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Abstract

We present MikeTalk, a text-to-audiovisual speech
synthesizer which converts input text into an audiovi-
sual speech stream. MikeTalk is built using visemes,
which are a set of images spanning a large range
of mouth shapes. The visemes are acquired from a
recorded visual corpus of a human subject which is
specifically designed to elicit one instantiation of each
viseme. Using optical flow methods, correspondence
from every viseme to every other viseme is computed
automatically. By morphing along this correspondence,
a smooth transition between viseme images may be gen-
erated. A complete visual utterance is constructed by
concatenating viseme transitions. Finally, phoneme
and timing information extracted from a text-to-speech
synthesizer is exploited to determine which viseme tran-
sitions to use, and the rate at which the morphing pro-
cess should occur. In this manner, we are able to syn-
chronize the visual speech stream with the audio speech
stream, and hence give the impression of a photorealis-
tic talking face.

1. Introduction

The goal of the work described in this paper is to de-
velop a text-to-audiovisual speech (TTVS) synthesizer
called MikeTalk. MikeTalk is similar to a standard
text-to-speech synthesizer in that it converts typed text
into an audio speech stream. However, MikeTalk also
produces an accompanying visual stream composed of
a talking face enunciating that text. An overview of
our system is shown in Figure 1.

TTVS systems are attracting an increased amount
of interest in the recent years, and this interest is driven
by the possible deployment of these systems as visual
desktop agents, digital actors, and virtual avatars. In
addition, they may also have potential uses in very low
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Figure 1. Overview of the MikeTalk TTVS sys-
tem.

bandwidth videoconferencing and special effects, and
would also be of interest to psychologists who wish to
study visual speech production and perception.

The main research issue underlying the construction
of a TTVS visual stream is the nature of the facial
model to use. One approach is to model the face us-
ing traditional 3D modeling methods. Parke [17] was
one of the earliest to adopt such an approach by cre-
ating a polygonal facial model. Recent work on TTVS
systems that is based on Parke’s models include the
work of Cohen & Massaro [7] and LeGoff & Benoit [13].
Extending this 3D modeling approach, Terzopoulos &
Waters [19] built a facial model which also includes
muscle and bone structures. To improve the photore-
alism of the facial model, Lee, Terzopoulos, et al. [12]
resorted to Cyberware scanning. The Cyberware scan-
ner produces accurate 3D structure and texture maps
of the scanned face, and these maps are animated by
overlaying them on top of the muscle-based models.

At the other end of the facial modeling spectrum



are a group of image-based approaches where the face
is modeled using images alone. One such early ap-
proach was that of Beymer, Shashua, and Poggio [3],
who utilized a morphing technique to synthesize novel,
intermediate images of a face from example endpoints.
In doing so, their algorithm was capable of modeling
rigid facial transformations such as pose changes, as
well as non-rigid transformations such as smiles.

In a similar vein, Scott, Kagels, et al. [18] also em-
ployed an image-based morphing method in their work.
Their facial model is composed of a set of images which
capture a large range of the mouth shapes occurring
during speech. To animate the face, a morphing al-
gorithm is developed which is capable of transitioning
between the various mouth shapes in a smooth and
realistic manner.

Most recently, Bregler, Covell, el al. [5] also de-
scribed an image-based approach to facial modeling:
in their work, a set of short audiovisual sequences are
extracted from a larger audiovisual corpus. Each one of
these short sequences is a triphone segment, and a large
database with all the acquired triphones is built. A new
audiovisual sentence is constructed by concatenating
the appropriate triphone sequences from the database
together.

The approach described in this work falls into the
image-based, morphing category, and is close in spirit
to the work of [3] and [18]. In the following sections, we
describe the various aspects of our approach in detail.

2. Corpus and Viseme Data Acquiry

The basic underlying assumption of our facial syn-
thesis approach is that the complete set of mouth
shapes associated with human speech may be reason-
ably spanned by a finite set of visemes. The term
viseme itself was coined initially by Fisher [9] as an
amalgamation of the words “visual” and “phoneme”.
To date, there has been no precise definition for the
term, but in general it has come to refer to a speech
segment that is visually contrastive from another. In
this work, a viseme will be defined to be a static lip
shape image that is visually contrastive from another.

