
BIOINFORMATICS DISCOVERY NOTE
����� �������	�
���

�
��

���
���������

Fast Optimal Leaf Ordering for Hierarchical
Clustering
������� ��!#"%$'&�(')+*-,/.102���3�547698�:;� <5<=&+!>4?��@�47A	&+BCBC�1DE81$3�+��F3F3&+G5�

H�IKJML�N#IPO�L�N#QSR�L�N3T�L�UEVMWKO�X�N'Y[ZK\ X�]	ZKXM^�_a`�b
^�cPdecEbfX	ZKg�]�L�h L�iMQaY[j[W	IKNkXM^�TlIKUEJMNm\ n[iMXM^�_Eo�^
p	qsr�t�u ^�v�Y[o�^�H�IKJML�N#IPO�L�N#QSR�L�N3T�L�UEVMWKO�X�N'Y[ZK\ X�]	ZKXM^�_a`�b
^PcPdecabfX	ZKg�]�L�h L�iMQaY[j[W	IKNkXM^
TlIKUEJMNm\ n[iMXM^�_Eo�^ p	qsr�t�u ^�v�Y[owIK]	nxo3NmO�\ y�ZK\ IKh�`]KO�X�h h \ iMX�]	ZKX H�IKJML�N#IPO�L�N#Qz^�_a`�b
^�cPdec
bfX	ZKg�]�L�h L�iMQaY[j[W	IKNkXM^�TlIKUEJMNm\ n[iMXM^�_Eo�^ p	qsr�t�u ^�v�Y[o

ABSTRACT
We present the first practical algorithm for the optimal

linear leaf ordering of trees that are generated by hierarchi-
cal clustering. Hierarchical clustering has been extensively
used to analyze gene expression data, and we show how
optimal leaf ordering can reveal biological structure that is
not observed with an existing heuristic ordering method.
For a tree with n leaves, there are 2n−1 linear orderings
consistent with the structure of the tree. Our optimal leaf
ordering algorithm runs in time O(n4), and we present fur-
ther improvements that make the running time of our algo-
rithm practical.
Contact: zivbj@mit.edu, gifford@lcs.mit.edu,
tommi@ai.mit.edu

INTRODUCTION
Hierarchical clustering organizes a set of input elements
into a binary tree that groups similar elements together.
The distance between input elements in the resulting
binary tree is related to their similarity. When input ele-
ments are vectors of gene expression levels the resulting
tree organizes genes or experiments such that underlying
biological structure can often be discerned. Hierarchical
clustering has been extensively used in the biological
literature to find genes that share a common function
(Eisen et al. (1998); Spellman et al. (1998); Alizadeh
et al. (2000); Causton et al. (2001)) and for experiment
classification (Alon et al. (1999)).

Trees that result from gene clustering are usually
displayed with their leaves in a linear order. Biological
analysis is often done in the context of this linear ordering,
making the linear ordering of the leaves significant. For
example, genes or experiments that are adjacent in a linear
ordering are often hypothesized to be related in some
manner. In addition, when analyzing time series data the
entire structure of an ordering may be relied upon to
determine which genes are synchronized in time and to
reference the timing of gene clusters to one another.

An optimal leaf ordering of a binary tree maximizes the
sum of the similarity of adjacent elements in the ordering.

For a binary tree of n input elements there are 2n−1 linear
orderings consistent with the structure of the tree. Because
of the large number of distinct linear orderings finding an
optimal leaf ordering was thought to be impractical (Eisen
et al. (1998)). Our primary results are the demonstration of
a practical algorithm for determining optimal orderings,
and showing that optimal leaf orderings are useful.

Hierarchical clustering
Hierarchical clustering starts by computing a similarity
matrix (S) between all pairs of input elements to be
clustered. Initially, each input element corresponds to a
single cluster. Using the similarity matrix S we combine
at each step the two most similar clusters and form a
new cluster which contains both clusters. After combining
these two clusters we compute the similarity of the new
cluster to all the remaining clusters. For n genes, this
step is repeated n − 1 times until we are left with
a single cluster that contains all genes. Eisen et al.
(1998) contains a detailed description of the hierarchical
clustering algorithm. The running time of this algorithm is
O(n3) since for each of the n−1 mergings we perform we
need to search the S matrix for the largest entry. Though
hierarchical clustering could be performed in O(n2) as
described in Eppstein (1998), the above algorithm is the
one that is implemented in Cluster, the software package
described in Eisen et al. (1998), and is the one most papers
use.

