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Abstract
We present a model that, after learning on ob-
servations of (sequence, outcome) pairs, can be
efficiently used to revise a new sequence in order
to improve its associated outcome. Our frame-
work requires neither example improvements,
nor additional evaluation of outcomes for pro-
posed revisions. To avoid combinatorial-search
over sequence elements, we specify a generative
model with continuous latent factors, which is
learned via joint approximate inference using a
recurrent variational autoencoder (VAE) and an
outcome-predicting neural network module. Un-
der this model, gradient methods can be used to
efficiently optimize the continuous latent factors
with respect to inferred outcomes. By appropri-
ately constraining this optimization and using the
VAE decoder to generate a revised sequence, we
ensure the revision is fundamentally similar to
the original sequence, is associated with better
outcomes, and looks natural. These desiderata
are proven to hold with high probability under
our approach, which is empirically demonstrated
for revising natural language sentences.

Introduction
The success of recurrent neural network (RNN) models
in complex tasks like machine translation and audio syn-
thesis has inspired immense interest in learning from se-
quence data (Eck & Schmidhuber, 2002; Graves, 2013;
Sutskever et al., 2014; Karpathy, 2015). Comprised of ele-
ments st P S, which are typically symbols from a discrete
vocabulary, a sequence x “ ps1, . . . , sT q P X has length T
which can vary between different instances. Sentences are
a popular example of such data, where each sj is a word
from the language. In many domains, only a tiny fraction
of X (the set of possible sequences over a given vocabu-
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lary) represents sequences likely to be found in nature (ie.
those which appear realistic). For example: a random se-
quence of words will almost never form a coherent sentence
that reads naturally, and a random amino-acid sequence is
highly unlikely to specify a biologically active protein.

In this work, we consider applications where each sequence
x is associated with a corresponding outcome y P R.
For example: a news article title or Twitter post can be
associated with the number of shares it subsequently re-
ceived online, or the amino-acid sequence of a synthetic
protein can be associated with its clinical efficacy. We op-
erate under the standard supervised learning setting, assum-
ing availability of a dataset Dn “ tpxi, yiquni“1

iid
„ pXY

of sequence-outcome pairs. The marginal distribution
pX is assumed as a generative model of the natural se-
quences, and may be concentrated in a small subspace of
X . Throughout this paper, p denotes both density and dis-
tribution functions depending on the referenced variable.

After fitting models to Dn, we are presented a new se-
quence x0 P X (with unknown outcome), and our goal is to
quickly identify a revised version that is expected to have
superior outcome. Formally, we seek the revised sequence:

x˚ “ argmax
xPCx0

ErY | X “ xs (1)

Here, we want the set Cx0
of feasible revisions to ensure

that x˚ remains natural and is merely a minor revision of
x0. Under a generative modeling perspective, these two
goals are formalized as the following desiderata: pXpx˚q is
not too small, and x˚ and x0 share similar underlying latent
characteristics. When revising a sentence for example, it is
imperative that the revision reads naturally (has reasonable
likelihood under the distribution of realistic sentences) and
retains the semantics of the original.

This optimization is difficult because the constraint-set and
objective may be highly complex and are both unknown
(must be learned from data). For many types of sequence
such as sentences, standard distance measures applied di-
rectly in the space of X or S (eg. Levenshtein distance or
TF-IDF similarity) are inadequate to capture meaningful
similarities, even though these can be faithfully reflected by
a simple metric over an appropriately learned space of con-
tinuous latent factors (Mueller & Thyagarajan, 2016). In
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this work, we introduce a generative-modeling framework
which transforms (1) into a simpler differentiable optimiza-
tion by leveraging continuous-valued latent representations
learned using neural networks. After the generative model
has been fit, our proposed procedure can efficiently revise
any new sequence in a manner that satisfies the aforemen-
tioned desiderata (with high probability).

Related Work
Unlike imitation learning, our setting does not require
availability of improved versions of a particular sequence.
This prevents direct application of a sequence-to-sequence
model (Sutskever et al., 2014). Similar to our approach,
Gómez-Bombarelli et al. (2016) also utilize latent autoen-
coder representations in order to propose novel chemical
structures via Bayesian optimization. However, unlike se-
quential bandit/reinforcement-learning settings, our learner
sees no outcomes outside of the training data, neither for
the new sequence it is asked to revise, nor for any of its
proposed revisions of said sequence (Mueller et al., 2017).
Our methods only require an easily-assembled dataset of
sequence-outcome pairs and are thus widely applicable.

Combinatorial structures are often optimized via complex
search heuristics such as genetic programming (Zaefferer
et al., 2014). However, search relies on evaluating iso-
lated changes in each iteration, whereas good revisions of
a sequence are often made over a larger context (ie. al-
tering a phrase in a sentence). From the vast number of
possibilities, such revisions are unlikely to be found by
search-procedures, and it is generally observed that such
methods are outperformed by gradient-based optimization
in high-dimensional continuous settings. Unlike combina-
torial search, our framework leverages gradients in order to
efficiently find good revisions at test time. Simonyan et al.
(2014) and Nguyen et al. (2015) also proposed gradient-
based optimization of inputs with respect to neural predic-
tions, but work in this vein has been focused on conditional
generation (rather than revision) and is primarily restricted
to the continuous image domain (Nguyen et al., 2016).

Methods
To identify good revisions, we first map our stochastic com-
binatorial optimization problem into a continuous space
where the objective and constraints exhibit a simpler form.
We assume the data are generated by the probabilistic
graphical model in Figure 1A. Here, latent factors Z P Rd
specify a (continuous) configuration of the generative pro-
cess for X,Y (both sequences and outcomes), and we
adopt the prior pZ “ Np0, Iq. Relationships between these
variables are summarized by the maps F,E,D which we
parameterize using three neural networks F ,E ,D trained
to enable efficient approximate inference under this model.

(A) Graphical Model (B) Revision Procedure
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Figure 1. (A) Assumed graphical model (shaded nodes indicate
observed variables, dashed arrows are learned neural network
mappings). (B) Procedure for revising a given x0 to produce x˚

with superior expected outcome.

The first step of our framework is to fit this model to Dn
by learning the parameters of these inference networks: the
encoder E , the decoder D , and the outcome-predictor F .
A good model that facilitates high-quality revision under
our framework will possess the following properties: (1)
Y can efficiently be inferred from Z and this relationship
obeys a smooth functional form, (2) the map D produces
a realistic sequence x given any z with reasonable prior
probability, (3) the distribution of natural sequences is ge-
ometrically simple in the latent Z-space. We explicitly en-
courage (1) by choosing F as a fairly simple feedforward
network, (2) by defining D as the most-likely x given z,
and (3) by endowing Z with our simple Np0, Iq prior.

Another characteristic desired of our Z-representations is
that they encode meaningful sequence-features such that
two fundamentally similar sequences are likely to have
been generated from neighboring z-values. Applied to im-
age data, VAE models similar to ours have been found to
learn latent representations that disentangle salient char-
acteristics such as scale, rotation, and other independent
visual concepts (Higgins et al., 2016). The latent repre-
sentations of recurrent architectures trained on text (similar
to the models used here) have also been shown to encode
meaningful semantics, with a strong correlation between
distances in the latent space and human-judged similarity
between texts (Mueller & Thyagarajan, 2016). By exploit-
ing such simplified geometry, a basic shift in the latent
vector space may be able to produce higher-quality revi-
sions than attempts to directly manipulate the combinato-
rial space of sequence elements.

