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Abstract
Image-based videorealistic speech animation achieves significant visual realism at the cost of the collection of
a large 5- to 10-minute video corpus from the specific person to be animated. This requirement hinders its use
in broad applications, since a large video corpus for a specific person under a controlled recording setup may
not be easily obtained. In this paper, we propose a model transfer and adaptation algorithm which allows for
a novel person to be animated using only a small video corpus. The algorithm starts with a multidimensional
morphable model (MMM) previously trained from a different speaker with a large corpus, and transfers it to the
novel speaker with a much smaller corpus. The algorithm consists of 1) a novel matching-by-synthesis algorithm
which semi-automatically selects new MMM prototype images from the new video corpus and 2) a novel gradient
descent linear regression algorithm which adapts the MMM phoneme models to the data in the novel video corpus.
Encouraging experimental results are presented in which a morphable model trained from a performer with a 10-
minute corpus is transferred to a novel person using a 15-second movie clip of him as the adaptation video corpus.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

Image-based videorealistic speech animation [BCS97,
CG00, EGP02] has drawn wide attention due to its supreme
visual realism. Different from 3D graphics-based speech an-
imation, image-based videorealistic speech animation can
provide better realism such that it potentially can be used
for creating virtual teachers for language learning and dig-
ital characters in movies. Even a visual "Turing test" was
conducted in [EGP02], which showed ordinary observers
can hardly distinguish synthetic speech animation from real
speech video with the same utterances.

However, to realize image-based videorealistic speech an-
imation, a large video corpus is required as the database
for creating novel speech animation by re-arrangement
[BCS97], concatenation [CG00], or as the training data for
analyzing audio-visual dynamics to train morphable mod-
els [EGP02]. While user adaptation can be easily achieved
for 3D graphics-based speech animation by deforming a
3D head model and reusing animation parameters [CC02,
NN01], it is quite difficult to create image-based speech an-
imation for a novel person without recollection of a large
video corpus. This requirement limits the use of image-based
videorealistic speech animation, since a large video corpus

for a specific person uttering specified transcripts under a
controlled environment setting may not be easily obtained.
Furthermore, a large video corpus would take several days of
pre-processing. It would be much better to be able to create
personal speech animation with only small amount of video
data.

Based on the work of trainable videorealistic speech ani-
mation proposed by Ezzat et al. [EGP02], we propose new
approaches to resolve this problem. With a matching-by-
synthesis approach, we are able to transfer an original mor-
phable model (MMM) trained from a large corpus to a novel
person with a small video corpus. Furthermore, we propose
a model adaptation algorithm to refine the MMM phoneme
model by incorporating a linear regression adaptation con-
cept that is similar to one that is widely adopted in speech
recognition literature. Thereby, the speaking style of the syn-
thesized animation can be more similar to that of the novel
person.

In the next section, a review of previous work is
presented. The trainable videorealistic speech animation
method [EGP02] as the foundation of this work is also
briefly described in Section 3. The proposed model trans-
fer and adaptation algorithms are detailed in Sections 4 and
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5. Some preliminary experimental results are presented in
Section 6. Finally, Section 7 concludes this paper and states
some possible future directions.

2. Previous Work

Image-based videorealistic speech animation was first pre-
sented in the work of Video Rewrite proposed by Bregler
et al. [BCS97]. By recording a large video corpus and per-
forming triphone-based segmentation, speech synthesis is
achieved by concatenating sequences in the video corpus
that best match the desired novel utterance. Subsequently,
Cosatto and Graf [CG00] proposed a similar audio-visual
unit selection method by using the Viterbi search from a
video corpus to find best matches that minimize the target
cost of the viseme dissimilarity between the selected units
and target phonemes and the concatenation cost between two
selected consecutive images. These two approaches directly
reuse the images in the pre-recorded video corpus without
using any generative models for speech animation synthe-
sis, which hinder themselves from transferring the speaker to
another person without recollection of a large video corpus.
Unlike these approaches, the trainable videorealistic speech
animation proposed by Ezzat et al. [EGP02] adopted multi-
dimensional morphable models for analysis and synthesis of
speech animation, and is more amenable to transfer between
speakers. This method forms the foundation of our work and
is further described in the next section.