Unlike most other clustering methods, hierarchical clus-
tering does not determine unique clusters. Thus, the user
has to determine which of the subtrees are clusters, and
which subtrees are only a part of a bigger cluster. Any im-
provement to the basic algorithm, such as a leaf ordering
algorithm, could help a user identify clusters and interpret
the data. In addition, one might be interested not only in
the clusters but also in their relationships. Cluster relation-
ships are key when studying time-series data.

Current versions of hierarchical clustering software use
heuristics for leaf ordering. Cluster (Eisen et al. (1998))
orders leaves based on their average expression level. A

c© Oxford University Press 2001 1

Z. Bar-Joseph et al.

second heuristic for leaf ordering is suggested by the
Cluster manual, and orders clusters using the results of
a one dimensional self organizing map. Because self-
organizing maps and hierarchical clustering use different
methods to perform clustering (see Tamayo et al. (1999)),
clusters generated by the self-organizing map algorithm
do not always match those generated by the hierarchical
clustering algorithm. In addition, self-organizing maps
only order the clusters, and does not order genes inside
each cluster. A third heuristic, which was presented
by Alon et al. (1999), orders leaves and internal nodes
based on their similarity to their parent’s siblings. This
heuristic uses local similarities to generate the global
ordering, and usually does not lead to optimal ordering.

Results
We show that it is practical to compute the optimal
leaf ordering for a given hierarchical clustering tree. Our
algorithm for the optimal leaf ordering for a tree of n
leaves runs in O(n4) time and O(n2) space. Our method
is general and works for any binary tree leaf ordering and
thus is not restricted to trees that were generated using
hierarchical clustering. Because hierarchical clustering is
performed in O(n3) time and is thus faster than our
algorithm for optimal leaf ordering, further improvements
were necessary to make our algorithm practical. These
improvements make our algorithm’s running time very
reasonable when compared with tree construction time.

We present several examples that show that optimal leaf
ordering achieves results that are superior to the heuristic
ordering method that is present in the existing software
package of Eisen et al. (1998). These examples consist of
random and hand generated data as well as biological data.
For example, we tested our algorithm on the cell cycle
data of Spellman et al. (1998). Using optimal ordering,
we where able to uncover not only the correct cell cycle
specific clusters, but also properly order these clusters in
time.

LEAF ORDERING ALGORITHM
In this section we formalize the optimal ordering problem.
We then present our leaf ordering algorithm, and analyze
its time and space complexity.

Problem definition
First, we formalize the optimal leaf ordering problem,
using the following notations. For a tree T with n leaves,
denote by z1, · · · , zn the leaves of T and by v1 · · · vn−1

the n − 1 internal nodes of T . A linear ordering
consistent with T is defined to be an ordering of the leaves
of T generated by flipping internal nodes in T (that is,
changing the order between the two subtrees rooted at vi,
for any vi ∈ T). See Figure 1 for an example of node

34 51 21 2 3 4 5

Fig. 1. Change in the leaf ordering due to an internal node flip. When
flipping the two subtrees rooted at the red circled node we obtain
different orderings while maintaining the same tree structure. Since
there are n − 1 internal nodes there are 2n−1 possible orderings of
the tree leaves.

flipping. Since there are n − 1 internal nodes, there are
2n−1 possible linear orderings of the leaves of the tree.
Our goal is to find an ordering of the tree leaves, that
maximizes the sum of the similarities of adjacent leaves
in the ordering. This could be stated mathematically in the
following way. Denote by Φ the space of the 2n−1 possible
orderings of the tree leaves. For φ ∈ Φ we define Dφ(T)
to be:

Dφ(T) =

n−1∑

i=1

S(zφi
, zφi+1

)

where zφi
is the ith leaf when T is ordered according to φ,

and S is the similarity matrix. Thus, our goal is to find an
ordering φ that maximize Dφ(T). For such an ordering φ,
we say that D(T) = Dφ(T).