After fitting a model with these desirable qualities, our
strategy to revise a given sequence x0 P X is outlined
in Figure 1B. First, we compute its latent representation
z0 “ Epx0q using a trained encoding map. As the latent
representations z are continuous, we can employ efficient
gradient-based optimization to find a nearby local optimum
z˚ of F pzq (within a simple constraint-set around z0 de-
fined later on). To z˚, we subsequently apply a simple de-
coding map D (defined with respect to our learned model)
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in order to obtain our revised sequence x˚. Under our
assumed model, the optimization in latent representation-
space attempts to identify a generative configuration which
produces large values of Y (as inferred via F ). The sub-
sequent decoding step seeks the most likely sequence pro-
duced by the optimized setting of the latent factors.

Variational Autoencoder

For approximate inference in the X,Z relationship, we
leverage the variational autoencoder (VAE) model of
Kingma & Welling (2014). In our VAE, a generative model
of sequences is specified by our prior over the latent values
z combined with a likelihood function pDpx | zq which our
decoder network D outputs in order to evaluate the likeli-
hood of any sequence x given z P Rd. Given any sequence
x, our encoder network E outputs a variational approxima-
tion qEpz | xq of the true posterior over the latent-values
ppz | xq9 pDpx | zqpZpzq. As advocated by Kingma &
Welling (2014) and Bowman et al. (2016), we employ the
variational family qEpz | xq “ Npµz|x,Σz|x) with diag-
onal covariance. Our revision methodology employs the
encoding procedure Epxq “ µz|x which maps a sequence
to the maximum a posteriori (MAP) configuration of the
latent values z (as estimated by the encoder network E ).

The parameters of E ,D are learned using stochastic
variational inference to maximize a lower bound for the
marginal likelihood of each observation in the training data:

log pXpxq ě ´
“

Lrecpxq ` Lpripxq
‰

(2)
Lrecpxq “ ´EqEpz|xq rlog pDpx | zqs

Lpripxq “ KLpqEpz | xq|| pZq

Defining σz|x “ diagpΣz|xq, the prior-enforcing Kullback-
Leibler divergence has a differentiable closed form expres-
sion when qE , pZ are diagonal Gaussian distributions. The
reconstruction term Lrec (ie. negative log-likelihood under
the decoder model) is efficiently approximated using just
one Monte-Carlo sample z „ qEpz | xq. To optimize the
variational lower bound over our data Dn with respect to
the parameters of neural networks E ,D , we use stochas-
tic gradients of (2) obtained via backpropagation and the
reparameterization trick of Kingma & Welling (2014).

Throughout, our encoder/decoder models E ,D are recur-
rent neural networks (RNN). RNNs adapt standard feedfor-
ward neural networks for sequence data x “ ps1, . . . , sT q,
where at each time-step t P t1, . . . , T u, a fixed size hidden-
state vector ht P Rd is updated based on the next element
in the input sequence. To produce the approximate pos-
terior for a given x, our encoder network E appends the
following additional layers to the final RNN hidden-state
(parameterized by Wµ,Wσ,Wv, bµ, bσ, bv):

µz|x “WµhT ` bµ P Rd

σz|x “ expp´|Wσv ` bσ|q, v “ ReLUpWvhT ` bvq (3)

The (squared) elements of σz|x P Rd form the diagonal of
our approximate-posterior covariance Σz|x. Since Lpri is
minimized at σz|x “ ~1 and Lrec is likely to worsen with
additional variance in encodings (as our posterior approx-
imation is unimodal), we simply do not consider σz|x val-
ues that exceed 1 in our variational family. This restriction
results in more stable training and also encourages the en-
coder and decoder to co-evolve such that the true posterior
is likely closer to unimodal with variance ď 1.

To evaluate the likelihood of a sequence, RNN D computes
not only its hidden state ht, but also the additional output:

πt “ softmaxpWπht ` bπq (4)

At each position t, πt estimates ppst | s1, . . . , st´1q by re-
lying on ht to summarize the sequence history. By the
factorization pps1, . . . , sT q “

śT
t“1 ppst | st´1, . . . , s1q,

we have pDpx | zq “
śT
t“1 πtrsts, which is calculated by

specifying an initial hidden-state h0 “ z and feeding
x “ ps1, . . . , sT q into D . From a given latent configuration
z, our revisions are produced by decoding a sequence via
the most-likely observation, which we denote as the map:

Dpzq “ argmax
xPX

pDpx | zq (5)

While the most-likely decoding in (5) is itself a combi-
natorial problem, beam search can exploit the sequential-
factorization of ppx | zq to efficiently find a good approx-
imate solution (Wiseman & Rush, 2016; Sutskever et al.,
2014). For x˚ “ Dpzq P X , this decoding strategy seeks
to ensure neither pXpx˚q nor ppz | x˚q is too small.

Compositional Prediction of Outcomes

In addition to the VAE component, we fit a composi-
tional outcome-prediction model which uses a standard
feed forward neural network F to implement the map
F : Rd Ñ R. It is assumed that F pzq “ ErY | Z “ zs un-
der our generative model. Rather than integrating over Z
to compute ErY | X “ xs “

ş

F pzqqEpz | xqdz, we em-
ploy the first-order Taylor approximation F pEpxqq, where
the approximation-error shrinks the more closely F resem-
bles an affine transformation. To ensure this approximate-
inference step accurately estimates the conditional expec-
tation, we jointly train E and F with the loss:

Lmsepx, yq “ ry ´ F pEpxqqs
2 (6)

If the architecture of networks E ,F is specified with suf-
ficient capacity to capture the underlying conditional rela-
tionship, then we should have F pEpxqq « ErY | X “ xs
after properly learning the network parameters from a suf-
ficiently large dataset (even F is a nonlinear map).
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Enforcing Invariance

In theory, it is possible that some dimensions of z pertain
solely to the outcome y and do not have any effect on the
decoded sequence Dpzq. Happening to learn this sort of
latent representation would be troubling, since subsequent
optimization of the inferred y with respect to z might not
actually lead to a superior revised sequence. To mitigate
this issue, we carefully ensure the dimensionality d of our
latent Z does not significantly exceed the bottleneck ca-
pacity needed to produce accurate outcome-predictions and
VAE reconstructions (Gupta et al., 2016). We explicitly
suppress this undesirable scenario by adding the following
loss to guide training of our neural networks:

Linv “ Ez„pZ
“

F pzq ´ F pEpDpzqqq
‰2

(7)

When optimizing neural network parameters with respect
to this loss, we treat the parameters of D and the lefthand
F pzq term as fixed, solely backpropagating Monte-Carlo
estimated gradients into E ,F . Driving Linv toward 0 en-
sures our outcome-predictions remain invariant to varia-
tion introduced by the encoding-decoding process (and this
term also serves as a practical regularizer to enforce addi-
tional smoothness in our learned functions).

Joint Training

The parameters of all components of this model (qE , pD,
and F ) are learned jointly in an end-to-end fashion. Train-
ing is done via stochastic gradient descent applied to mini-
mize the following objective over the examples in Dn:

Lpx, yq “ Lrec ` λpriLpri `
λmse

σ2
Y

Lmse `
λinv

σ2
Y

Linv (8)

where σ2
Y denotes the (empirical) variance of the outcomes,

and the λ ě 0 are constants chosen to balance the relative
weight of each goal so that the overall framework produces
maximally useful revisions. By setting λmse “ λinv “ 0
at first, we can optionally leverage a separate large cor-
pus of unlabeled examples to initially train only the VAE
component of our architecture, as in the unsupervised pre-
training strategy used successfully by Kiros et al. (2015);
Erhan et al. (2010).

