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Abstract

In this paper, we describe image-based modeling tech-
niques that make possible the creation of photo-realistic
computer models of real human faces. The image-based
model is built using example views of the face, bypassing
the need for any three-dimensional computer graphics mod-
els. A learning network is trained to associate each of the
example images with a set of pose and expression parame-
ters. For a novel set of parameters, the network synthesizes
a novel, intermediate view using a morphing approach. This
image-based synthesis paradigm can adequately model both
rigid and non-rigid facial movements.

We also describe an analysis-by-synthesis algorithm,
which is capable of extracting a set of high-level param-
eters from an image sequence involving facial movement
using embedded image-based models. The parameters of
the models are perturbed in a local and independent manner
for each image until a correspondence-based error metric
is minimized.

A small sample of experimental results is presented.

1 Introduction

Facial analysis and synthesis have emerged to be two im-
portant requirements for a vast array of vision-based applica-
tions. Facial analysis refers to the extraction from video se-
quences of information concerning the location of the head,
its pose, and the movement of facial features such as the
eyes and the mouth. Facial synthesis refers to the reverse
process of animating a facial model using a set of high-level
parameters that control the face’s gaze, mouth orientation,
and pose.

In this work, we adopt an image-based facial modelling
approach, in which we model facial movements using exam-
ple images. In doing do we are motivated by the fact that a
number of researchers ([2], [3], [8], [9]) have noticed the vi-
ability of a view interpolation approach to image synthesis,

where novel, intermediate images of a scene are synthesized
from example endpoints using a morphing technique. In par-
ticular, we adopt the approach of Beymer, Shashua, Poggio
[2], who cast the view interpolation approach in a learning-
by-example framework: each example image is associated
with a position in a high-level, multi-dimensional parameter
space denoting pose and expression. By training on the ex-
amples, a learning network can then generalize, and generate
suitable novel images that lie at intermediate points in the
example space. The trained network, in essence, becomes
a synthesis network, which generates images as output, for
suitable parameters as input. Beymer, Shashua, Poggio [2],
in fact, showed that this technique is capable of modeling
rigid facial transformations such as pose changes, as well as
non-rigid transformations such as smiles.

From the analysis standpoint, we are motivated in partic-
ular by the work of Jones and Poggio [6], who constructed
models of line drawings, and used a stochastic gradient de-
scent algorithm to match the models to novel line drawings
input by the user. The models themselves consisted of a lin-
ear combination of prototypes, and the error metric which
the gradient descent algorithm tried to minimize was the
pixel-wise error between the novel drawing and the current
guess for the closest model image. At every iteration, the
algorithm would compute the gradient of this error metric
with respect to the model parameters, and proceed to a new
guess for a set of parameters that would produce a new
model image closer to the novel image.

The first contribution of this work is to extend the syn-
thesis network paradigm of Beymer, Shashua, Poggio [2]
into a synthesis module paradigm more suitable for analysis:
Firstly, each synthesis network is additionallyparameterized
with a set of affine parameters, such as translation, rotation,
and scale. Secondly, a flexible mask-based segmentation
scheme is incorporated into the synthesis module that is ca-
pable of segmenting the head in any of the images output
by the network. Thus, from an input-output perspective, the
synthesis module is capable, for the appropriate input pa-
rameters, of producing images of segmented faces at various



scales, rotations, positions, poses, and expressions.
The second contribution of this work is to embed the

synthesis modules mentioned previously in an analysis-by-
synthesis algorithm similar to that of Jones and Poggio [6].
In our case, however, we define a correspondence-based er-
ror metric instead of a pixel-based error metric, in an attempt
to make the analysis algorithm more robust to changes in
lighting, position, scale, and rotation. Essentially, the pa-
rameters of the embedded synthesis modules are perturbed
in a local and independent manner for each image in the se-
quence until the correspondence-based error metric is min-
imized.

In Section 2, we describe the construction of the synthesis
modules to be used for analysis and synthesis. In Section 3,
we sketch an outline of our analysis-by-synthesis algorithm.
In Section 4, we describe and depict a small sample of
experimental results. Finally, in Section 5, we briefly discuss
our approach.

