∈NBn(x)

1

|NBn(x)|
f(y − x)− µ(x)

∣∣∣∣ ≥ t)

≤ 2 exp

(
−2h2n|NBn(x)|2t2

|NBn(x)|εn(x)2

)
= Θ

(
exp

(
−2g2nε(x)−2|NBn(x)|t2

))
(3)

= o(n−2t
2ω(1))

for |NBn(x)| = ω
(
n2/(d+2) log(n)d/(d+2)

)
by (1).

Borel-Cantelli then yields a.s. convergence.

Remark. This limit holds for stochastic εn(x) if
g−1n εn(x) a.s. converges uniformly to a deterministic
continuous ε(x). An example of such a graph is the
k-nearest neighbors graph.

Theorem 3.3 (Drift diffusion coefficients). Almost
surely on the draw of X , as n→∞, we have

lim
n→∞

aijn (s, x) = δij
1

3
ε(x)2

lim
n→∞

bin(s, x) =
∂ip(x)

3p(x)
ε(x)2

lim
n→∞

∆n,1(s, x) = 0,

where δij is the Kronecker delta function.

Proof. By Lemma 3.2, an, bn, and ∆n,1 converge a.s.
to their expectations, so it suffices to verify that the
integrals in Lemma 3.2 have the claimed limits. Be-
cause p is differentiable on D, for any x ∈ D we have
the Taylor expansion

p(x+ y) = p(x) + y · ∇p(x) + o(|y|2)

of p at x, where the convergence is uniform on compact
sets. For n large so that B(x, εn(x)) lies completely in-
side D, substituting this expansion into the definitions
of an, bn, and ∆n,1 and integrating over spheres yields
the result. Full details are in Theorem S2.14.

Theorem 3.4. Under (?), as n→∞ a.s. in the draw
of X the process Xn(bt/hnc) converges in D([0,∞), D)
to the isotropic D-valued Itô process Y (t) with reflect-
ing boundary condition defined by

dY (t) =
∇p(Y (t))

3p(Y (t))
ε(Y (t))2dt+

ε(Y (t))√
3

dW (t). (4)

Proof. Lemma 3.2 and Theorem 3.3 show that
Xn(bt/hnc) fulfills the conditions of Theorem 3.1. The
result follows from the Stroock-Varadhan criterion us-
ing the drift and diffusion terms from Theorem 3.3.

4 Convergence and computation of
the stationary distribution

4.1 Graphs satisfying condition (?)

The Itô process Y (t) is an isotropic drift-diffusion pro-
cess, so the Fokker-Planck equation [11] implies its
density f(t, x) at time t satisfies

∂tf(t, x) =
∑
i

(
− ∂xi

[bi(t, x)f(t, x)]

+
1

2
∂x2

i
[aii(t, x)f(t, x)]

)
, (5)

where bi(t, x) and aii(t, x) are given by

b(t, x) =
∇p(x)

3p(x)
ε̄(x)2 and aii(t, x) =

1

3
ε̄(x)2.

Lemma 4.1. The process Y (t) defined by (4) has ab-
solutely continuous stationary measure with density

πY (x) = cp(x)2ε(x)−2,

where c was defined in (2).

Proof. By (5), to check that πY (x) = cp(x)2ε(x)−2, it
suffices to show∑

i

(
∂xi

p(x)

(
p(x)−1ε(x)2c

p(x)2

ε(x)2

)
−

1

2
∂xi

(
ε(x)2c

p(x)2

ε(x)2

))
= 0.
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Figure 1: Accuracy vs sample and neigh-
borhood size. Path integral (green, ma-
roon) is from Alamgir-von Luxburg [14].
Our estimator (red, blue, black) is nearly
perfect at all sample sizes and neighbor-
hood sizes.

Figure 2: Examples of four density estimates: our method (red) using no
metric information is indistinguishable from metric k-nearest neighbor (blue)
and close to ground truth (black). Path integral estimator of Alamgir-
von Luxburg [14] (green) shows higher error in all cases.

We now prove Theorem 2.1 by showing that a rescaling
of πXn(x) converges to πY (x).