In practice, we found the following training strategy to
work well, in which numerous mini-batch stochastic gra-
dient updates (typically 10-30 epochs) are applied within
every one of these steps:

Step 1: Begin with λinv “ λpri “ 0, so Lrec and Lmse
are the only training objectives. We found that regardless
of the precise value specified for λmse, both Lrec and Lmse
were often driven to their lowest possible values during this
joint optimization (verified by training individually against
each objective).

Step 2: Grow λpri from 0 to 1 following the sigmoid an-
nealing schedule proposed by Bowman et al. (2016), which
is needed to ensure the variational sequence to sequence
model does not simply ignore the encodings z (note that
the formal variational lower bound is attained at λpri “ 1).

Step 3: Gradually increase λinv linearly until Linv becomes
small on average across our Monte-Carlo samples z „ pZ .
Here, pD is treated as constant with respect to Linv, and
each mini-batch used in stochastic gradient descent is cho-
sen to contain the same number of Monte-Carlo samples
for estimating Linv as (sequence, outcome) pairs.

Proposing Revisions
While the aforementioned training procedure is computa-
tionally intensive, once learned, our neural networks can
be leveraged for efficient inference. Given user-specified
constant α ą 0 and a to-be-revised sequence x0, we pro-
pose the revision x˚ output by the following procedure.

REVISE Algorithm
Input: sequence x0 P X , constant α P p0, |2πΣz|x0

|´
1
2 q

Output: revised sequence x˚ P X
1) Use E to compute qEpz | x0q

2) Define Cx0
“

 

z P Rd : qEpz | x0q ě α
(

3) Find z˚ “ argmax
zPCx0

F pzq (gradient ascent)

4) Return x˚ “ Dpz˚q (beam search)

Intuitively, the level-set constraint Cx0
Ď Rd ensures that

z˚, the latent configuration from which we decode x˚, is
likely similar to the latent characteristics responsible for the
generation of x0. Assuming x0 and x˚ share similar latent
factors implies these sequences are fundamentally similar
according to the generative model. Note that z˚ “ Epx0q

is always a feasible solution of the latent-factor optimiza-
tion over z P Cx0

(for any allowed value of α). Further-
more, this constrained optimization is easy under our Gaus-
sian approximate-posterior, since Cx0 forms a simple ellip-
soid centered around Epx0q.

To find z˚ in Step 3 of the REVISE procedure, we use gra-
dient ascent initialized at z “ Epx0q, which can quickly
reach a local maximum if F is parameterized by a simple
feedforward network. Starting the search at Epx0q makes
most sense for unimodal posterior approximations like our
Gaussian qE . To ensure all iterates remain in the feasible
region Cx0 , we instead take gradient steps with respect to a
penalized objective F pzq ` µ ¨ Jpzq where:

Jpzq “ log
”

K ´ pz ´ Epx0qq
T Σ´1

z|x0
pz ´ Epx0qq

ı

K “ ´2 logrp2πqd{2|Σz|x|
1{2αs (9)

and 0 ă µ ! 1 is gradually decreased toward 0 to en-
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sure the optimization can approach the boundary of Cx0
. In

terms of resulting revision quality, we found this log barrier
method outperformed other standard first-order techniques
for constrained optimization such as the projected gradient
and Franke-Wolfe algorithms.

In principle, our revision method can operate on the latent
representations of a traditional deterministic autoencoder
for sequences, such as the seq2seq models of Sutskever
et al. (2014) and Cho et al. (2014). However, the VAE
offers numerous practical advantages, some of which are
highlighted by Bowman et al. (2016) in the context of gen-
erating more-coherent sentences. The posterior uncertainty
of the VAE encourages the network to smoothly spread the
training examples across the support of the latent distribu-
tion. In contrast, central regions of the latent space under a
traditional autoencoder can contain holes (to which no ex-
amples are mapped), and it is not straightforward to avoid
these in our optimization of z˚. Furthermore, we introduce
an adaptive variant of our decoder in §S1 which is designed
to avoid poor revisions in cases where the initial sequence
is already not reconstructed properly: DpEpx0qq ‰ x0.

Theoretical Properties of Revision

Here, we theoretically characterize properties of revisions
obtained via our REVISE procedure (all proofs are rel-
egated to §S3 in the Supplementary Material). Our re-
sults imply that in an ideal setting where our neural net-
work inference approximations are exact, the revisions pro-
posed by our method are guaranteed to satisfy our previ-
ously stated desiderata: x˚ is associated with an expected
outcome-increase, x˚ appears natural (has nontrivial prob-
ability under pX whenever x0 is a natural sequence), and
x˚ is likely to share similar latent characteristics as x0

(since x˚ is the most likely observation generated from
z˚ and qEpz

˚ | x0q ě α by design). Although exact
approximations are unrealistic in practice, our theory pre-
cisely quantifies the expected degradation in the quality of
proposed revisions that accompanies a decline in either the
accuracy of our approximate inference techniques or the
marginal likelihood of the original sequence to revise.

Theorems 1 and 2 below ensure that for an initial sequence
x0 drawn from the natural distribution, the likelihood of the
revised sequence x˚ output by our REVISE procedure un-
der pX has lower bound determined by the user-parameter
α and the probability of the original sequence pXpx0q.
Thus, when revising a sequence x0 which looks natural
(has substantial probability under pX ), our procedure is
highly likely to produce a revised sequence x˚ which also
looks natural. The strength of this guarantee can be pre-
cisely controlled by choosing α appropriately large in ap-
plications where this property is critical.

In each high probability statement, our bounds assume the

initial to-be-revised sequence x0 stems from the natural
distribution pX , and each result holds for any fixed con-
stant δ ą 0. We first introduce the following assumptions:

(A1) For δ ą 0, α ą 0, there exists 0 ă γ ď 1 such that:

i. With probability ě 1´ δ{2 (over x „ pX ):

ppz | xq ě γ ¨ qEpz | xq whenever qEpz | xq ě α

ii. PrpZ R BR{2p0qq ě γ ¨ Prp rZ R BR{2p0qq

where Z „ Np0, Iq, and rZ „ qZ , the average encoding
distribution defined by Hoffman & Johnson (2016) as:

qZpzq “ Ex„pX rqEpz | xqs (10)

BRp0q “ tz P Rd : ||z|| ď Ru denotes the Euclidean ball
centered around 0 with radius R defined here as:

R “ maxtR1, R2u (11)

with R1 “
a

´8 logrα ¨ p2πqd{2s

R2 “ maxt rR2, 2u, rR2 “

c

8´ 1
4d log

´

γδ
8

¯

(A2) There exists η ą 0 (depends on δ) such that with
probability ě 1´ δ{2 (over x0 „ pX ): ppz˚ | x˚q ď η

This means the latent posterior is bounded at x˚, z˚ (as
defined in REVISE), where both depend upon the initial to-
be-revised sequence x0.

Theorem 1. For any δ ą 0, (A1) and (A2) imply:

pXpx
˚q ě

αγ

η
¨ pXpx0q

with probability ě 1´ δ (over x0 „ pX ).