Given the assumption that visual speech is spanned
by a set of visemes, we would like to design a particular
visual corpus which elicits one instantiation for each
viseme. The simplest approach to take is to assume a
one-to-one mapping between the set of phonemes and
the set of visemes, and design the corpus so that there
is at least one word uttered which instantiates each
phoneme.

This one-to-one strategy is a reasonable approach in
light of the fact that our ultimate goal in this work is

to use an underlying TTS system to produce an audio-
visual sequence. In doing so, the TTS will produce a
stream of phonemes corresponding to the input text.
Consequently, we will need to map from the set of
phonemes used by the TTS to a set of visemes so as
to produce the visual stream. The one-to-one mapping
strategy is also a good idea because most speech text-
books and dictionaries contain a list of phonemes and
example words which instantiate them, and the corpus
may thus be limited to those example words.

However, current literature on viseme research indi-
cates that the mapping between phonemes and visemes
is many-to-one: there are many phonemes which look
alike visually, and hence they fall into the same visemic
category. This is particularly true, for example, in
cases where two sounds are identical in manner and
place of articulation, but differ only in voicing charac-
teristics. For example, \b\ and \p\ are two bilabial
stops which differ only in the fact that the former is
voiced while the latter is voiceless. This difference,
however, does not manifest itself visually, and hence
the two phonemes should be placed in the same visemic
category. The reader is referred to Owens and Blasek
[16] for a discussion of the consonantal visemic cate-
gories, and to Montgomery and Jackson [14] for a dis-
cussion of the vocalic visemic categories.

Conversely, the literature points out that the map
from phonemes to visemes is also one-to-many: the
same phoneme can have many different visual forms.
This phenomenon is termed coarticulation, and it oc-
curs because the neighboring phonemic context in
which a sound is uttered influences the lip shape for
that sound. For example, the viseme associated with
\t\ differs depending on whether the speaker is ut-
tering the word two or the word tea. In the former
case, the \t\ viseme assumes a rounded shape in an-
ticipation of the upcoming \uu\ sound, while the latter
assumes a more spread shape in anticipation of the up-
coming \ii\ sound. The reader is referred to Cohen
and Massaro [7] for an in-depth discussion on the the-
ories behind coarticulation, and to Owens and Blasek
[16] for a study on consonantal perception in various
vocalic contexts.

At the present stage of our work, we have decided for
the sake of simplicity to ignore coarticulation effects.
Consequently, the recorded corpus, which is shown in
Figure 2, assumes a one-to-one map from phonemes
to visemes, and hence one word is uttered for every
phoneme. The example words uttered are obtained
from Olive, Greenwood, et al. [15], and are generally
categorized into example words which instantiate con-
sonantal, monophthong vocalic, and diphthong vocalic
phonemes.
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Figure 2. The recorded visual corpus. The un-
derlined portion of each example word iden-
tifies the target phoneme being recorded. To
the left of each example word is the phone-
mic transcription label being used.

After the whole corpus is recorded and digitized, one
lip image is extracted as an instance of that viseme.
This leads to the extraction of 52 viseme images in
all: 24 representing the consonants, 12 representing the
monophthongs, and 16 representing the diphthongs.
Since this is an unnecessarily large number of visemes,
it was decided to further reduce the viseme set by
grouping together those visemes which looked similar.
This was done in a subjective manner, by comparing
the viseme images visually to assess their similarity.
The authors were also guided in this process by the
conclusions in Owens and Blasek [16] for the case of
consonantal visemes, and in Montgomery and Jackson
[14] for the case of vocalic visemes. This grouping step
is, in effect, a decision to use a many-to-one mapping
strategy instead of a one-to-one mapping strategy.