With the construction of 3D morphable models, Blanz et
al. [BBPV03] proposed an approach that can generate syn-
thetic speech animation from just one photo or portrait of
a novel person. By decomposition of dynamic visual infor-
mation as a linear combination of shape, motion, and tex-
ture components, life-like animation can be created for a
novel person. However, the region inside the mouth cannot
be well-modeled using this 3D representation; the use of ar-
tificial teeth or tongue is not as natural as image-based ap-
proaches. In [CFKP04], Cao et al. proposed real-time speech
moition synthesis for 3D facial models constructed with
photogrammetric technique of [PHL∗98]. With collection of
a large speech motion corpus, high-fidelity facial motions
can be real-time synthesized for novel utterances based on a
graph-based approach. In our work, we propose to learn the
mouth appearances and dynamics from a small video corpus.
Visual realism is thus retained for speech animation synthe-
sis.

Also close to our work is the research on motion transfer,
or retargetting [Gle98], with which the motion of one per-
former can be transferred to another character. For retarget-
ting of facial animation, most researches focus on the work
of expression mapping for face images [LSZ01,ZLGS03] or
3D facial models [NN01, WHL∗04, NJ04]. However, these
motion transfer techniques do not address how to retar-
get image-based speech animation. Beyond transferring mo-
tions of speech animation from one person to another, which

can also be done with the proposed approach, we transfer
and adapt the generative model from one person to another
with a small adaptation video corpus. Thereby, videoreal-
istic speech animation can be directly synthesized with the
speaking style of the novel person.

3. Background: Trainable Videorealistic Speech
Animation

In 2002, Ezzat et al. [EGP02] proposed an image-based vide-
orealistic speech animation approach with machine learning
techniques. Totally 46 image prototypes are selected from a
recorded corpus, and its texture and motion flows with re-
spect to a reference image with neutral face are utilized for
modeling the space of all possible mouth appearances with a
multidimensional morphable model (MMM) [JP98]. A tra-
jectory synthesis procedure based on regularization tech-
nique is then employed to map an input phoneme stream
to a trajectory of parameters in the trained MMM space.
Therefore, a videorealistic speech animation can be syn-
thesized from input audio that is phonetically transcribed
and aligned. In the following subsections, the multidimen-
sional morphable model and trajectory analysis/synthesis are
briefly described. Interested readers are referred to [EGP02]
for the details.

3.1. Multidimensional Morphable Model

The multidimensional morphable model (MMM) [JP98] was
originally proposed by Jones and Poggio for image recog-
nition, in which the visual information of an image is rep-
resented by shape and texture parameters. Instead of using
MMM for image analysis, Ezzat et al. [EGP02] utilized an
MMM for image synthesis of mouth texture and movements
during speech. Firstly, a set of prototype images are automat-
ically selected from the video corpus using the k-means clus-
tering algorithm [Bis95]. Then, each prototype is decom-
posed into a motion component (represented by optical flow
vectors) and a texture component. Each synthesized image
can then be modeled as a linear combination of the motion
and texture components of the selected prototype images.

More formally, given a set of M prototype images {IPi}
and prototype flows {CPi}, the motion component Csyn and
texture component Isyn of each novel synthetic image can be
modeled as:

Csyn =
M

∑
i=1

αiCPi , (1)

Isyn =
M

∑
i=1

βiI
warped
Pi

=
M

∑
i=1

βiWF
(

IPi ,WF
(

Csyn −CPi ,CPi

))

,

(2)

where WF(ppp,qqq) is a forward warp operation that warps vec-
tors ppp according to flow vectors qqq. Conversely, given a set
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Figure 1: The conceptual illustration of the idea of model transfer. The prototype images I1 to I4 and the optical flows C2 to
C4 form the MMM parameter space. Phoneme models are approximated by Gaussian distributions as depicted in ellipses. The
synthesized MMM parameters for a phoneme sequence {..., /SIL/, /F/, /AE/, ...} form a smooth trajectory (in red line) in the
MMM space. Left: Image synthesis with the MMM of the original subject. Right: Image synthesis with the MMM of the new
subject in the same MMM parameter space in which the phoneme model is directly transferred from the phoneme model of the
original subject.

of MMM parameters {αi,βi}
M
i=1, a new mouth image Isyn

can be synthesized by warping and blending the prototype
images.