Condition (A1) forms a generalization of absolute conti-
nuity, and is required since little can be guaranteed about
our inference procedures if the variational posterior is too
inaccurate. Equality holds in (A1) with probability 1 if the
variational distributions qE exactly represent the true poste-
rior (γ Ñ 1 as the variational approximations become more
accurate over the measure pX ). In practice, minimization
of the reverse KL divergence (Lpri) used in our VAE for-
mulation ensures that qEpz | xq is small wherever the true
posterior ppz | xq takes small values (Blei et al., 2017).

While the bound in Theorem 1 has particularly simple
form, this result hinges on assumption (A2). One can show
for example that the inequality in (A2) is satisfied if the
posteriors ppz | x˚q are Lipschitz continuous functions of
z at z˚ (sharing one Lipschitz constant over all possible
x˚). In general however, (A2) heavily depends on both the
data distribution pX and decoder model pD. Therefore, we
provide a similar lower bound guarantee on the likelihood
of our revision x˚ under pX , which instead only relies on
weaker assumption (A3) below.

(A3) There exists L ą 0 such that for each x P X :
pDpx | zq is a L-Lipschitz function of z over BR`1p0q.
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Here, L depends on δ (through R), and we assume L ě 1
without loss of generality. (A3) is guaranteed to hold in the
setting where we only consider sequences of finite length
ď T . This is because the probability output by our decoder
model, pDpx | zq, is differentiable with bounded gradi-
ents over all z P BRp0q under any sequence-to-sequence
RNN architecture which can be properly trained using gra-
dient methods. Since BR`1p0q Ă Rd is a closed interval,
pDpx | zq must be Lipschitz continuous over this set, for a
given value of x. We can simply define L to be the largest
Lipschitz constant over the |S|T possible choices of x P X
(|S| “ size of the vocabulary). In the next theorem below,
user-specified constant α ą 0 is defined in REVISE, and L,
γ, R all depend on δ.

Theorem 2. For any δ ą 0, if (A1) and (A3) hold, then
with probability ě 1´ δ (over x0 „ pX ):

pXpx
˚q ě

Ce´R

Ld
¨
“

γ ¨ α ¨ pXpx0q
‰d`1

where constant C “
πd{2

Γpd2 ` 1q
¨
pd` 1qd

pd` 2qd`1

Our final result, Theorem 3, ensures that our optimization
of z˚ with respect to F is tied to the expected outcomes at
x˚ “ Dpz˚q, so that large improvements in the optimiza-
tion objective: F pz˚q ´ F pEpx0qq imply that our revision
procedure likely produces large expected improvements in
the outcome: ErY | X “ x˚s ´ ErY | X “ x0s. For this
result, we make the following assumptions:

(A4) For any δ ą 0, there exists κ ą 0 such that
PrpX P Kq ě 1´ δ{2, where we define:

K “ tx P X : x0 “ x ùñ pXpx
˚q ě κu (12)

as the subset of sequences whose improved versions pro-
duced by our REVISE procedure remain natural with likeli-
hood ě κ. Note that either Theorem 1 or 2 (with the corre-
sponding assumptions) ensures that one can suitably define
κ such that (A4) is satisfied (by considering a sufficiently
large finite subset of X ).

(A5) For any κ ą 0, there exists εmse ą 0 such that
PrpX P Emseq ą 1´ κ, where we define:

Emse“ tx P X : |F pEpxqq ´ ErY |X “ xs| ď εmseu (13)

(A6) For any δ ą 0, there exists εinv ą 0 such that:

|F pzq ´ F pEpDpzqqq| ď εinv for all z P BRp0q Ă Rd

where R is defined in (11) and depends on δ.

Here, εmse and εinv quantify the approximation error of our
neural networks for predicting expected outcomes and en-
suring encoding-decoding invariance with respect to F .

Standard learning theory implies both εmse, εinv will be
driven toward 0 if we use neural networks with sufficient
capacity to substantially reduce Lmse and Linv over a large
training set.

Theorem 3. For any δ ą 0, if conditions (A1), (A4), (A5),
and (A6) hold, then with probability ě 1´ δ ´ κ:

∆z˚ ´ ε ď F pz˚q ´ F pEpx0qq ď ∆z˚ ` ε (14)

where ∆z˚ “ ErY | X “ x˚s ´ ErY | X “ x0s

ε “ εinv ` 2εmse

Here, κ, εinv are defined in terms of δ as specified in (A4),
(A6), and εmse is defined in terms of κ as specified in (A5).

Experiments
All of our RNNs employ the Gated Recurrent Unit (GRU)
of Cho et al. (2014), which contains a simple gating mech-
anism to effectively learn long-range dependencies across
a sequence. Throughout, F is a simple feedforward net-
work with 1 hidden layer and tanh activations (note that the
popular ReLU activation is inappropriate for F since it has
zero gradient over half its domain). Decoding with respect
to pD is simply done entirely greedily (ie. a beam-search of
size 1) to demonstrate our approach is not reliant on search
heuristics. §S2 contains additional details for each analysis.

Simulation Study

To study our methods in a setting where all aspects of per-
formance can be quantified, we construct a natural distri-
bution pX over sequences of lengths 10-20 whose elements
stem from the vocabulary S “ tA,B, . . . , I, Ju. Each se-
quence is generated via the probabilistic grammar of Table
S1. For each sequence, the associated outcome y is sim-
ply the number of times A appears in the sequence (a com-
pletely deterministic relationship). SinceA often followsC
and is almost always followed by B under pX , a procedure
to generate natural revisions cannot simply insert/substitute
A symbols at random positions.

Table 1 compares various methods for proposing revisions.
Letting σY denote the standard deviation of outcomes
in Dn, we evaluate each proposed x˚ using a rescaled
version of the actual underlying outcome-improvement:
∆Y px

˚q “ σ´1
Y pErY | X “ x˚s ´ ErY | X “ x0sq. Ex-

cept where sample size is explicitly listed, all models were
trained using n “ 10, 000 (sequence, outcome) pairs sam-
pled from the generative grammar. Wherever appropriate,
the different methods all make use of the same neural net-
work components with latent dimension d “ 128. Other
than α, all hyperparameters of each revision method de-
scribed below were chosen so that over 1000 revisions, the
Levenshtein (edit) distance dpx˚, x0q « 3.3 on average.
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Model ∆Y px
˚q ´ log pXpx

˚q dpx˚, x0q

logα “ ´10000 0.51 ˘0.55 29.0 ˘9.3 3.3 ˘3.4
n “ 1000 0.15 ˘0.44 32.0 ˘9.4 2.8 ˘3.4
n “ 100 0.02 ˘0.30 37.0 ˘9.7 4.2 ˘4.0

logα “ ´1 0.20 ˘0.39 28.2 ˘7.6 1.4 ˘2.2
ADAPTIVE 0.47 ˘0.49 28.8 ˘9.0 3.1 ˘3.4
λinv “ λpri “ 0 0.05 ˘0.68 30.4 ˘8.4 3.3 ˘3.5
SEARCH 0.45 ˘0.51 29.0 ˘9.4 3.2 ˘1.4

Table 1. Results for revisions x˚ produced by different methods
in our simulation study (averaged over the same test set of 1000
starting sequences x0 „ pX , with ˘1 standard deviation shown
and the best results in bold).