The final reduced set of visemes are shown in Fig-
ures 3 and 4. There were 6 final visemes representing
the 24 consonantal phonemes. There were 7 visemes

/p, b, m/ /f. v/ /t,d,s,z,th,dh/

/w,r/ /ch,jh,sh,zh/ /k,g,n,l,ng,h,y/

Figure 3. The 6 consonant visemes

representing the 12 monophthong phonemes. In the
case of diphthongs, it was found that all vowel nu-
clei could be represented by corresponding monoph-
thong visemes. The only exception to this occurred in
the case of two nuclei: the second nucleus of the \au\
dipththong, which we call the \w-au\ viseme, and the
first nucleus of the \o-ou\ dipththong, which we call
the \o-ou\ viseme. Finally, one extra viseme was in-
cluded to represent silence, which we call \#\.

In all, there are 16 final visemes.

3. Morphing Between Visemes

In constructing a visual speech stream, it is not suffi-
cient to simply display the viseme images in sequence.
Doing so would create the disturbing illusion of very
abrupt mouth movement, since the viseme images differ
from each other in shape significantly. Consequently, a
mechanism of transitioning from each viseme image to
every other viseme image is needed, and this transition
must be smooth and realistic. In this work, a morphing
technique was adopted to create this transition.

3.1. Background

Morphing was first popularized by Beier & Neely [1]
in the context of generating transitions between differ-
ent faces for Michael Jackson’s Black or White music
video. The transformations between images occur as a
warp of the first image into the second, a similar in-
verse warp of the second image into the first, and a final
cross-dissolve or blend of the warped images. It should
be noted that both Beymer, Shashua, Poggio [3] and
Scott, Kagels, et al. [18] noticed the viability of using
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Figure 4. The 7 monophthong visemes, 2
diphthong visemes, and the silence viseme.

morphing as a method of transitioning between various
facial pose, expression, and mouth position imagery.

The difficulty with traditional morphing approaches
is that the specification of the warp between the im-
ages requires the definition of a set of high-level fea-
tures. These features serve to ensure that the warping
process preserves the desired correspondence between
the geometric attributes of the objects to be morphed.
For example, if we were morphing between two faces,
we would want the eyes in one face to map to the eyes
in the other face, the mouth in one face to map to the
mouth in the other face, and so on. Consequently, the
correspondence between these eyes and mouth features
would need to be specified.

When it is done by hand, however, this feature spec-
ification process can become quite tedious and com-
plicated, especially in cases when a large amount of
imagery is involved. In addition, the process of speci-
fying the feature regions usually requires hand-coding
a large number of ad-hoc geometric primitives such as
line segments, cornerpoints, arcs, circles, and meshes.
Beier & Neely [1] in fact, make the explicit statement
that the specification of the correspondence between

images constitutes the most time-consuming aspect of
the morph.

As a result, we have resorted to optical flow methods
to alleviate these problems.

3.2. Optical Flow

Optical flow was originally formulated by Horn &
Schunck [10] in the context of measuring the motion
of objects in images. This motion is captured as a
two-dimensional vector field {dx, dy} that describes
how each pixel has moved between the viseme images.
From our perspective, optical flow is important because
it allows for the automatic determination of correspon-
dence between images. In addition, since each pixel
is effectively a feature point, optical flow allows us to
bypass the need for hand-coding any ad-hoc feature
primitives.

In general, determining optical flow is a highly
under-constrained problem, and an additional set of
assumptions about the underlying motion need to be
made. In the particular case of the optical flow al-
gorithm used in this work (Bergen & Hingorani [2]),
one such assumption made is that the motion between
images is small. This small motion assumption is ex-
tremely detrimental, however, because in many cases
it prevents the optical flow algorithm from computing
correct correspondence between viseme images that ex-
hibit large differences in motion between each other.
Consequently, direct application of our optical flow al-
gorithm only succeeds when the motion between any
two viseme images is small.

However, we have found that a flow concatenation
procedure (Ezzat [8]) overcomes the problems which
occur when the small motion assumption fails to ap-
ply. Since the original visual corpus is digitized at 30
fps, there are many intermediate frames that lie be-
tween the chosen viseme images. The pixel motions
between these consecutive frames are small, and hence
the small motion assumption is not violated. Conse-
quently, we compute a series of consecutive optical flow
vectors between each intermediate image and its pre-
decessor, and then concatenate them all into one large
flow vector that defines the global transformation be-
tween the chosen visemes.