2 Building the Synthesis Modules

2.1 Choosing the Example Set and the Parameter
Space

The first step in the creation of the synthesis module
is the selection of the example images and the association
of each example with a point in a hand-crafted parameter
space x. Figure 1 depicts nine example images arranged
in a two-dimensional parameter space where each axis is
limited to values between -1.0 and 1.0. One axis denotes
degree of horizontal pose, while the other denotes degree
of vertical pose. The top-right example image, for instance,
would be associated with the position in parameter space
x = (1:0; 1:0).

2.2 Learning the Map from Parameters to Corre-
spondences

Beymer, Shashua, and Poggio [2] framed the learning
problem as a problem of approximating an unknown func-
tion y = f(x) that maps between the parameter space, x,
and the example space, y, given a set of N training sam-
ples (xi, yi) of the function f(x). Rather than trying to
approximate a function y = f(x) that maps between the pa-
rameter space x and an example space y of images, Poggio
and Brunelli [7] instead argued that it is better to try to learn
a map between a parameter space x and an example space
y of correspondence vectors that define corresponding fea-
tures across the example images. The underlying intuition
is that such a map is easier to learn because the correspon-
dence vectors factor out lighting effects, and also because
they undergo reasonably smooth change during motion of
the underlying object to be modeled.

-1
.0

   
   

   
   

 P
os

e 
D

ow
n

0.
0

P
os

e 
U

p 
   

   
 1

.0

Pose Left 0.0 Pose Right     1.0-1.0

Figure 1. The examples for a 3-by-3 network
involving pose movements in all directions.

In this work, we define a dense, pixel-wise correspon-
dence between two images: for a pixel in image A at posi-
tion (i; j), the correspondingpixel in image B lies at position
(i+∆x(i; j); j+∆y(i; j)), where ∆x and ∆y are arrays that
contain the x and y components of the correspondence vec-
tors, respectively. To obtain such a dense, pixel-wise corre-
spondence between the example images, we utilize optical
flow algorithms borrowed from the computer vision litera-
ture. Specifically, we use the coarse-to-fine, gradient-based
optical flow algorithms developed by Bergen and Hingo-
rani [1]. In practice, these algorithms work very well when
the two example images are similar and not too far apart.
In cases where the example images are far apart, we have
found that concatenating optical flow by using many inter-
mediate images between examples produces very good final
correspondences.

From the standpoint of synthesis module design, in which
more than two images may be involved, a reference example
image is designated, and correspondence between it and the
rest of the images in the example set is found. For example,
in Figure 1, the central image is the reference example, and
eight correspondence vectors yi are found between it and the
other examples. A ninth, and null, correspondence vector,
y0, is designated to represent the correspondence between
the reference example and itself.

We approximate the unknown function y = f(x) which
maps from parameters to correspondences given the sam-
ples (yi; xi)Ni=1, using a radial basis function with Gaussian
centers [5], which is expressed in its dual form as:
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Figure 2. Some intermediate examples gener-
ated from the synthesis network of Figure 1,
and their positions in the imposed parameter
space

y =

NX

i=1

bi(x)yi; (1)

where the yi are the example correspondences used for train-
ing. Equation 1 essentially means that a novel correspon-
dence vector y at position x in the imposed parameter space
is synthesized by taking a linear combination of the exam-
ple correspondences yi, with the coefficients bi depending
nonlinearly on the parameter x. The learning stage de-
fines the structure of the bi coefficients; typically, they are
Gaussian-like in nature, centered around each of the exam-
ple parameters xi used for training.

2.3 Warping and Blending

A new correspondence vector y synthesized from Equa-
tion 1 thus defines a position in correspondence space that
we would like the novel, intermediate image to be located
at. A simple forward warp operation that pushes the pix-
els of the reference example image along the synthesized
correspondence vector is sufficient to generate the image.
To utilize the image texture from all the examples, how-
ever, we also adopt a simple correspondence re-orientation
procedure, described in [2], that re-orients the synthesized
correspondence vector from Equation 1 so that it originates
from each of the other example images and points to the same
position as the original synthesized correspondence. This
allows us to subsequently forward warp all the examples
along their respective re-oriented correspondence vectors.

The final stage of the synthesis process is the blending
stage, when all of the warped images are blended together to
produce the final image. Blending refers to scaling each im-
age with a blending coefficient, and then adding all the scaled
images together to form the final image. The blending co-
efficients chosen are normalized versions of the coefficients
bi(x) from Equation 1.