All three results above the line in Table 1 are based on the
full model described in our joint training procedure, with
new sequences proposed via our REVISE algorithm (using
the setting logα “ ´10000). In the latter two results, this
model was only trained on a smaller subset of the data. We
also generated revisions via this same procedure with the
more conservative choice logα “ ´1. ADAPTIVE denotes
the same approach (with logα “ ´10000), this time using
the adaptive decoding Dx0 introduced in §S1, which is in-
tended to slightly bias revisions toward x0. The model with
λinv “ λpri “ 0 is a similar method using a deterministic
sequence-to-sequence autoencoder rather than our proba-
bilistic VAE formulation (no variational posterior approxi-
mation or invariance-enforcing) where the latent encodings
are still jointly trained to predict outcomes via F . Under
this model, a revision is proposed by starting at Epx0q in
the latent space, taking 1000 (unconstrained) gradient steps
with respect to F , and finally applyingD to the resulting z.

The above methods form an ablation study of the various
components in our framework. SEARCH is a different com-
binatorial approach where we randomly generate 100 revi-
sions by performing 4 random edits in x0 (each individual
edit is randomly selected as one of: substitution, insertion,
deletion, or no change). In this approach, we separately
learn a language-model RNN L on our training sequences
(Mikolov et al., 2010). Sharing the same GRU architec-
ture as our decoder model, L directly estimates the likeli-
hood of any given sequence under pX . Of the randomly
generated revisions, we only retain those sequences x for
which Lpxq ě 1

|S|Lpx0q (in this case, those which are not
estimated to be ă 10 times less likely than the original
sequence x0 under pX ). Finally, we score each remain-
ing candidate (including x0) using the outcome-prediction
model F pEpxqq, and the best is chosen as x˚.

Table 1 shows that our probabilistic VAE formulation
outperforms the alternative approaches, both in terms of
outcome-improvement achieved as well as ensuring revi-

Model ∆Y px
˚q ∆Lpx

˚q dpx˚, x0q

logα “ ´10000 0.52 ˘0.77 -8.8 ˘6.5 2.6 ˘3.3
logα “ ´1 0.31 ˘0.50 -7.6 ˘5.8 1.7 ˘2.6
ADAPTIVE 0.52 ˘0.72 -8.7 ˘6.4 2.5 ˘3.3
λinv “ λpri “ 0 0.22 ˘1.03 -10.2 ˘7.0 3.3 ˘3.4
SEARCH 0.19 ˘0.56 -7.7 ˘4.2 3.0 ˘1.2

Table 2. Results for revised beer-review sentences x˚ produced
by different methods (average ˘ standard deviation reported over
the same held-out set of 1000 initial sentences x0). The third col-
umn employs the definition ∆Lpx

˚
q “ logLpx˚

q ´ logLpx0q.

sions follow pX . For comparison, ´ log pXpx0q had an av-
erage value of 26.8 (over these 1000 starting sequences),
and changing one randomly-selected symbol in each se-
quence to A results in an average negative log-probability
of 32.8. Thus, all of our revision methods clearly account
for pX to some degree. We find that all components used
in our REVISION procedure are useful in achieving superior
revisions. While individual standard deviations seem large,
nearly all average differences in ∆Y or ´ log pX values
produced by different methods are statistically significant
considering they are over 1000 revisions.

From Supplementary Figure S1, it is clear that α con-
trols how conservative the changes proposed by our RE-
VISE procedure tend to be, in terms of both ´ log pXpx

˚q

and the edit distance dpx0, x
˚q. The red curve in Figure

S1A suggests that our theoretical lower bounds for pXpx˚q
are overly stringent in practice (although only the average-
case is depicted in the figure). The relationship between
log pXpx0q and log pXpx

˚q (see Figure S1B) is best-fit by
a line of slope 1.2, indicating that the linear dependence
on pXpx0q in the Theorem 1 bound for pXpx˚q is rea-
sonably accurate. Figure S1C shows that the magnitude
of changes in the latent space (arising from z-optimization
during our REVISE procedure) only exhibits a weak corre-
lation with the edit distance between the resulting revision
and the original sequence. This implies that a fixed shift in
different directions in the latent space can produce drasti-
cally different degrees of change in the sequence space. To
ensure a high-quality revision, it is thus crucial to carefully
treat the (variational) posterior landscape when performing
manipulations of Z.

Improving Sentence Positivity

Next, we apply our model to „1M reviews from BeerAd-
vocate (McAuley et al., 2012). Each beer review is parsed
into separate sentences, and each sentence is treated as an
individual sequence of words. In order to evaluate meth-
ods using an outcome that can be obtained for any pro-
posed revision, we choose y P r0, 1s as the VADER senti-
ment compound score of a given sentence (Hutto & Gilbert,
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Model Sentence ∆Y px
˚q ∆Lpx

˚q dpx˚, x0q

x0 this smells pretty bad. - - -
logα “ ´10000 smells pretty delightful! +2.8 -0.5 3
ADAPTIVE smells pretty delightful! +2.8 -0.5 3
logα “ ´1 i liked this smells pretty. +2.5 -2.8 3
λinv “ λpri “ 0 pretty this smells bad! -0.2 -3.1 3
SEARCH wow this smells pretty bad. +1.9 -4.6 1

Table 3. Example of a held-out beer review x0 (in bold) revised to improve the VADER sentiment. Underneath the original sentence,
we show the revision produced by each different method along with the true (rescaled) outcome improvement ∆Y , change in estimated
marginal likelihood ∆L, and edit distance dpx˚, x0q. Table S2 contains additional examples.

# Steps Decoded Sentence
x0 where are you, henry??
100 where are you, henry??
1000 where are you, royal??
5000 where art thou now?
10000 which cannot come, you of thee?
x˚ where art thou, keeper??

x0 you are both the same size.
100 you are both the same.
1000 you are both wretched.
5000 you are both the king.
10000 you are both these are very.
x˚ you are both wretched men.

Table 4. Decoding from latent Z configurations encountered at
the indicated number of (unconstrained) gradient steps from
Epx0q, for the model trained to distinguish sentences from Shake-
speare vs. contemporary authors. Shown first and last are x0 and
the x˚ returned by our REVISION procedure (constrained with
logα “ ´10000). Table S3 contains additional examples.

2014). VADER is a complex rule-based sentiment analysis
tool which jointly estimates polarity and intensity of En-
glish text, and larger VADER scores correspond to text that
humans find more positive with high fidelity.

We applied all aforementioned approaches to produce re-
visions for a held-out set of 1000 test sentences. As pX
underlying these sentences is unknown, we report estimates
thereof obtained from a RNN language-model L learned on
the sentences in Dn. Table 2 demonstrates that our VAE ap-
proach achieves the greatest outcome-improvement. More-
over, Tables 3 and S2 show that our probabilistically-
constrained VAE revision approach produces much more
coherent sentences than the other strategies.

Revising Modern Text in the Language of Shakespeare

For our final application, we assemble a dataset of „100K
short sentences which are either from Shakespeare or a
more contemporary source (details in §S2.3). In this train-
ing data, each sentence is labeled with outcome y “ 0.9

if it was authored by Shakespeare and y “ 0.1 otherwise
(these values are chosen to avoid the flat region of the sig-
moid output layer used in network F ). When applied in
this domain, our REVISE procedure thus attempts to alter
a sentence so that the author is increasingly expected to be
Shakespeare rather than a more contemporary source.