Further details of the flow concatenation procedure
itself may be found in Ezzat [8].

3.3. Forward Warping

Given two viseme images A and B, and the com-
puted correspondence vectors dA→Bx and dA→By be-
tween them, the first step of our morphing algorithm



is to forward warp A along dA→Bx and dA→By .
Our forward warping algorithm “pushes” the pixels

of A along the flow vectors. By scaling the computed
flow vectors uniformly by a constant between 0 and 1,
one can produce a series of warped intermediate im-
ages which approximate the transformation between
visemes A and B. Several such intermediate warps are
shown in Figure 5a.

The black holes which appear in the intermediate
images shown in Figure 5a occur in cases where a des-
tination pixel was not filled in with any source pixel
value. One reason for this is that the forward warp-
ing algorithm rounds to the nearest integer when it
decides which destination pixel to fill. Another reason
is that local image expansion involved in the underly-
ing motion of the lips causes the optical flow vectors
themselves to diverge.

To remedy this, a hole-filling algorithm first pro-
posed by Chen & Williams [6] was adopted. The al-
gorithm pre-fills the destination images with a special
reserved background color. After performing the for-
ward warp, the hole-filling algorithm traverses the des-
tination image in rasterized order and fills in the holes
by interpolating linearly between their non-hole end-
points. Figure 5b shows the same set of warped inter-
mediates as in Figure 5a, but with the holes filled in
using our algorithm.

3.4. Morphing

Because forward warping can only move pixels
around, it cannot model the appearance of new pixel
texture. As is evident from the sequence in Figure 5b,
a forward warp of viseme A along the flow vectors can
never produce a final image that looks like viseme B,
since viseme B itself contains a large amount of novel
texture from the inside of the mouth.

Morphing overcomes this “novel pixel texture” prob-
lem because it involves two warps, one from the start-
ing viseme to the intermediate point, and another from
the ending viseme to the same intermediate point. The
two warped images are subsequently scaled by respec-
tive blending parameters and then added to produce
the final morphed image. By interpolating the blend-
ing parameters the morph “fades out” the warped ver-
sions of the starting viseme and “fades in” the warped
versions of the ending viseme. The blending process
thus allows the two warps to be effectively combined,
and the “new” pixels of the second viseme to become
involved in the viseme transition itself. It should be
noted that both Beymer, Shashua, & Poggio [3] and
Bergen & Hingorani [2] noticed the viability of morph-
ing along optical flow vectors as a means of creating

realistic transitions between two images.
Since the second warp in a morph is a warp of viseme

B towards viseme A, an inverse flow from B to viseme A
needs to be computed. In this work, the inverse flow is
computed using an algorithm that was first described
in Beymer, Shashua, and Poggio [3]. Figure 5c depicts
the set of images generated as a result of warping along
the inverse flow from viseme B to viseme A.

A final morph sequence is shown in Figure 5d. The
blending parameter α is interpolated linearly between
0.0 and 1.0.

3.5. Morph Concatenation

To construct a visual stream in which a word or
a sentence is uttered, we simply concatenate the ap-
propriate viseme transitions together. For example,
the word one, which has a phonetic transcription of
\w-uh-n\, is composed of the two viseme transitions
\w-uh\ and \uh-n\ put together and played seam-
lessly one right after the other. The transition between
viseme transitions is smooth because the \uh\ viseme
image is the same image in both viseme transitions.

4. Synthesizing the New Audiovisual
Sentence

We have incorporated the Festival TTS system
(Black & Taylor [4]), developed at the University of
Edinburgh, into our work. A voice in the Festival sys-
tem consists of a set of recorded diphones, which are
stored as LPC coefficients and corresponding residuals
(Hunt, Zwierzynski, et al. [11]). It is interesting to
note that the final audio speech stream is constructed
by concatenating the appropriate diphones together, in
a manner that is completely analogous to our method
for concatenating viseme transitions.