Proof of Theorem 2.1. The a.s. convergence of pro-
cesses of Theorem 3.4 implies by Ethier-Kurtz [5, The-
orem 4.9.12] that the empirical stationary measures

dµn =

n∑
i=1

πXn
(xi)δxi

converge weakly to the stationary measure dµ =
πY (x)dx for Y (t). For any x ∈ X and δ > 0, weak
convergence against 1B(x,δ) yields∑

y∈Xn,|y−x|<δ

πXn
(y)→

∫
|y−x|<δ

πY (y)dy.

By uniform equicontinuity of nπXn
(x), for any ε > 0

there is small enough δ > 0 so that for all n we have∣∣∣∣∣∣
∑

y∈Xn,|y−x|<δ

πXn
(y)− |Xn ∩B(x, δ)|πXn

(x)

∣∣∣∣∣∣
≤ n−1|Xn ∩B(x, δ)|ε,

which implies that

lim
n→∞

πXn
(x)p(x)n

= lim
δ→0

lim
n→∞

V −1d δ−dnπXn
(x)

∫
|y−x|<δ

p(y)dy

= lim
δ→0

lim
n→∞

V −1d δ−d|Xn ∩B(x, δ)|πXn
(x)

= lim
δ→0

V −1d δ−d
∫
|y−x|<δ

πY (y)dy = πY (x).

Combining with Lemma 4.1 yields the desired

lim
n→∞

nπXn(x) =
πY (x)

p(x)
= c

p(x)

ε(x)2
.

4.2 Extension to isotropic graphs

To obtain our stationary distribution in Theorem 2.1
we require only convergence to some Itô process via the
Stroock-Varadhan criterion. We can achieve this un-
der substantially more general conditions. We define
a class of neighborhood graphs on Xn termed isotropic
over which we have consistent metric recovery without
knowledge of the graph construction method.

Definition 1 (Isotropic). A graph edge connection
procedure on Xn is isotropic if it satisfies:

Distance kernel: The probability of placing a di-
rected edge from i to j is defined by a kernel func-
tion h(rij) mapping locally scaled distances

rij = |xi − xj |εn(xi)
−1.

with εn(x) obeying (?) to probabilities

Nonzero mass: The kernel function h(r) has

nonzero integral
∫ 1

0
h(r)rd−1dr > 0.

Bounded tails: For all r > 1, h(r) = 0.

Continuity: The scaling nπXn
(x) of the stationary

distribution is uniformly equicontinuous.

This class of graph preserves the property that the
random graph is entirely determined by the underlying
density p(x) and local scale ε(x); this allows us to have
the same tractable form for the stationary distribution.

Both constant ε and k-nearest neighbor graphs are
isotropic upon assumption of uniform equicontinuity.
Another interesting class of graphs allowed by this
generalization is truncated Gaussian kernels, where
connectivity probability decreases exponentially. Note
that h(r) might not be monotonic or continuous in
r; one surprising example is h(r) = 1[0.5,1](r), which
deterministically connects points in an annulus.
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Figure 3: Estimate performance de-
grades in high dimensions due to
over-smoothing (blue and red), but
the estimator is still highly accurate
up to log concentration parameter
(black).

Figure 4: Example isotropic graphs. Our estimator (black) agrees with the true
density (red) in all cases. Degree and stationary distribution (green and maroon)
based density estimates work for some cases (right two panels) but cannot work if the
degree is tied to spatial location (left).

Corollary 4.2 (Generalization). If a neighborhood
graph is isotropic, then the limiting stationary distri-
bution follows Theorem 2.1, and the density and dis-
tances can be estimated by Corollary 2.2.

Proof. We check the Stroock-Varadhan condition
stated in Theorem 3.1. For this, we use a version of
Lemma 3.2 for isotropic graphs, which requires that
the ball radius vanishes and that the neighborhood

size scales as ω(n
2

d+2 log(n)
d

d+2 ).

Vanishing neighborhood radius follows because
bounded tails and the fact that the kernel is evaluated
on |xi − xj |εn(xi)

−1 ensure the isotropic graph is
a subgraph of the εn(x)-ball graph. Kolmogorov’s
strong law implies that the stochastic out-degree
concentrates around its expectation. It has the
correct scaling because the argument of h(r) is scaled
by εn(x). See Theorem S3.2 for details. Thus the
analogue of Lemma 3.2 holds.

We then check that the limiting local moments for
isotropic graphs are proportional to those of εn(x)-ball
graphs in Lemma S3.3. All but one of the conditions
for the Stroock-Varadhan criterion follow from this;
the last Theorem S2.11 follows from the bounded ball
structure of the connectivity kernel.