Tables 4 and S3 show revisions (of held-out sentences)
proposed by our REVISE procedure with adaptive decod-
ing (see §S1), together with sentences generated by apply-
ing the adaptive decoder at various points along an uncon-
strained gradient-ascent path in latent Z space (following
gradients of F ). Since the data lack similar versions of a
sentence written in both contemporary and Shakespearean
language, this revision task is an ambitious application of
our ideas. Without observing a continuous spectrum of out-
comes or leveraging specially-designed style transfer fea-
tures (Gatys et al., 2016), our REVISE procedure has to
alter the underlying semantics in order to nontrivially in-
crease the expected outcome of the revised sentence under
F . Nevertheless, we find that many of the revised sentences
look realistic and resemble text written by Shakespeare.
Furthermore, these examples demonstrate how the proba-
bilistic constraint in our REVISE optimization prevents the
revision-generating latent Z configurations from straying
into regions where decodings begin to look very unnatural.

Discussion
This paper presents an efficient method for optimizing dis-
crete sequences when both the objective and constraints are
stochastically estimated. Leveraging a latent-variable gen-
erative model, our procedure does not require any examples
of revisions in order to propose natural-looking sequences
with improved outcomes. These characteristics are proven
to hold with high probability in a theoretical analysis of
VAE behavior under our controlled latent-variable manip-
ulations. However, ensuring semantic similarity in text-
revisions remains difficult for this approach, and might be
improved via superior VAE models or utilizing additional
similarity labels to shape the latent geometry.
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Supplementary Material

S1. Adaptive Decoding
Limited training data in practical settings can limit the inferential accuracy of the learned autoencoder model, and we
may have x0 ‰ DpEpx0qq for a given to-be-revised sequence x0 (particularly if pXpx0q is low). In this case, even when
z˚ “ Epx0q solves our latent-factor optimization, our REVISE procedure can return a different sequence than x0 (despite
not expecting any associated outcome-improvement).

To ensure that our methods simply return the initial x0 when no superior revision can be identified, we replace our decoder
model pDpx | zq with an adaptive variant pDx0

px | zq that is efficiently defined once x0 “

´

s
px0q

1 , . . . , s
px0q

Tx0

¯

is specified
at test time. Like before, we write Dx0

pzq to denote the (beam-search approximated) most-likely decoding with respect to
pDx0

. Recall from our definition in (4), πt is the vector of symbol-probabilities output by our decoder RNN D to compute

pD. Using the indexing notation πtrsts to denote the decoder RNN’s approximation of ppst, | s1 . . . , st´1q, we let πpx0q

t

denote particular conditional-probability values output by D when the initial hidden state is z “ Epx0q.

For any x “ ps1, . . . , sT q P X , we define:

pDx0
px | zq “

T
ź

t“1

rπtrsts where for t “ 1, . . . , T, s P S : rπtrss “

#

πtrss ` β
px0q

t if s “ s
px0q

t

πtrss ´
1
|S|β

px0q

t otherwise
(15)

and βpx0q

t “ max
sPS

π
px0q

t rss ´ π
px0q

t rs
px0q

t s ě 0 for t “ 1, . . . , Tx0

At each time step, the βpx0q

t measure any probability gap between the most likely symbol under pD and the actual sequence
x0 when our decoder model D is applied to Epx0q. Thus, the definition in (15) ensures Dx0

pEpx0qq “ x0. When revising
sequences using this adaptive decoding procedure, we compute all βpx0q

t by first decoding from Epx0q before beginning
the latent z-optimization in the REVISE procedure. These values are stored so that we can subsequently decode from the
optimal latent-configuration z˚ with respect to pDx0

rather than pD.

According to our adaptive decoding definition, x0 is more likely than any other sequence under pDx0
px | Epx0qq, and pDx0

is very easy to derive from pD (no additional model besides our original D is needed). Furthermore, the (beam-search)
maximizer of pDx0

can be used to decode from any latent z values, resulting in a mapping that is slightly more biased
toward x0 than decoding with respect to pD. Finally, we note that if x˚ is produced by Dx0 rather than D, Theorem 3
continues to hold if we replaceD withDx0 in assumption (A6). Theorems 1 and 2 remain valid without any change, since:

pDx0
px˚ | z˚q ě pDx0

px0 | z
˚q and pDx0

px0 |z
˚q ´ pDpx0 |z

˚q ě pDx0
px˚ |z˚q ´ pDpx

˚ |z˚q

together imply that pDpx˚ | z˚q ě pDpx0 | z
˚q, as required for expression (16) in our original proofs.
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S2. Experiment Details and Additional Results
Automatic differentiation in TensorFlow is used to obtain gradients for both our revision procedure and the (stochastic)
learning of neural network parameters. Throughout our applications, the GRU input is a vector-representation of each
symbol in the sequence, taken from a dictionary of embeddings that is learned jointly with the neural network parameters
via the Adam optimization algorithm of Kingma & Ba (2015). To ensure the decoder can actually generate variable-length
sequences, a specialăEndą symbol is always included in S and appended at the end of each sequence in the training data.
Note that all α-values stated in the text were actually first rescaled by p2πq´d{2 before the REVISE procedure (to avoid
confounding from the choice of latent-dimensionality d in the relationship between the listed α and characteristics of the
resulting revisions).

S2.1. Simulation Study

When sampling a sequence for this simulation, we first draw its length uniformly from the range [10,20], and subsequently
draw the symbols at each position following the probabilistic grammar of Table S1. Before its quality is evaluated, any
proposed sequence whose length violates the [10,20] range is either truncated or extended via repeated duplication of the
last symbol. In all models we apply, the encoder/decoder GRUs operate on input-embeddings of size 8, and the outcome-
prediction model F is a feedforward network with one tanh hidden layer of size 128.

Rule Probability
st “ A | st´1 “ C 0.50
st “ B | st´1 “ A 0.95
st “ D | st´3 “ D 0.95
st “ E | st´5 “ E 0.95
st “ J | st´2 “ H, st´1 “ I 0.95
st “ I | st´2 “ I, st´1 “ H 0.95
st “ B | st´3 “ B, st´2 “ C 0.95
st “ F | st´1 “ F, t ě 11 0.95
s7 “ G | s6 “ F 0.95
s8 “ G | s7 “ F 0.50
s5 “ C 0.50
s10 “ C 0.50
s15 “ C 0.50
s20 “ C 0.50

Table S1. Probabilistic grammar used to generate sequences ps1, . . . , sT q in our simulation. All events not listed here are assumed to
occur randomly (uniformly among the remaining probability mass). When one or more conditioning statements are valid at a given t,
we renormalize the probabilities for st | s1, . . . , st´1 before sampling the next character.

In the SEARCH procedure, evaluating 100 candidates took similar computation time as a typical run of our REVISE al-
gorithm. Note that in this small scale simulation study, SEARCH is able to examine a nontrivial subset of the possible
sequences around x0. However, exponentially more randomly generated revisions would be needed to retain the perfor-
mance of this SEARCH approach under longer sequences with larger vocabularies, whereas the computational complexity
of our REVISE procedure scales linearly with such increases. Whereas the SEARCH method changes nearly every given
initial sequence by a relatively similar amount, our REVISE procedure tends to either make larger changes or no change
at all. As is desirable, our approach (particularly with adaptive decoding) tends to favor no change for x0 where the cor-
responding latent posterior has high uncertainty, both because the VAE training objective urges all decodings in a large
region around Epx0q to heavily favor x0 and the invariance term Linv encourages F to be more flat in such regions.