Algorithm
When describing our algorithm we refer to an internal
node, and a subtree rooted at that internal node using the
same name. A leaf z is said to belong to a subtree v if z
is one of the leaves of v. For a subtree v, |v| denotes the
number of leaves in v.

The algorithm we present is recursive, and works in
a way that resembles dynamic programming. For each
internal node v it finds the cost of the optimal ordering
of the subtree rooted at v, denoted by M(v). In addition,
denote by vl and vr the two internal nodes just underneath
v (i.e. the nodes for which v is their parent node, see
Figure 2). For every pair of leaves u ∈ vl and w ∈ vr,
our algorithm computes M(v, u, w) which is the optimal
linear ordering of v when the leftmost leaf of v is u and
the rightmost leaf of v is w.

Our algorithm works in a bottom up way. No M value
for a subtree v is computed until all the M values of
all subtrees of v are computed. Thus, when computing
M(v, u, w) for a subtree v, we already computed the M
values for the two subtrees of v, vl and vr. If we now
specify that some leaf m will be the rightmost leaf of vl

and a leaf k will be the leftmost leaf of vr (see Figure 2)
then the best ordering of v when u is on one side, w

2

Optimal Leaf Ordering

u wm k

V

VV

V V
l,l

l

r.r

r

V Vl,r r,l

Fig. 2. For every pair of leaves u ∈ vl and w ∈ vr our algorithm
computes M(v, u, w) which is the optimal linear ordering when the
leftmost leaf of v is u and the rightmost leaf of v is w. Note that
when computing M(v, u, w) we must have a leaf m ∈ vl,r as the
rightmost leaf of vl and k ∈ vr,l as the leftmost leaf of vr .

is on the other and k and m are in the middle is just:
M(vl, u,m) + M(vr, w, k) + S(m, k) where S is the
similarity matrix. In order to find M(v, u, w) we must
try all feasible m, k pairs, compute the resulting value,
and take the one that has the highest score. This could
be summarized by the following equation: M(v, u, w) =
maxm∈vl,r,k∈vr,l

M(vl, u,m)+M(vr, w, k)+S(m, k),
where vl,r is the right subtree of vl and vr,l is the left
subtree of vr (see Figure 2). Since in every linear ordering
of the leaves of v there must be a leaf from vl on the left
side of v and a leaf from vr on the right side of v (or
vice versa), once we computed M(v, u, w) for all possible
pairs u,w, we just need to find the highest scoring pair in
order to find M(v). Thus, if vt is the root of the input tree
T , we have D(T) = M(vt).

After computing M(vt) we use backtracking to find
the path we took in order to arrive at M(vt). This gives
the actual ordering of the leaves of T . This can be done
in a similar way to the backtracking used in dynamic
programming.

The algorithm for computing M(vt, L,R) (where L,R
stands for all the possible leftmost and rightmost pairs
of leaves of v) is presented in Figure 3. As mentioned
above, finding the maximum over M(vt, L,R) results in
M(vt). A complete formal proof of the correctness of the
algorithm can be found on our website (Bar-Joseph et al.
(2001)).

Algorithm complexity
The time complexity of our algorithm is O(n4). This
can be seen by observing the following property of our
algorithm. For each pair of leaves (u,w) there exists one,
and only one subtree v for which we compute M(v, u, w).
This is the subtree rooted at the least common ancestor of
u and w. For example, in Figure 2, v is the least common
ancestor of the pair (u,w) while vl is the least common

ancestor of the pair (u,m). If v is the least common
ancestor of (u,w) then u could be on one side of v while
w is on the other. However, if v is not the least common
ancestor of u and w and u,w ∈ v, it means that u and w
belong to the same subtree of v (either vl or vr). Thus u
and w cannot appear on different sides in an ordering of
the leaves of v and we do not compute M(v, u, w) for v.

Thus, we only compute M(v, u, w) once for each of the
O(n2) pairs of leaves. Each computation of M(v, u, w)
requires us to find the maximum over all the possible
m, k leaves that lie in the intersection of vl and vr. This
results in at most O(n2) time needed to compute each
M(v, u, w). Thus, the total running time of our algorithm
is at most O(n4). It could be shown that this is the actual
running time of our algorithm on a complete balanced
binary tree †. A complete proof of the time complex-
ity can be found on our website (Bar-Joseph et al. (2001)).