The Festival TTS system models speech produc-
tion using the traditional source-filter model in which
a pitch impulse train is modulated by a vocal transfer
function. This model has been historically important
for speech synthesis because it effectively isolates the
intonation and duration information, captured by the
pitch impulse train, from the phonemic information,
captured by the vocal filter.

The TTS system thus takes as input a typed sen-
tence and computes as an intermediate representation
the desired pitch train with which to excite the vocal
transfer function. For each pitch impulse in the train,
the TTS system determines its length in samples, and
the diphone filter which it will excite. For example, the
pitch train for the word bed contains a series of im-
pulses that excite various consecutive portions of the
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Figure 5. A) Forward warping viseme A (first image) towards B, without hole filling. B) Forward
warping viseme A (first image) towards B, with hole filling. C) Forward warping viseme B (last image)
towards A, with hole filling. D) A morph between viseme A and viseme B.

diphone \b-e\, followed by a series of impulses that ex-
cite various consecutive portions of the diphone \e-d\.

The information contained in the pitch impulse train
is sufficient for creating a visual speech stream in close
synchrony with the audio stream. We place a new
viseme image at every pitch impulse which excites a
diphone different from the previous. So the \e\ viseme
in the previous example would be placed at the position
of the first pitch impulse which transitions between the
\b-e\ and \e-d\ diphones.

The number of frames to morph is determined by
counting the total length in samples of all the pitch im-
pulses between any two viseme images. We divide this
sample total by the audio sampling rate (16kHz) to de-
termine the duration of a viseme transition in seconds.
Multiplication by the desired video frame rate (60fps)
then determines the number of needed frames.

We have found that the use of TTS timing and
phonemic information in this manner produces superb
quality lip synchronization between the audio and the
video. The drawback of using a TTS system, however,
as opposed to a recorded natural speech signal that
is manually annotated, is that the audio may have a
slightly ’robotic’ quality to it. Nevertheless, the flexi-
bility of having our TTVS system produce audiovisual

output for any typed text has offset any misgivings we
might have regarding final audio quality. We also be-
lieve that future generations of TTS systems will con-
tinue to achieve better levels of audio quality.

5. Summary of Our Approach

In summary, our talking facial model may be viewed
as a collection of viseme imagery and the set of optical
flow vectors defining the morph transition paths from
every viseme to every other viseme.

We briefly summarize the individual steps involved
in the construction of our facial model:

Recording the Visual Corpus: First, a visual cor-
pus of a subject enunciating a set of key words is
recorded. An initial one-to-one mapping between
phonemes and visemes is assumed, and the subject
is asked to enunciate 40-50 words.

Extracting the Visemes: Next, one single image
for each viseme is identified and extracted from the
corpus sequence. This is done manually by search-
ing through the recorded frames. The viseme set
is then subjectively reduced to a final set of 16
visemes.



Building the Flow Database: Thirdly, we build a
database of optical flow vectors that specify the
morph transition from each viseme image to every
other viseme image. Since there are 16 visemes
in our final viseme set, a total of 256 optical flow
vectors are computed.

Synthesizing the New Audiovisual Sentence:
Finally, we utilize a text-to-speech system (Black
& Taylor [4]) to convert unconstrained input text
into a string of phonemes, along with duration
information for each phoneme. Using this infor-
mation, we determine the appropriate sequence of
viseme transitions to make, as well as the rate of
the transformations. The final visual sequence is
composed of a concatenation of the viseme transi-
tions, played in synchrony with the audio speech
signal generated by the TTS system.

6. Results

We have synthesized several audiovisual sen-
tences to test our overall approach for visual
speech synthesis and audio synchronization de-
scribed above. Our results may be viewed by
accessing our World Wide Web home page at
http://cuneus.ai.mit.edu:8000/research/miketalk/
miketalk.html. The first author may also be con-
tacted for a video tape which depicts the results of this
work.

7. Further Work

Further work involves incorporating a model for
coarticulation as well as higher-level mechanisms in vi-
sual speech communication such as eye blinks, eye gaze
changes, eyebrow movements, and head nods. In ad-
dition, a method of synthesizing the face at different
poses needs to be explored.
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