3.2. Trajectory Analysis and Synthesis

The goal of trajectory analysis and synthesis is to learn a
phoneme model and use it to synthesize novel speech trajec-
tories in the MMM parameter space. The characteristics of
the MMM parameters for each phoneme are examined from
corresponding image frames according to the audio align-
ment result. For simplicity, each phoneme p is modeled as
a multidimensional Gaussian with mean vector µp and di-
agonal covariance matrix Σp. A trajectory of a novel speech
sequence yyy is derived by minimizing the following objective
function,

Es = (yyy−µµµ)T DT ΣΣΣ−1D(yyy−µµµ)+λyyyT WT
k Wkyyy, (3)

where the synthetic MMM parameters yyy are obtained by
minimizing the distance to the cascaded target mean vec-
tor µµµ (weighted by the duration-normalization matrix D, and
the inverse of the covariance matrix ΣΣΣ), while also retaining
smoothness controlled by the k-th order difference matrix
Wk.

However, the synthetic MMM parameters tend to be
under-articulated when the mean and covariance for each
phoneme are directly estimated from the pooled MMM pa-
rameters for each phoneme. To resolve the problem, gradient
descent learning is employed to refine the phoneme model
by iteratively minimizing the difference Ea between the syn-
thetic MMM trajectories yyy obtained from Equation 3 and real
MMM trajectories zzz derived from Equations 1 and 2.

More formally, the error between real and synthetic tra-

jectories is defined by

Ea = (zzz− yyy)T (zzz− yyy) (4)

and the phoneme model is refined by

µnew
p = µold

p −η ∂Ea

∂µp
and Σnew

p = Σold
p −η ∂Ea

∂Σp
(5)

with a small learning rate parameter η.

To summarize, the trainable videorealistic speech anima-
tion framework proposed by Ezzat et al. [EGP02] required
two sets of parameters: a set of M prototype images IPi and
prototype flows CPi to represent the flow and texture respec-
tively of the subject’s mouth; and a set of phoneme models
N (µp,Σp) which model each phoneme p in the MMM space
using a Gaussian distribution for trajectory analysis and syn-
thesis.

4. Model Transfer

With a small video corpus from a novel person, there would
not be enough data to retrain an entire MMM phoneme
model. Therefore, one simple solution to model transfer
is to choose a new set of prototype images from the new
video corpus, and then directly transfer the original phoneme
model to the novel person. As illustrated in Figure 1, the
prototype images of the original user are replaced by corre-
sponding images of the novel subject from the smaller cor-
pus, and trajectory synthesis is performed with the original
phoneme models.

Since each dimension of the MMM parameters is associ-
ated with a specific prototype image obtained from the origi-
nal video corpus, it is required that the newly selected proto-
type images should exhibit similar mouth appearance to the
corresponding prototype images of the original user. How-
ever, manual comparison for each image in the new video
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corpus with the original prototype images would take hours
of work even for a short video corpus with about 300 frames.
Inspired by the work presented by Beymer and Poggio
[BP95] that generates synthetic images under various poses
and expressions for robust face recognition, we propose a
matching-by-synthesis approach to semi-automatically se-
lect new set of prototype images from the new video corpus
that resemble the original prototype images.

Our matching-by-synthesis approach works in three steps:
Firstly, an initialization step is performed in which manual
correspondence is established between two reference frames
in the original and novel corpus. The correspondence is
defined intitially by a set of manually placed points, and
then interpolated using an RBF method to establish dense
point correspondence between the two reference images.
Secondly, a flow matching step is performed in which a set of
prototype image candidates are chosen from the novel cor-
pus based on how much their optical flow shape matches the
optical flow shape of the prototypes from the original cor-
pus. Finally, a texture matching step is performed to refine
the prototype candidates based on how much their “texture
coordinates” match the texture coordinates of the prototypes
from the original corpus.

In the following sections, we describe the steps of our
matching-by-synthesis algorithm in detail.