The space complexity of our algorithm is O(n2). As
shown above, for every pair of leaves u,w we compute
M(v, u, w) only once, and thus we store only one value
for each such pair. In order to perform the backtracking
needed to reconstruct the order of the leaves of the tree we
only need to keep two pointers for each M(v, u, w) entry
(one points to M(vl, u,m) and the other to M(vr, w, k)).
Thus, the space complexity of our algorithm is O(n2).
Note that since the size of the similarity matrix S is also
O(n2), O(n2) is the optimal space complexity if we wish
to compute S.

IMPROVING THE ORIGINAL ALGORITHM
In this section we discuss how we can improve the
running time of our algorithm without sacrificing optimal
linear ordering. For microarray expression data, n is in
many cases bigger than 1000. Thus, an O(n4) algorithm
can take a very long time in comparison to a O(n3)
tree construction time. For example, for n = 1500
the hierarchical clustering algorithm takes on average 2
minutes while the leaf ordering can take up to 7 hours (see
Figure 5).

Early Termination of the search
As discussed in the previous section, for each M(v, u, w)
computation we perform an O(n2) search on all the
possible m, k pairs of leaves. Our goal is to terminate this
search early when it can not lead to an improvement of
M(v, u, w) reducing the computation time. To this end we
first order M(vl, u,R) and M(vr, w, L) in descending
order (where R denotes the set of possible rightmost
leaves of vl when u is the leftmost leaf of vl, and R is
the same for w and vr).

†A balanced binary tree is a tree in which for every subtree v, |vl| = |vr| =

|v|/2.

3

Z. Bar-Joseph et al.

optOrdering(v, S) {
If |v| = 1 { // v has only one leaf

M(v, u, u) = 0 // u is the only leaf in v
return M(v, u, u)

Else // v has more than one leaf
M(vl, L,R) = optOrdering(vl, S) // vl is the left subtree of v
M(vr, L,R) = optOrdering(vr, S) // vr is the right subtree of v
For all leaves u ∈ vl {

For all leaves w ∈ vr {
M(v, u, w) = maxm∈vl,r,k∈vr,l

M(vl, u,m) + M(vr, w, k) + S(m, k)
M(v, w, u) = M(v, u, w)

}
}
return M(v, L,R) // L,R stands for all possible pairs of leaves from vl and vr

}

Fig. 3. The recursive algorithm for computing M(v, L, R). This algorithm returns the optimal ordering of v for all
pairs of leaves u ∈ vl and w ∈ vr .

Next we find the maximal similarity between a leaf of
vl and a leaf of vr. Denote this similarity by C(vl, vr) =
maxm∈vl,k∈vr

S(m, k). When computing M(v, u, w) we
go over all possible intersecting leaves m, k according to
the order specified above. For each such pair we know
that S(m, k) ≤ C(vl, vr). This can help us terminate the
search for M(v, u, w) in the following way.

For each pair of leaves u ∈ vl, w ∈ vr our
improved algorithm computes M(v, u, w) by per-
forming two loops (see Figure 4). The outer loop
runs over all possible leaves m ∈ vl,r according
to the order of M(vl, u,R) and the inner loop is
performed according to the order of M(vr, w, L). De-
note by curMax the current maximum we have for
M(v, u, w). If for a given pair of leaves m, k we have
M(vl, u,m) + M(vr, w, k) + C(vl, vr) ≤ curMax,
we are guaranteed that for any k′ > k (that is, k′ that
comes after k in the ordering of M(vr, w, L)), m, k′ will
not lead to better value of M(v, u, w). For such a k′,
M(vr, w, k′) ≤ M(vr, w, k) and S(m, k′) ≤ C(vl, vr)
and so M(vl, u,m) + M(vr, w, k′) + S(m, k′) ≤
M(vl, u,m) + M(vr, w, k) + C(vl, vr) ≤ curMax.
Thus, in this case we can terminate the inner loop
and jump to the next leaf in the outer loop. The same
argument shows that we can terminate the outer loop
(and thus terminate the search for M(v, u, w)) if for
k0, the leaf that maximizes M(vr, w,R), (k0 is the
first leaf in the ordering of M(vr, w, L)) we have
M(vl, u,m) + M(vr, w, k0) + C(vl, vr) ≤ curMax.