S2.2. Improving Sentence Positivity

For simplicity, our analysis of the beer reviews only considers sentences that are short (ď 30 words) and entirely composed
of words that appear in ě 100 other sentences. This restricts the size of the vocabulary to |S| « 5, 500. In this analysis,
the SEARCH procedure is allowed to score 1000 candidate sequences, which is now far slower than our REVISE algorithm.
In our models, GRUs E and D employ an embedding layer of size 128, the latent representations (and GRU hidden states
ht) have d “ 256 dimensions, and F is feedforward network with one hidden layer of the same size (and tanh activations)
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Figure S1. Behavior of the REVISE procedure in our simulation study. (A) Relationship between α and properties of revised sequence
(averaged over same 1000 initial sequences x0 „ pX , with units rescaled so that all curves share the same range): outcome improvement
(black), edit distance (blue), marginal log-likelihood (red). (B) Likelihood of each original sequences vs. its revised version, when
logα “ ´10000. The diagonal red line depicts the identity relationship y “ x. (C) Boxplot of ||z˚

´ Epx0q||2 values for each
resulting value of dpx0, x˚

q observed when logα “ ´10000. Note there were very few revisions where dpx0, x˚
q ą 8.

followed by a sigmoid output layer. The language model L shares the same GRU architecture as our decoder network D .

Examining the REVISE output, we find that punctuation patterns are quite often perfectly preserved in revisions (this is
interesting since all punctuation characters are simply treated as elements of the vocabulary in the sequences). There exist
many initialization-points where if unconstrained gradient ascent is run for a vast number of iterations with a large step-size,
the resulting decoding produces the sentence: “excellent excellent excellent excellent excellent excellent excellent.”, which
is has near-optimal VADER sentiment but low marginal likelihood. Starting from other z-initializations, the decoding
which results from a massive shift in the latent space often reverts to repetitions of a safe choice where each decoded word
has high marginal likelihood, such as: “the the a the the the a the” or “tasting tasting tasting tasting tasting tasting tasting ”.

S2.3. Revising Modern Text in the Language of Shakespeare

Sentences used in this analysis were taken either from the concatenated works of Shakespeare (Karpathy, 2015) or from
various more contemporary texts (non-Shakespeare-authored works from the Brown, Reuters, Gutenberg, and FrameNet
corpora in Python’s NLTK library (Bird et al., 2009)). Here, we use the same architecture for networks F ,E ,D as in the
previous beer-reviews application.
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Model Sentence ∆Y px
˚q ∆Lpx

˚q dpx˚, x0q

x0 caramel, fruit, sweetness, and a soft floral bitterness. - - -
logα “ ´10000 caramel, fresh, sweetness, quite soft and a good bitterness. +1.88 -5.1 6
ADAPTIVE caramel, fresh, sweetness, quite soft and a good bitterness. +1.88 -5.1 6
logα “ ´1 caramel, fruit sweetness, and a soft floral nose. +1.17 +0.2 1
λinv “ λpri “ 0 caramel, fruit sweetness, and a soft floral and tangy nose. +1.17 -16.4 3
SEARCH caramel, fruit sweetness, and a soft floral, cocoa. + 1.17 -7.0 2

x0 i like to support san diego beers. - - -
logα “ ´10000 i love to support craft beers! +0.5 +1.6 4
ADAPTIVE i like to support san diego beers. 0 0 0
logα “ ´1 i like to support craft beers! +0.1 +2.6 3
λinv “ λpri “ 0 i like to support you know. 0 +3.7 3
SEARCH i like to super support san diego. +0.7 -2.9 2

x0 good carbonation makes for a smooth drinking experience. - - -
logα “ ´10000 good carbonation makes a great smooth drinking stuff. +1.1 -1.1 3
ADAPTIVE good carbonation makes a great smooth drinking stuff. +1.1 -1.1 3
logα “ ´1 good carbonation makes for great smooth drinking. + 1.1 +3.0 2
λinv “ λpri “ 0 good carbonation makes for a smooth drinking like experience. +0.7 -9.2 1
SEARCH good carbonation makes for a drinking nice experience! +0.9 -4.1 3

x0 i’m not sure how old the bottle is. - - -
logα “ ´10000 i definitely enjoy how old is the bottle is. +3.0 -3.6 4
ADAPTIVE i definitely enjoy how old is the bottle is. +3.0 -3.6 4
logα “ ´1 i’m sure not sure how old the bottle is. +2.5 -6.8 1
λinv “ λpri “ 0 i’m sure better is the highlights when cheers. +3.3 -9.2 6
SEARCH i ’m not sure how the bottle is love. +2.3 -3.3 2

x0 what a great afternoon! - - -
logα “ ´10000 what a great afternoon! 0 0 0
ADAPTIVE what a great afternoon! 0 0 0
logα “ ´1 what a great afternoon! 0 0 0
λinv “ λpri “ 0 what a great afternoon lace! 0 -8.2 1
SEARCH what a solid great! +0.19 -7.1 2

x0 the finish is a nice hoppy bitter, with ample spice. - - -
logα “ ´10000 the finish is a nice hoppy plant, with ample spice and great mouthfeel. +2.5 -6.4 4
ADAPTIVE the finish is a nice hoppy plant, with ample spice. +1.3 -0.8 1
logα “ ´1 the finish is a nice hoppy plant, with ample spice. +1.3 -0.8 1
λinv “ λpri “ 0 the finish is a nice hoppy bitter, with ample spice. 0 0 0
SEARCH the finish is a nice hoppy bitter best, with ample spice. +2.0 -7.9 1

Table S2. Additional examples of held-out beer reviews x0 (in bold) revised to improve their VADER sentiment. Under-
neath each sentence, we show the revision produced by each different method along with the true outcome improvement
∆Y px

˚
q “ ErY | X “ x˚

s ´ ErY | X “ x0s (rescaled by the standard deviation of outcomes in the training data), estimated change
in marginal likelihood ∆Lpx

˚
q “ logLpx˚

q ´ logLpx0q, and Levenshtein (edit) distance dpx˚, x0q.
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# Steps Sentence

x0 you find the evidence of that in the chart on this page.
100 you find the evidence of that in the chart on this page.
1000 you find the chart of action in this page.
5000 you find the chart of the chart that page of action in this page.
10000 find you in this page of the way of your highness.
x˚ you speak of the chart in this page of the lord.

x0 somewhere, somebody is bound to love us.
100 somewhere, somebody is bound to love us.
1000 courage, honey, somebody is bound to love us!
5000 courage man; ’tis love that is lost to us.
10000 thou, within courage to brush and such us brush.
x˚ courage man; somebody is bound to love us.

x0 the story of the fatal crash is not fully known
100 the story of the injured is not known.
1000 the story of our virtue is not yet known.
5000 the story of our virtue is not given me yet.
10000 the virtue of our story is not yet.
x˚ the story of our virtue is not yet known.

x0 this is the root issue for which the united states should stand.
100 this is the root issue which is an issue on the united states.
1000 the root issue is that the dialogue itself should stand provided.
5000 the general is for the root chief held for which is thy tale.
10000 this the shallow is sworn thee. shallow for thee.
x˚ the root issue is the national dialogue from thine.

x0 there is no such magic in man-made laws.
100 there is no such magic of man in such magic.
1000 there is no magic of man in such magic.
5000 there is no magic question with such a man in man.
10000 there is no magic in revolution and made no such india.
x˚ there is no magic in such noble birth;

x0 check the quality of the water.
100 check the quality of the water.
1000 check the quality of thy water.
5000 check the quality of thy quality.
10000 check the king of gloucester.
x˚ check the quality of thy water.

x0 what are you doing here?
100 what are you doing here?
1000 what are you doing here?
5000 cardinal what does thou live here?
10000 cardinal what does thou live here?
x˚ does thou live here?