Figure 2 illustrates three novel images synthesized from
the network shown in Figure 1.

Figure 3. The masks associated with the 3-by-
3 pose network in Figure 1.

2.4 Affine Parameters

Before analyzing with respect to novel image sequences,
the synthesis networks must also be additionally parameter-
ized with a set of affine parameters. This is needed because
novel sequences involve movements of the head that are
at scales, positions, and rotation angles that are different
from those in the network. Augmenting the synthesis net-
works with a set of four affine parameters (two translation
parameters, an angle parameter, and a scale parameter) is
straightforward: the network first synthesizes the head at
the intrinsic parameters imposed by the user, and then it
performs the desired affine transformation.

2.5 Segmentation

In addition to augmenting the synthesis network with
a set of affine parameters, it is also necessary to incorpo-
rate segmentation, because the analysis algorithm needs to
match only on the region in the synthesized network that
corresponds to the face. This will allow the algorithm to
be less sensitive to background changes, as well as hairstyle
and clothing changes.

A network scheme for flexible segmentation was adopted
where a network of the same dimensions and orientation as
the corresponding image synthesis network is created, ex-
cept that instead of images, the examples are masks. Each
mask example serves to segment the head for the corre-
sponding image example, and the correspondence flows
relating the masks together are the same as those within
the image synthesis network. Whenever the synthesis net-



Figure 4. Various segmented and affine-
perturbed images synthesized from a 3-by-3
pose network similar to the one shown in Fig-
ure 1.

work synthesizes a new image, it also synthesizes a new
mask appropriate for the same image using the same warp-
ing and blending technique described in Section 2.3, with
minor modifications to preserve the black-and-white pixel
integrity of the mask.

Figure 3 depicts the masks that would be associated with
the 3-by-3 pose network in Figure 1. Figure 4 shows various
segmented and affine-perturbed images which are synthe-
sized from a network similar to the 3-by-3 pose network of
Figure 1.

2.6 From Synthesis Networks to Synthesis Mod-
ules

We can thus begin to conceptualize a synthesis module
that, from an input-output perspective, can generate images
of a face at a various positions, rotations, scales, poses,
expressions, etc., for the appropriate set of input parameters.

As described in [4], several different synthesis modules
were constructed to illustrate the ability of our approach
in modeling various facial motions: in addition to the 9-
example pose network shown in Figure 1, we have con-
structed a 5-example network that synthesizes intermedi-
ate images lying along open-mouth/smile axes, and a 14-
example network that synthesizes pose, eye, and mouth
movements combined.

3 Analysis

3.1 Overview

In this section, a model-based analysis algorithm is out-
lined which is capable of extracting a set of high-level pa-
rameters from novel image sequences. The analysis ap-
proach is, in fact, an analysis-by-synthesis approach, where
the synthesis modules created in the previous section are
themselves used for analysis.

3.2 A Correspondence-Based Error Metric

A key feature of our analysis algorithm is that instead of
using the embedded synthesis module to synthesize images
to match to the novel images, and thereby have to rely
on an image-based error metric, as in [6], the algorithm
instead tries to match novel correspondence. For every
iteration, the algorithm computes the optical flow between
two consecutive novel frames, and then attempts to find the
best matching correspondence from within its embedded
synthesis module. The rationale for using a correspondence-
based metric, as opposed to an image-based metric, is that
trying to minimize a correspondence-based error metric is
less susceptible to noise, local minima, and lighting changes.

3.3 Parameter Perturbation Strategy

The analysis-by-synthesis algorithm is based on itera-
tive, local, independent perturbations of the synthesis pa-
rameters. A sketch of the steps of the algorithm are as
follows:

1. For a novel correspondence obtained from two con-
secutive novel images (say images A and B) in the
sequence, the parameters of the embedded synthesis
model are perturbed. The perturbations include the
affine parameters, and vary each parameter indepen-
dently in the positive and negative directions by a small
delta factor.

2. For each set of perturbed parameters, the algorithm
then synthesizes a correspondence from the module that
corresponds to the perturbation. For reasons described
in [4], we have opted to obtain the correspondence
associated with the perturbation by synthesizing the
two perturbed images first, and then computing optical
flow between them.