The final part of our improvement is achieved by
replacing C(vl, vr) with another value for each possible
combination of the four subtrees vl,l, vl,r, vr,l and vr,r.
When perfroming the search for M(v, u, w) where u ∈

vl,l and w ∈ vr,r we can replace C(vl, vr) with
C(vl,r, vr,l) since the m, k leaves must come from vl,r

and vr,l respectively (see Figure 2).
Though the worst case running time reamains O(n4),

this improvement dramatically decreases the computation
time on average, as can be seen in Figure 5. The results
of Figure 5 were obtained using randomly generated data.
Clustering randomly generated data usually results in
a balanced binary tree. As mentioned earlier, balanced
binary trees are the worst case for our algorithm and the
less balanced the tree is, the faster the computation time.
For biological data, the trees generated are usually less
balanced when compared with randomly generated trees.
In addition, in biological datasets, C(vl, vr) is usually
smaller between clusters than it is between clusters of
the same size for randomly generated datasets. Thus, the
actual running time of our algorithm on biological datasets
is usually faster when compared with randomly generated
datasets with the same number of leaves. The running
time of our algorithm on a number of biological datasets
appears in Figure 6.

RESULTS
We tested our algorithm on several different inputs. First,
we used randomly generated datasets to test the effect
that optimal ordering has on the sum of similarities of
neighboring leaves, which is the function our algorithm
maximizes. Next, we generated datasets to test the effect
optimal ordering has on the visual representation of the
hierarchical clustering results. We conclude this section by
presenting biological results that were obtained using the
cell cycle data of Spellman et al. (1998).

For computing the hierarchical clustering results we

4

Optimal Leaf Ordering

curMax = −∞
For all leaves m according to the order of M(vl, u,R) {

if M(vl, u,m) + M(vr, w, k0) + C(vl, vr) ≤ curMax // k0 is first in the order of M(vr, w, L)
M(v, u, w) = curMax, terminate the search

For all leaves k according to the order of M(vr, w, L)
if M(vl, u,m) + M(vr, w, k) + C(vl, vr) ≤ curMax

break // terminate the inner loop
if curMax < M(vl, u,m) + M(vr, w, k) + S(m, k)

curMax = M(vl, u,m) + M(vr, w, k) + S(m, k)
} // end of the inner loop

} // end of the outer loop
M(v, u, w) = curMax

Fig. 4. The improved way to compute M(v, u, w). This repalces the search over all leaves m,k in the algorithm
presented in the previous section.

Num. of genes Clustering time Ordering time (original) Ordering time (with improvement)

100 0 0 0

300 1 22 2

500 3 200 10

1000 32 4000 (66 min) 102

1500 115 24800 (7 hours) 420

Fig. 5. A comparison between the clustering time (in seconds) and the ordering time on randomly generated data. For each leaf we generated
60 data points at random and then computed the resulting hierarchical clustering tree. As can be seen, without the suggested improvements
the ordering time can be very slow. However, with the improvements the ordering time is very reasonable when compared with the clustering
time. The ordering time for biological datasets is usually faster than that of randomly generated data as explained in the text. These results
were obtained on a 400 MHz Pentium pc with 128M memory.

used the correlation coefficients as the similarity matrix
(S). The clustering was performed using the average
linkage method as presented in Eisen et al. (1998).

Random data
For random data, we chose 60 values (representing 60
time points) at random for each leaf. Next, we computed
the resulting similarity matrix, and then hierarchically
clustered these data points. Denote by S(T r) and by
D(T r) the sum of the similarity between adjacent leaves
in the initial and optimal leaf ordering of the resulting tree
T r respectively. Set I = (D(T r) − S(T r))/S(T r). I is
the increase in similarity of D(T r) compared with S(T r).
We found that even for a large number of random data
points (n = 1500), I is on average 20%, indicating that
optimal ordering has a noticeable impact on the similarity

of neighboring leaves in the linear ordering.

Artificial data
In order to test the effect of leaf ordering on the presenta-
tion of the data, we generated several input data sets. Each
data set had some structure which we permuted, and then
we ran the hierarchical clustering algorithm to cluster the
data set. In this section we compare the results of Cluster
(Eisen et al. (1998)) with our optimal ordering algorithm.
All the figures in this section were generated using Tree-
View (Eisen et al. (1998)).