Table S3. Adaptive decoding from various latent Z configurations encountered at the indicated number of (unconstrained) gradient steps
from Epx0q, for the model trained to distinguish sentences from Shakespeare vs. contemporary authors. Shown first and last are the
initial sequence x0 and the revision x˚ returned by our REVISION procedure (constrained with logα “ ´10000).
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S3. Proofs and Auxiliary Lemmas
Proof of Theorem 1.

By the definition of x˚, we have:

pDpx
˚ | z˚q ě pDpx0 | z

˚q (16)

ùñ pXpx
˚q ě

ppz˚ | x0q

ppz˚ | x˚q
¨ pXpx0q by Bayes’ rule

ě
γqEpz

˚ | x0q

ppz˚ | x˚q
¨ pXpx0q with probability ě 1´ δ

by assumptions (A1) and (A2) combined via the union bound. Finally, from the definitions in REVISE, we have that
z˚ P Cx0

, which implies qEpz˚ | x˚q ě α.

Lemma 1. If (A1) holds, then for z˚ defined in REVISE: z˚ P BRp0q with probability ě 1´ δ
2 (over x0 „ pX ).

Proof. Recall that BRp0q is defined as the Euclidean ball of radius R centered around 0. We show:

||z˚ ´ Epx0q|| ď
1

2
R (17)

and with probability ě 1´ δ
2 :

||Epx0q|| ď
1

2
R (18)

Subsequently, the triangle inequality completes the proof.
To prove (17), we recall that from our definition in (3): qEpz | x0q is a Gaussian distribution with meanEpx0q and diagonal
covariance Σz|x where each entry is ď 1. Furthermore, the definitions in REVISE ensure z˚ P Cx0

ùñ qpz˚ | x0q ě α.
Defining K “ ´2 logrp2πqd{2|Σz|x|

1{2αs which specifies the level-α isocontour of the Np0,Σz|xq density, we have:

qpz˚ | Epx0q ě α

ùñ pz˚ ´ Epx0qq
TΣ´1

z|xpz
˚ ´ Epx0qq ď K

ùñ ||z˚ ´ Epx0q|| ď

b

K ¨ λmaxpΣz|xq ď
1

2
R1

where λmaxpΣz|xq is the largest eigenvalue of Σz|x and λmaxpΣz|xq ď 1, |Σz|x|
1{2 ď 1 for our qEpz | xq.

Now, define R “ tx P X : Epxq ą 1
2Ru, and let rZ „ qZ as defined in (10). To prove (18), we note that for all x P R:

qEpz | xq is a diagonal Gaussian distribution centered around Epxq which has norm ą R{2. Thus:

γ

4
¨ pXpRq ăγ

ÿ

xPR

ż

||z||ě 1
2R

qEpz | xq dz ppxq “ γ ¨ Pr

ˆ

|| rZ|| ě
1

2
R

˙

ďPr

ˆ

||Z|| ě
1

2
R

˙

by the second condition in (A1)

ďPr

ˆ

||Z|| ě
1

2
R2

˙

as we defined R ě R2

Since Z „ Np0, Iq under our prior, ||Z||2 „ χ2
d.

Applying the Chernoff bound to the tail of the χ2 distribution (Dasgupta & Gupta, 2002), we thus obtain:

Pr

ˆ

||Z||2 ě
1

4
R2

2

˙

ď

„

1

4
R2

2 ¨ exp

ˆ

1´
1

4
R2

2

˙d{2

ď

„

exp

ˆ

1´
1

16
R2

2

˙d{2

which implies pXpRq ă δ{2 by our definition of R2.
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Proof of Theorem 2.

For ε P p0, 1s, let Bεpzq denote the ε-ball centered at z. We have:

pXpx
˚q “

ż

pDpx
˚ | zqpZpzq dz

ěPrpZ P Bεpz
˚qq rpDpx

˚ | z˚q ´ Lεs

assuming z˚ P BRp0q, which occurs with probability ě 1´ δ{2 by Lemma 1
ěPrpZ P Bεpz

˚qq rpDpx0 | z
˚q ´ Lεs by (16)

“PrpZ P Bεpz
˚qq

„

ppz˚ | x0q

pZpz˚q
pXpx0q ´ Lε



ěPrpZ P Bεpz
˚qq

„

γ
qEpz

˚ | x0q

pZpz˚q
pXpx0q ´ Lε



assuming z˚ P BRp0q and x0 satisfies the (A1) inequality, which occurs with probability ě 1´ δ by the union bound

ě
PrpZ P Bεpz

˚qq

pZpz˚q
rγαpXpx0q ´ Lεs since pZpz˚q ă 1 and z˚ P Cx0

ùñ qEpz
˚ | x0q ě α

ě

min
||∆||“ε

pZpz
˚ `∆q

pZpz˚q
VolpBεpz˚qq rγαpXpx0q ´ Lεs where Volp¨q denotes the Lebesgue measure

ě exp

ˆ

´
1

2

“

||z˚||ε` ε2
‰

˙

VolpBεpz˚qq rγαpXpx0q ´ Lεs

by exploiting the fact that pZ “ Np0, Iq and subsequent application of the Cauchy-Schwarz inequality

ě exp

ˆ

´
||z˚|| ` 1

2

˙

¨ VolpBεpz˚qq ¨ rγαpXpx0q ´ Lεs for any ε P p0, 1s

ě exp

ˆ

´
R` 1

2

˙

¨ VolpBεpz˚qq ¨ rγαpXpx0q ´ Lεs since we already assumed z˚ P BRp0q.

We conclude the proof by selecting ε “ γαpd`1q
Lpd`2q pXpx0q which maximizes the lower bound given above.

Proof of Theorem 3.

Suppose for x0 P R, the corresponding revision x˚ R E . Then:

PrpX P E XRq ď 1´ pXpx
˚q ´ PrpX P EzRq

ď 1´ κ´ PrpX P EzRq

Since (A5) implies PrpX P ECq ă κ, we also have:

PrpX P E XRq “ 1´ PrpX P ECq ´ PrpX P EzRq
ą 1´ κ´ PrpX P EzRq

which is a contradiction. Thus, we must have x˚ P E if x0 P R, which occurs with probability ě 1´ δ{2.

Lemma 1 ensures that under (A1): z˚ P BRp0q with probability ě 1´ δ{2, implying |F pz˚q´F pEpDpz˚qqq| ď εinv with
the same probability. Consequently, we have:

F pz˚qq ´ F pEpx0qq ď F pEpDpz˚qq ´ F pEpx0qq ` εinv with probability ě 1´ δ
2

ď F pEpx˚qq ´ ErY | X “ x0s ` εinv ` εmse with probability ě 1´ δ
2 ´ κ by the union bound

ď ErY | X “ x˚s ´ ErY | X “ x0s ` εinv ` 2εmse with probability ě 1´ δ
2 ´ κ´

δ
2 by the union bound

The inequality in the other direction is proved via similar reasoning.
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