To check that we obtain the same limiting process and
stationary measure, note the ratios of integrals in The-
orem 3.3 are unchanged in the isotropic setting. See
Lemma S3.3 for details. Recovering the stationary dis-
tribution, density, and local scale is then done in the
same manner as in the ε-ball setting.

5 Distance recovery via paths

Our results in Theorem 2.1 give a consistent estimator
for the density p(x) and the local scale ε(x). These
two quantities specify up to isometry and scaling the

latent metric embedding of X .

In order to reconstruct distances between non-
neighbor points, we weight the edges of Gn by wij =
εn(xi) and find the shortest paths over this graph,
which we call Gn. The results of Alamgir-von Luxburg
[2, Section 4.1] show that in the k-nearest neighbor
case, setting wij = ε̂n(xi) for the estimator ε̂n of εn
results in consistent recovery of pairwise distances.

In Theorem S4.5, we give a straightforward extension
of this approach to show that given any uniformly
convergent estimator of εn(x), the shortest path on
the weighted graph Gn converges to the geodesic dis-
tance. Applying standard metric multidimensional
scaling then allows us to embed these distances and
recover the latent space up to isometry and scaling.

6 Empirical results

We demonstrate extremely good finite sample perfor-
mance of our estimator in simulated density recon-
struction problems and two real-world datasets. Some
details such as exact graph degrees and distribution
parameters are in the supplementary code which re-
produces all figures in this paper. Standard graph
statistics such as centrality and Jaccard index are cal-
culated via the igraph package [3].

k-nearest neighbor graphs We compared our
random-walk based estimator and the path-integral
based estimator of von Luxburg-Alamgir [14] to the
metric k-nearest neighbor density estimator. The
number of samples n was varied from 100 to 20000
along with the sparsity level k (Figure 1).

While our theoretical results suggest that both
our algorithm and the path-integral estimator of
von Luxburg-Alamgir [14] might fail to converge at
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Figure 5: Reconstruction
closely matches projection of
the true metric.

Figure 6: Distances estimated by
our method are globally close to
the true metric.
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Figure 7: Items close in our weighted graph (bot-
tom) are more similar than those under the Jac-
card index (top).

√
n and log(n) sparsity levels, in practice our estimator

performs nearly perfectly at both low sparsity levels.

For constant degree k = 50 we achieve near-perfect
performance for all choices of n, while the path-integral
estimator fails to converge in the k = log(n) regime.

Some specific examples of our density estimator with
n = 2000, k = 100 are shown in Figure 2. The exam-
ples are mixture of uniforms (left), mixture of Gaus-
sians (center), and t-distribution (right). As predicted,
our estimator tracks extremely closely with the metric
k-nearest neighbor estimator (red and blue), as well as
the true density (black). The path integral estimator
has high estimate variance at points with large density
and fails to cope with the two mixture densities.

Varying the dimension for an isotropic multivariate
normal with k =

√
n, we find that a large number

of points are required to maintain high accuracy as d
grows large (red and blue lines in Figure 3). However,
this is due to a global ‘flattening’ of the density. Mea-
suring the correlation between the true and estimated
log probabilities show that up to a global concentra-
tion parameter, the estimator maintains high accuracy
across a large number of dimensions (black lines).

Kernel graphs We validate the nonparametric esti-
mator in Corollary 4.2 for kernel graphs by construct-
ing three different kernel graphs. In all cases, we sam-
ple 5000 points with connection probability following
pi,j = exp(−ε(xi)−1|xi − xj |). We vary the neigh-
borhood structure ε in three ways: a constant kernel,
ε(xi) ∝ 1; k-nearest neighbor kernel: ε(x) ∝ 1/εk=100;
and spatially varying kernel ε(x) ∝ |x|.

In Figure 4, we find that our nonparametric estimator
(black) always matches the ground truth (red). This
example also shows that both degree and stationary
distribution can be valid density estimators under cer-

tain assumptions, but only our estimator can deal with
arbitrary isotropic graph construction methods with-
out knowledge of the graph construction technique.

Metric recovery on real data As an example of
metric reconstruction, we take the first 2000 exam-
ples in the U.S. postal service (USPS) digits dataset
[7] and construct an unweighted k-nearest neighbor
graph. We use our method to reconstruct the metric
and perform similarity queries, and the Jaccard index
was used to tie-break direct neighbors.