In Figure 7 we present structured synthetic data. As can
be seen, although there is some structure in the Cluster
output, it is obvious that the optimal ordering algorithm
captures the true underline structure.

Our next experiment was a larger scale test. We gen-

5

Z. Bar-Joseph et al.

Type of dataset Num of experiments Num of genes Clustering time Ordering time

Cell cycle from Spellman et al. (1998) 59 800 15 27

Cell cycle - cdc15 from Spellman et al. (1998) 24 800 15 180

Different sources from Eisen et al. (1998) 79 979 26 50

Environment response from Causton et al. (2001) 45 3684 910 (15 min) 257 (4 min)

Fig. 6. Comparison between the clustering time (in seconds) and the ordering time on a number of biological datasets. The results for the
Environment response dataset were obtained on a 700MHz, 512M Pentium pc. The rest were obtained on a 400MHz, 128M Pentium pc. As
can be seen, in most cases the ordering time is very reasonable compared to the clustering time. For the largest dataset, the ordering time was
actually much smaller than the clustering time.

Cluster result Input (permuted) Ordering result

Fig. 7. Comparison between the ordered and non ordered hierarchical clustering on a generated dataset. Green corresponds to decrease in
value (-1) and red to increase (1).

erated 100 data points for each of the 1000 leaves. For
each leaf we set 40 consecutive points to -1, and then flip
them to 0 or 1 with low probability. The rest of the points
were generated at random. The results of the initial order-
ing (which is similar to the random ordering of Cluster),
and of the similarity maximizing ordering are shown in
Figure 8. As can be seen, the clusters were identified cor-
rectly by the hierarchical clustering algorithm. However,
the ordering of the clusters is much better when using op-
timal leaf ordering.

Biological datasets
We further tested our algorithm using 800 genes which
are cell cycle regulated in Saccharomyces cerevisiae.
Spellman et al. (1998) assigned these 800 genes to five
groups termed G1, S, S/G2, G2/M , and M/G1. These
groups approximate the commonly used cell cycle groups
in the literature. The assignment to different groups was
performed by what the authors call a ’phasing’ method.
This method compares the ’peak expression’ for each
unknown gene with the expression of genes that were
known to belong to each of these group. Genes were
assigned to the group to which their peak expression was

the most similar.
After performing the phasing algorithm the authors

organized the 800 genes using hierarchical clustering and
a heuristic leaf ordering. Most of the genes that belong to
the same group appeared together. However, some clusters
were a mix of two or more groups, and the cell cycle genes
were not presented in temporal order.

Using a subset of the dataset from Spellman et al. (1998)
(24 cdc15 experiments), we compared the results of our
optimal ordering algorithm to the heuristic ordering in
Cluster. As can be seen in Figure 9, our algorithm was
able to correctly recover the cell cycle order (G2/M ,
M/G1, G1, S and S/G2). In addition, our algorithm was
able to reorder some of the clusters so that the different
clusters are correctly separated. For example, the G1, S
and S/G2 groups are mixed in the hierarchical clustering
results but are correctly separated in the optimal ordering
results. Thus, while still using unsupervised learning, our
algorithm was able to correctly identify the cell cycle
groups and the order of these groups, achieving a high
correlation with the phasing method (which is a supervised
algorithm) that was previously used in Spellman et al.
(1998).

6

Optimal Leaf Ordering

Fig. 8. Comparison between the ordered and non ordered hierarchical clustering. The small images are enlargements of the same cluster in
both results. As can be seen, the ordering algorithm orders the clusters so that the relationship between them is apparent. In addition, it also
orders the genes inside each cluster as can be seen in the small images.

We also performed a larger scale comparison between
the heuristic ordering in Cluster and our optimal ordering
algorithm. For this comparison we used the complete
dataset of Spellman et al. (1998). This dataset is a
combination of three different experiments (cdc15, cdc28
and α factor). These three datasets consisted of 59 separate
experiments. We compared the clustering of the 800 genes
that were identified as cell cycle regulated. Again, our
optimal ordering algorithm was able to recover the order
of the different cell cycle groups (unlike the hierarchical
clustering), and did a better job in reconstructing the
groups themselves. See our website (Bar-Joseph et al.
(2001)) for the comparison figures and complete data.