4.1. Initialization

To simplify the calculation of dense point correspondence
between images from different persons, an RBF-based in-
terpolation method [Bis95] is utilized. A set of N feature
points as illustrated in Figure 2(a) are manually marked on
both of the reference image of the original user (denoted
as RefA) and the reference of the novel person (denoted as
RefB). With the RBF-based interpolation method, the dense
correspondence between each point ppp = (px, py)

T in RefA
and the corresponding point S(ppp) in RefB is formulated by a
linear combination of radial basis function augmented with
a low-order polynomial function, i.e.,

S(ppp) =
N

∑
k=1

λkφ
(∥

∥ppp− pppa
k
∥

∥

)

+Q(ppp), (6)

with

Q(ppp) = (c00 + c01 px + c02 py,c10 + c11 px + c12 py)
T
,

λλλk = (λk,x,λk,y)
T
,

subject to S(pppa
k) = pppb

k , and side conditions imposed on the
coefficients {λλλk}:

N

∑
k=1

λλλk
[

1 pa
k,x pa

k,y
]

= 0

where pppa
k and pppb

k are the k-th feature point in RefA and RefB,
respectively, and φ(r) = exp(−cr2) is utilized as the radial
basis function.

Figure 2: (a) Feature point configuration for establishing
the dense point correspondence across different subjects;
The reference images of (b) the original user, and (c) the
novel subject with mouth open; The reference images of
(d) the original user, and (e) the novel subject with mouth
closed.

4.2. Flow Matching

Having established correspondence between reference
frames from the two corpora, the goal of the flow match-
ing step is to choose a set of initial prototype candidates IB,Pi

from the novel corpus which correspond in shape to the pro-
totypes IA,Pi from the original corpus.

With the RBF-based interpolation function in Equation
6, given a flow vector in RefA started from position ppp and
moved to ppp′ = ppp +CA(ppp) , the corresponding flow vector
in RefB will be started from position S(ppp) and moved to
S(ppp′). Hence, the synthetic flow vector at S(ppp) of RefB will
be Csyn

B (S(ppp)) = S(ppp′)−S(ppp). Thereby, the synthetic flow of
each prototype images can be generated for the novel person.
By calculating the differences between the synthetic flow in
the mouth region with flow vectors of each image in the new
video corpus, the best candidate can be found with the min-
imal flow differences. That is,

P∗
k = argmin

i
∑
ppp

w f (ppp)
∥

∥

∥
Csyn

B,Pk
(S(ppp))−CB,i(S(ppp))

∥

∥

∥
, (7)

where w f (.) is a weighting mask emphasizing the lip region,
Csyn

B,Pk
is the synthetic flow for the k-th prototype image, and

CB,i is the flow of the i-th image of the small video corpus
of the novel person. The best candidates obtained from flow
matching form the initial candidates for the following texture
matching step.
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4.3. Texture Matching

While the initial prototype candidates from the flow match-
ing step are good, there is a need to further refine the can-
didates in an effort to improve the alignment of original and
novel speaker MMM’s. The texture matching step performs
this alignment by trying to match the “texture coordinates”
between original and novel speakers.

Since the prototype images in the MMM of the origi-
nal user are selected by the k-means clustering algorithm
[Bis95], they are not orthogonal both in flow and texture
space. Hence, similar to Equation 2, we can formulate one
prototype image of the original speaker as a linear combi-
nation of the other (M−1) prototype images of the original
speaker:

Isyn
A,Pk

= ∑
i,i6=k

βi,kIwarped
A,Pi→Pk

= ∑
i,i6=k

βi,kWF
(

IA,Pi ,WF
(

CA,Pk −CA,Pi ,CA,Pi

))

,(8)

subject to

βi,k ≥ 0 ∀i and ∑
i,i6=k

βi,k = 1,

where the “texture coordinates”
{

βi,k
}

can be derived by
minimizing the difference between the synthetic image Isyn

A,Pk
and the k-th prototype image IA,Pk of the original user with
quadratic programming methods.

Our hypothesis is that the synthetic prototype image of a
novel person should be generated with the same texture coor-
dinates

{

βi,k
}

as the corresponding prototype of the original
speaker:

Isyn
B,Pk

= ∑
i,i6=k

βi,kIwarped
B,Pi→Pk

= ∑
i,i6=k

βi,kWF

(

IB,Pi ,WF

(

Csyn
B,Pk

−CB,Pi ,CB,Pi

))

(9)

where IB,Pi is the texture of the i-th prototype image of the
novel person selected by flow matching, and Csyn

B,Pk
is the syn-

thetic flow derived in Section 3.2.

Hence, similar to Equation 7, the texture matching can be
performed by calculating the differences between the syn-
thetic texture with texture of each image in the new video
corpus,

P∗∗
k = argmin

i
∑
ppp

wt(ppp)
∥

∥

∥
Isyn
B,Pk

(ppp)− IB,i(ppp)
∥

∥

∥
, (10)

where wt(.) is a weighting mask emphasizing the mouth re-
gion, and IB,i is the texture of the i-th image of the small
video corpus of the novel person.