The USPS digits dataset is known to have a high-
density cluster of ones digits (orange). Results in Fig-
ure 5 show that we are able to successfully recover
the density structure of the data (top). Inter-point
distances estimated by our method (Figure 6, y-axis)
show nearly linear agreement to the true metric (x-
axis) at short distances and high similarity globally.

Performing a similarity query on the data (Figure 7)
shows that the our reconstructed distances (bottom
row) have a more coherent set of similar digits when
compared to the Jaccard index (top row) [8]. The
behavior of the unweighted Jaccard similarity is due
to a known problem with shortest paths in k-nearest
neighbor graphs preferring low density regions [14].

Amazon co-purchasing data Finally, we recover
density and metric on a real network dataset with no
ground truth. We analyzed the largest connected com-
ponent of the Amazon co-purchasing network dataset
(n = 7175, k = 21804) [9]. Each vertex is a product
on amazon.com along with its category and sales rank,
and each directed edge represents a co-purchasing rec-
ommendation of the form “person who bought x also
bought y.” This dataset naturally fulfills our assump-
tions of having edges that are asymmetric, where edges
represent a notion of similarity in some space.
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Figure 8: Density estimates in the graph correlate well with
sales rank, unlike the other measures of centrality.

Figure 9: Embeddings from estimated dis-
tances recover the separation between dif-
ferent product categories.

Classics Literature Classical music Philosophy
The Prince The Stranger Beethoven: Symphonien Nos. 5 & The Practice of Everyday Life
The Communist Manifesto The Myth of Sisyphus Mozart: Symphonies Nos. 35-41 The Society of the Spectacle
The Republic The Metamorphosis Mozart: Violin Concertos The Production of Space
Wealth of Nations Heart of Darkness Tchaikovsky: Concerto No. 1/Rac Illuminations
On War The Fall Beethoven: Symphonies Nos. 3 & Space and Place: The Perspectiv

Table 1: Top 4 clusters formed by mapping each item to its mode (first row). Each group is a coherent genre.

The items that lie in regions of highest density should
be archetypal products for a category, and therefore
be more popular. We show that the density estimates
using our method with d = 10 show a strong positive
association between density and sales (Figure 8). We
found that this effect persisted regardless of choice of
d. Other popular measures of network centrality such
as betweenness and closeness fail to display this effect.

We then attempted metric recovery using our random
walk based reconstruction (Figure 9). For visualiza-
tion purposes, we used classical multidimensional scal-
ing on the recovered metric to embed points belonging
to categories with at least two hundred items. The em-
bedding shows that our method captures separation
across different product categories. Notably, nonfic-
tion and history have substantial overlap as expected,
while classical music CD’s and computer science books
have little overlap with the other clusters.

Analyzing the modes of the density estimate by clus-
tering each point to its local mode, we find coherent
clusters where top items serve as archetypes for the
cluster (Table 1). This suggests that there may be a
close connection between clustering in a metric space
and community detection in network data. The overall
performance of our method on density estimation and
metric recovery for the Amazon dataset suggests that
when a metric assumption is appropriate, our random
walk based metric quantities can be used directly for
centrality and cluster estimates on a network.

7 Conclusions

We have presented a simple explicit identity linking the
stationary distribution of a random walk on a neigh-

borhood graph to the density and neighborhood size.

The density estimator constructed by inverting this
identity matches the metric k-nn density estimate with
r > 0.95 at log(n) degree with as few as a hundred
points (Figures 1,2). We also generalized the theo-
rem to a large class of graph construction techniques
and demonstrated that the choice of construction tech-
nique matters little for accuracy (Figures 4).

Our estimator performed well on real-world data, re-
covering underlying metric information in test data
(Figures 6,7) and predicting popular Amazon products
through density estimates (Figure 8).

There are several open questions left unanswered by
our work. Our results required that the graphs be of
degree k = ω(n2/(d+2) log(n)d/(d+2)) rather than the
log(n) required for connectivity. Our simulation re-
sults suggest that even near the log(n) regime our esti-
mator performs similarly to the dense case, suggesting
that the true degree lower bound may be much lower.

The close connection of our density estimate to PageR-
ank suggests that combining the latent spatial map
with vector space estimates may lead to highly effec-
tive and theoretically principled network algorithms.
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