DISCUSSION AND FUTURE WORK
We showed that an optimal linear ordering can be com-
puted in a O(n4) time. Our algorithm is general, and
works for any binary tree leaf ordering. Improving the
algorithm by early termination of search paths decreases

the average running time of the algorithm dramatically.
We intend to make the software used for generating the
results in this paper publicly available.

Using optimal ordering one can arrive at results that are
better than a heuristic ordering of the leaves. We presented
several examples in which the results of our optimal
ordering algorithm are superior to the original heuristic
ordering results. Optimal leaf ordering helps a user
determine meaningful cluster boundaries and also helps
determine the relationship between different clusters.
These relationships are very important in time series data
analysis.

Optimal leaf ordering causes input elements that
are highly correlated in a cluster to appear in the
middle of the linear ordering of the cluster, while
marginally related elements are on the borders
of the cluster. We have examined other datasets
from Eisen et al. (1998) using the MIPS yeast com-
plexes database (http://www.mips.biochem.mpg.de/

7

Z. Bar-Joseph et al.

Fig. 9. Color comparison of hierarchical clustering (left) and optimal ordering (right) using the cell cycle data of Spellman et al. (1998).
For each of the genes in these figures we plotted a dot on its right which represents the group to which it belongs according to Spellman
et al. (1998) (red for G2/M yellow for M/G1 etc.). As can be seen , the cell cycle phasing is much more apparent in the optimal ordering
result,which correctly recovers the order of the groups in the cell cycle. In addition, using optimal ordering one can better reconstruct the
groups themselves as can be seen in the case of the G1, S and S/G2 groups.

proj/yeast/catalogues/complexes). We have determined
that under optimal linear ordering the centers of clus-
ters have common MIPS categorizations, while under
Cluster’s ordering genes with common MIPS categories
were more dispersed. See our website (Bar-Joseph et al.
(2001)) for quantitative results and figures.

We are investigating ways of using optimal leaf ordering

for automatic cluster discovery. We expect that the struc-

ture of an optimal ordering can be employed to determine

clusters of varying sizes that are related at desired signifi-

cance levels.

8

Optimal Leaf Ordering

ACKNOWLEDGEMENTS
We would like to thank Peter Clote for useful comments
and discussions, and Fritz Roth for pointing us to earlier
work. We are grateful to Dan Gusfield for helping us revise
the description of the algorithm, making it much clearer
than before.

REFERENCES
Alizadeh, A., M. Eisen, and et al (2000). Distinct types of diffuse

large b-cell lymphoma identified by gene expression profiling.
Nature 403, 503–510.

Alon, U., N. Barkai, and et al (1999). Broad patterns of gene
expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad.
Sci. USA 96, 6745–6750.

Bar-Joseph, Z., D. Gifford, and T. Jaakkola (2001).
Fast optimal leaf ordering for hierarchical clustering.
http://www.psrg.lcs.mit.edu/ zivbj/ismb01/optimal.html.

Causton, H. C., B. Ren, and et al (2001). Remodeling of yeast
genome expression in response to environmental changes. Mol.
Biol. of the Cell 12, 323–337.

Eisen, M., P. Spellman, P. Brown, and D. Botstein (1998). Cluster
analysis and display of genome-wide expression patterns. Proc.
Natl. Acad. Sci. USA 95, 14863–14868.

Eppstein, D. (1998). Fast hierarchical clustering and other
applications of dynamic closest pairs. In Proc. of the 9th ACM-
SIAM Symp. on Discrete Algorithms, pp. 619–628.

Spellman, T. S., G. Sherlock, and et al (1998). Comprehen-
sive identification of cell cycle-regulated genes of the yeast
saccharomyces cerevisia by microarray hybridization. Mol.
Biol. of the Cell 9, 3273–3297.

Tamayo, P., D. Slonim, and et al (1999). Interpreting patterns
of gene expression with self organizing maps: Methods and
applications to hematopoietic differentiation. Proc. Natl. Acad.
Sci. USA 96, 2907–2912.

9