Note that the change of one candidate prototype image
may affect the texture synthesis of other prototype tex-
tures; iterative updating for texture matching is this required.

Figure 3: Partial prototype image matching results: the pro-
totype images of the original user with different degrees of
mouth openness(top), and the corresponding new prototype
images selected by the proposed algorithm(bottom).

Moreover, the texture matching (Equation 10) and the flow
matching (Equation 7) can also be linearly combined as

P∗∗∗
k = argmin

i

(

t ·∑
p

w f (ppp)
∥

∥

∥
Csyn

B,Pk
(S(ppp))−CB,i(S(ppp))

∥

∥

∥

+(1− t) ·∑
p

wt(ppp)
∥

∥

∥
Isyn
B,Pk

(ppp)− IB,i(ppp)
∥

∥

∥

)

,

with a scalar t to adjust the importance between flow match-
ing and texture matching, such that both kinds of similarities
can be taken into account for best candidate selection. With
equal preference on flow and texture matching, t is set to be
0.5 in our experiments.

Furthermore, the use of multiple reference images is also
possible. It potentially can achieve better synthesis qual-
ity, especially for texture synthesis. However, this would in-
crease the effort for manual initialization. In our preliminary
experiments, two sets of reference images as shown in Fig-
ures 2(b)-(e) are utilized to obtain good synthetic textures
for matching.

Experimentally, combined texture and flow matching con-
verges within 10 iterations, after which the best prototype
candidates become stable. Partial prototype matching results
are shown in Figure 3,revealing the proposed matching-by-
synthesis algorithm can capture the subtle change of mouth
dynamics. The flows and textures of these prototype images
will form the MMM basis of the novel person. And phoneme
models from the original person can be directly used for
speech animation synthesis.

5. Model Adaptation

After steps of the model transfer performed in the previous
section, the MMM prototypes are replaced by the images
of the novel person while the phoneme model is directly
transferred from the original user. Although the synthesized
speech animation will be animated with the novel person’s
face, it actually behaves with the speaking style of the orig-
inal user. Thus, there is a need to adapt the phoneme model
to the speaking style of the new user.

In speech recognition applications, acoustic models and
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Figure 4: Trajectory synthesis for partial MMM parameters.
Top: The analyzed trajectory for the 39th flow coefficient
α39 (in solid blue) compared with the synthesized α39 be-
fore adaptation (in green dots) and after adaptation (in red
crosses). Bottom: Same as above, but the trajectory is for
the 39th texture coefficient β39. Both trajectories are from
the two digits "nine" and "ten".

language models are often adapted to reduce the mismatch
in microphone, transmission channel, environment noise,
speaker, style, and application contexts [HAH01]. For acous-
tic model adaptation, adaptive techniques such as MAP
(maximum a posteriori) [GL94], MLLR (maximum likeli-
hood linear regression) [LW95], and clustering adaptation
[Gal98, KNJ∗98] are utilized to modify model parameters
with a small amount of adaptation data. Within these ap-
proaches, MLLR adaptation outperforms MAP when the
amount adaptation data is small, and it does not require train-
ing data from a large variety of speakers as in clustering
adaptation techniques.

Analogously, the phoneme model of the morphable model
can be adapted from the small video corpus to make the syn-
thesized animation more similar to the novel subject. How-
ever, while in speech recognition the acoustic model parame-
ters are adapted to maximize the likelihood of the adaptation
data, in speech animation synthesis, we would like to adapt
the phoneme models such that MMM trajectories from the
novel corpus are better reconstructed as depicted in Figure
4. Consequently, we propose a linear regression algorithm
with gradient descent learning to adapt the MMM phoneme
models.

Our algorithm consists of three parts: first, an MMM re-
selection step is performed to re-select a set of prototypes
which best reconstruct the adaptation corpus; secondly, the

phonemes are grouped together under a set of regression
classes in order for learning to proceed even when no data is
available for a particular phoneme in the adaptation corpus;
finally, the gradient descent linear regression is performed
as the last step which adapts the means of each regression
class. In the following sections, we describe each step in de-
tail.