3. The algorithm then computes the Euclidean distance
between each perturbed correspondence and the novel
correspondence, and finds the closest synthesized cor-
respondence of the set. All distances are computed
only in the regions specified by the masks associated
with the perturbed correspondences.



4. The algorithm then repeats steps 1 through 3, iteratively
perturbing around the set of parameters associated with
the closest synthesized correspondence found in step 3.

5. For each iteration, the synthesized correspondence that
yielded the overall smallest distance with respect to the
novel correspondence is preserved; if a set of pertur-
bations do not yield any new correspondences that re-
duce the overall minimum, the delta factors are halved
and the iterations proceed once again. Thus when the
algorithm gets close to the optimum synthesized cor-
respondence, it proceeds with smaller and smaller per-
turbations to achieve a better match. The iterations
terminate when the delta factors have been reduced to
a degree where perturbations made using those factors
do not make any significant changes in the synthesized
correspondences.

6. Once a parameter estimate is obtained for the given
novel flow, the algorithm computes the next consec-
utive novel correspondence in the sequence (say, be-
tween images B and C), and starts to perturb around the
set of parameters found in the previous iteration. This
whole process is performed across the entire sequence.

The first image in the novel sequence needs to be treated dif-
ferently from the other images, since there is no prior flow
within the sequence itself against which to match. Conse-
quently, we compute the correspondence from the reference
image in the network to the image, and then apply the it-
erative parameter perturbation technique to find the closest
synthesized correspondence. This strategy suffers from the
weakness that if the optical flow fails due to the fact that the
heads are too far away from each other, then the extracted pa-
rameters for the first image will be incorrect. Consequently,
in the novel sequences that we used to test the analysis al-
gorithm on, the head in the initial frame was not placed too
far away from the head in the reference image of the em-
bedded synthesis module, although, of course, significant
deviations in many variables did exist nevertheless.

4 Results

A varied set of experiments were performed to test our
analysis-by-synthesis technique in estimating different fa-
cial movements such as pose movements, eye movements,
mouth movements, as well as head translations, rotations,
and scales. Figures 5 through 10 on the next page depict a
small sample of results from these experiments. The novel
sequences involved changes in lighting,position, scale, rota-
tion, background, clothing, and hairstyle (the author shaved
his head!).

5 Discussion

One difficulty with the analysis-by-synthesis algorithm
presented is that it is computationally inefficient, taking be-
tween a few minutes to half an hour to analyze one frame, de-
pending on the complexity of the underlying synthesis mod-
ule. In addition, it also seems that the analysis-by-synthesis
paradigm as presented is also strongly user-dependent: the
example-based models can only extract analysis parameters
reliably from faces whose examples were used to build the
model.

On the positive side, however, it seems that our deci-
sion to use a correspondence-based metric, in addition to
the incorporation of affine perturbation and segmentation,
have allowed us to achieve very good analysis in spite of
changes in background, lighting, hairstyle, position, rota-
tion, and scale. Furthermore, it seems that the analysis-by-
synthesis technique is fairly general, and can serve to ana-
lyze a wide variety of rigid and non-rigid facial movements,
which would be useful for many tasks such as eye-tracking,
facial expression recognition, visual speech understanding,
and pose estimation.
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Figure 5. A novel sequence with pose move-
ment (top), along with the synthesized se-
quence (bottom). The synthesis module is
the 9-example 3-by-3 pose network shown in
Figure 1 in this paper.

Figure 7. A novel sequence with mouth move-
ment (top), along with the synthesized se-
quence (bottom). The synthesis module is a
14-example network that can synthesize eye,
pose, and mouth movement.

Figure 9. A novel sequence with eye move-
ment (top), along with the synthesized se-
quence (bottom). The synthesis module is
the 14-example network used in Figure 7.

Figure 6. The pose parameters extracted from
the sequence in Figure 5. The “x” marks de-
note the positions of the 9 examples in pose
space. Affine parameters are not shown.

Figure 8. The complete set of parameters ex-
tracted from the sequence in Figure 7. All the
activity occurs in the mouth parameter, which
denotes degree of openness.

Figure 10. The complete set of parameters ex-
tracted from the sequence in Figure 9. All the
activity occurs in the eyes x and y parame-
ters.