5.1. MMM Re-Selection

The prototype images {IPi}
M
i=1 semi-automatically selected

in Section 4 are chosen to be as similar in shape to the proto-
type images of the original person’s morphable model. How-
ever, this criterion for choosing the prototypes may not be
optimal in reconstructing the mouth appearance of the novel
subject in the adaptation corpus. Consequently, the MMM
Re-Selection step selects a new set of prototypes {IP′

i
}M

i=1
which best reconstruct the adaptation corpus, and then re-
writes the phoneme models in terms of this new basis.

Similar to the normal procedures of the MMM construc-
tion as stated in Section 3.1, the k-means clustering algo-
rithm [Bis95] is utilized to select representative images as
new prototype images

{

P′
k
}M

k=1. Each of the old prototypes
{Pk}

M
k=1 may thus be analyzed in terms of the new proto-

types
{

P′
k
}M

k=1 as:

CPk =
M

∑
i=1

αi,kCP′

i
, (11)

and

IPk =
M

∑
i=1

βi,kIwarped
P′

i
. (12)

Hence, to substitute the MMM with the new prototype im-
ages, the mean and covariance of phoneme models should be
updated. Given a phoneme p with mean µp and covariance
matrix Σp , the updated mean and covariance matrix is:

µ′p = MABµp and Σ′
p = MABΣpMT

AB, (13)

with the transform matrix formulated as

MAB =

[

A 0
0 B

]

,

where elements of matrices A and B are αi, j and βi, j ob-
tained in Equations 11 and 12.

5.2. Regression Classes Clustering

The idea of linear regression is to use a common linear
transform to adapt the mean vectors of multiple compo-
nents of the model when only small amount of adaptation
data is available. Since some components may have quite
different characteristics from other components, regression
classes are clustered such that the same regression matrix is
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shared with the components belonging to the same regres-
sion class. In our work, phoneme models are clustered based
on their MMM parameters using the k-means clustering al-
gorithm [Bis95]. Nine regression classes are derived from 40
phonemes including the silence (SIL) and breath (BR): {AO,
W}, {AA, AE, AH, AX, EH, HH, BR}, {B, M, P}, {F, V},
{AXR, D, DH, K, S, T, TH, Z}, {DX, G, IH, IX, IY, N, NG,
Y}, {ER, L, R, UH}, {CH, JH, SH, UW, ZH}, {SIL}. As
expected, these classes roughly exhibit similar structures as
viseme groups.

5.3. Gradient Descent Linear Regression

For each phoneme p in the same regression class g, the mean
vector µp is adapted by a common regression matrix Rg

such that µadapt
p = Rgξp, where the extended mean vector

is formed by ξp = [ 1 µp ]T . Different from the conven-
tional MLLR [LW95] where the optimal regression matrix
is obtained by maximizing the likelihood of the adaptation
data, we seek to find the regression matrix that can minimize
the error between the synthesized MMM parameters and the
real parameters of the adaptation data. Given the regression
matrices, the synthesized MMM parameters yyy are obtained
by minimizing the modified objective function:

Es = (yyy−Rξξξ)
T DT ΣΣΣ−1D(yyy−Rξξξ)+λyyyT WT

k Wkyyy, (14)

where ξξξ is the cascaded extended mean vector, and R is the
sparsely cascaded regression matrix. By taking the derivative
and minimizing yields the following equation for optimal
synthesized MMM parameters:

(

DT ΣΣΣ−1D+λWT
k Wk

)

yyy = DT ΣΣΣ−1DRξξξ. (15)

Instead of adapting the mean and covariance of each
phoneme model as in Equation 5, the regression matrix for
each regression class g is adapted by gradient descent learn-
ing. With the objective function Ea = (zzz− yyy)T (zzz− yyy) , the
gradient between Ea and the regression matrix Rg can be de-
rived by chain rule:

∂Ea

∂Rg
=

(

∂Ea

∂yyy

)T (

∂yyy
∂Rg

)

,

where ∂Ea
/

∂yyy can be easily obtained by

∂Ea

∂yyy
= −2(zzz− yyy),

and ∂yyy
/

∂Rg can be derived from Equation 15:
(

DT ΣΣΣ−1D+λWT
k Wk

) ∂yyy
∂Rg

= DT ΣΣΣ−1D ∂R
∂Rg

ξξξ. (16)

Then, each regression matrix is updated with the computed
gradient by

Rnew
g = Rold

g −η ∂Ea

∂Rg
, (17)

with a small learning rate parameter η, and the initial re-
gression matrix Rold

g is set to be the identity transformation
which consists of an M×M identity matrix augmented by a
column of zeros on the left side. Afterwards, the mean vector
of phonemes in the same regression class is adapted accord-
ingly.

6. Experimental Results

Experiments are conducted to verify the performance of
the proposed model transfer and adaptation approach. Two
video corpora with different amount of data are collected as
the experimental data.

The first corpus is a 10-minute video recorded from a male
sitting statically in front of the camcorder, uttering 304 En-
glish words. Based on the procedures of [EGP02], a set of
50 prototype images are selected by k-means clustering al-
gorithm [Bis95] to construct the MMM. For phoneme mod-
els, each phoneme of the 40 phonemes stated in Section 5.2
is approximated by one Gaussian distribution with diagonal
covariance matrix.

The second corpus is a short video clip recorded from an-
other male under the same recording setup, uttering English
digits from one to ten. The length of the small video is only
15 seconds (450 frames). Given such a short video clip, the
average number of frames per phoneme is as few as 11.25
frames (3.87 frames if not take /SIL/ into account!) 21 of the
40 phonemes are not present. Except for the silence, other
39 phonemes all occupy less than 15 frames.

For initialization of model transfer, we setup 38 feature
points for dense correspondence calculation between images
from different persons. The configuration of these feature
points is shown in Figure 2(a). No feature points are located
on the eyebrows or forehead since the mouth region is the re-
gion of interest. To achieve better quality of synthesized flow
and texture, two sets of reference images, one with mouth
open and another with mouth closed, are used for prototype
image matching as shown in Figures 2(b)-(e). Feature points
are manually marked on these reference images for dense
correspondence calculation with the RBF-based interpola-
tion.

Partial prototype matching results from flow matching
followed by six iterations of combined flow and texture
matching are shown in Figure 3. It can be observed that
the automatically selected new prototype images catch sub-
tle changes of mouth dynamics quite well.

After prototype image matching, the MMM re-selection
procedure is performed to replace the automatically se-
lected prototype images with the images selected by k-means
clustering algorithm. Afterwards, the phoneme models are
grouped to nine regression classes for gradient descent lin-
ear regression, which converged around 30 iterations with
the learning rate η equal to 0.005. Figure 4 depicts synthe-
sized trajectories for some parameters before adaptation (in
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Figure 5: Mouth image synthesis of five basic English vowels {/AA/, /IY/, /UH/, /EH/, /AO/} for the original user (top), and the
novel subject before adaptation (middle) and after adaptation (bottom).

green dots) and after adaptation (in red crosses) compared
to the real trajectories (in solid blue). Figure 5 also shows
the synthesized mouth images of five basic vowels in En-
glish before and after phoneme model adaptation. It is shown
that the images synthesized from the adapted model exhibit
more correct mouth shapes. By oberving the accompanied
videos for sentence and song synthesis, the mouth dynamics
synthesized with the adapted model apparently mimics the
speaking style of the novel person.

7. Conclusions and Future Work

In this work, the framework of transferable videorealistic
speech animation is proposed. Rather than transferring fa-
cial motions directly from one person to another, a genera-
tive morphable model is transferred to a novel person given
a small video corpus. The contributions of this work are
two-fold: First, a matching-by-synthesis method is utilized
to choose a set of MMM prototypes from the novel speaker
which match the MMM prototypes of the original speaker.
Second, a model adaptation approach based on gradient de-
scent linear regression is proposed to refine the phoneme

models with the limited amount of video corpus as adapta-
tion data. The synthesis from the adapted phoneme models
learns the speaking style of the novel person. Good results
are obtained from experiments performed successfully on an
15-sec. adaptation video, which justifies the applicability of
the proposed method.

Currently, the synthesized mouth images are composited
onto the same adaptation video corpus as the background se-
quence. Consequently, the head movement will seem unnat-
ural with respect to the content of the speech. Furthermore,
the length of the given small video may not be sufficient
to synthesize a long speech utterance. The idea of combin-
ing visual prosody [GCSH02] and video texture [SSSE00]
with the use of morphable models to generate background
sequences with desired head movements is worthy of future
investigation.
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