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Abstract

We present a method that analyzes a two-dimensional maignitu
spectrogran( f, t) into its local constituent spectro-temporal am-
plitudes A(f,t), frequenciesF(f,t), orientationsO(f,t), and
phases¢(f,t). The method operates by performing a two-
dimensional local Gabor-like analysis of the spectrogrestgin-

ing only the parameters of the 2D-Gabor filter wittaximalam-
plitude response within the local region. We demonstrageehbh-
nigue over a wide variety of speakers, and show how the spec-
trograms in each case may be adequately reconstructed thsing
parameters of the Max-Gabor analysis. Finally, we disdussa-
ture of the extracted Max-Gabor parameters.

Index Terms: spectrogram analysis, spectrogram reconstruc-
tion, two-dimensional Gabor, spectro-temporal frequespgctro-
temporal orientation.

1.

We observe that within small local two-dimensional patchés

a narrowband magnitude spectrogréify, t) there is usually only
one locally dominant spectro-temporal frequeticfp) and orien-
tation ©(p). Shown in Figure 1 are several patches A, B, and E
which exhibit this local spectro-temporal behavior for @alger
uttering* * Hi  Jane’ ' . Secondly, we observe that these locally
dominant spectro-temporal frequencies and orientatrenge
smoothly in time and frequencyFinally, we observe that there
are patches for which this assumption is violated, such &hga

in Figure 1.

Based on these observations, our goal in this work is to ptese
a method which analyzes a magnitude spectrogf@ffi¢) into its
locally dominant spectro-temporal frequenciégf, t) and orien-
tations©( f,t). Our method also estimates local patch amplitudes
A(f,t) and phase®(f, t) as well. Finally, our method adequately
reconstructs the analyzed spectrograms from the extraeteain-
eters. Since the local patches are Gabor-like, the methoplewe
forms a two-dimensional Gabor-like analysis of the spegam,
retaining only the parameters of the 2D-Gabor filter witlxi-
malamplitude response within the local region. Hence we call ou
technique avlax-Gaboranalysis of spectrograms.

Our hope in performing such an analysis is to factor out var-
ious important phenomena occurring during speech. Inqarti
lar, local Gabor amplitude should relate to formant enargier-
ing speech, while local spectro-temporal frequency anenta-
tion should relate to pitch and the underlying pitch chardyetng
speech. At the same time, we hope that the parameters extract
by this representation summarize the spectrogram in a $naoat
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Figure 1: A magnitude spectrogram 6f Hi Jane’’ (vertical

axis is low frequency to high frequency). Patches A,B,Ebéxhi
clear locally dominant spectro-temporal frequencies aridria-
tions. Patch F violates this assumption, while patches O® a
somewhere in between.

useful way, and would be useful for further processing inliapp
tions such as speech recognition and speech synthesis.

2. Background

Our Max-Gabor analysis is inspired by the work of Shamma and
colleagues [1] [2], who have developed a two-stage auditargtel
based on psycho-acoustical and neurophysiological fisdimthe
early and central stages of the auditory pathway.

The first stage of their approach converts a sound intatan
ditory spectrogramwhich is similar in nature to a regular mag-
nitude spectrogram. The second stage analyzes local gatéhe
the auditory spectrogram using a filterbank of two-dimemaido-
cal spectro-temporal filters that are selective to diffefeeguency
scales? and to different temporal rates. Thus, for each point
(4,7) in the spectrogram, the Shamma model produces a two-
dimensional outputR;;(£2,w) that is the response of the entire
filterbank for that location. Typical values for the dimenmsility
of Q andw are 6 and 26 respectively [2].

In our work we also examine the content of local spectro-



temporal patches of the spectrogram using an analogous re-

sponse functiorR;; (2, w). However, unlike the Shamma model,

we choose to keep only the maximum output response value

maxq,. (Ri; (2, w)), as well as the parameters of the filter which
produced the maximum valuergmazq,.(Ri; (2, w)). In so do-
ing, we are using our assumption that, within a local patebre

is only onedominantlocal frequency and orientation, and conse-
quently the entire filterbank;; (2, w) may becompressedo the
parameters of one meaningful Gabor filter.

The usage of a MAX operator as the mechanism to select the

dominant local frequency and orientation is itself mothby re-
cent work in visual neuroscience [3], where it was embedded i
a hierarchical mechanism for visual object recognitionriteo to
account for visual translation- and scale-invariance. ifhaioklly,

a MAX operator was also used in texture analysis [4], whera#
used to extract dominant local texture parameters for thpgse

of texture segmentation.

3. Max-Gabor Analysis
3.1. Overview

Our MAX-Gabor algorithm is modelled after recent fingerpan-
hancement algorithms [5], where itis also necessary toyaadb-
cal spectro-temporal frequencies and orientations. Showaig-
ure 2 is a schematic of the various stages of our algorithnigiwh
we discuss in detail below.

3.2. 2D Gabor Definition
We define a 2D GabdF( £, t) with spectro-temporal frequendy,
spectro-temporal orientatigd, amplitudeA, and phas@ as:

G(f,t)=A-W(f,t)-cos(2nF& + D) 1)

where
T = tcos® + fsin®© 2

andW (f,t) is a Gaussian-like window (to be defined later). For
phase estimation, we will need the notion of a complex Gabor,
which will consist of real and imaginary versions of equatioin
quadrature phase:

G*(f, ) = A-W(f,1)- @ T @)

Finally, since magnitude spectrograms are nonnegativewille
also need to rectify Gabors during reconstruction, so weded
note a rectified real Gabor &4 f, t).

3.3. 1D STFT

All of the utterances we consider are first STFT-analyzedgisi

a 25msec Hamming window with a 1ms frame rate and a ze-
ropadding factor of 4. This yields 1600-dimensional STFRhfes,
which are truncated to 800 bins due to the symmetry of thei€our
transform. We limit our analysis in this paper to the magiétu
spectrogram of each utterance, which we represent notéitiaas
S(f,t). Additionally, we limit our analysis to a linear frequency
axis, deferring logarithmic frequency analysis to futumerkv

3.4. 2D Local FFT

At every grid point(s, j), we extract a patc®;; (f, ¢t) of the spec-
trogram of sizeif and widthdt. First, the patch is multiplied by a
2D Hamming windowW (f,t) of the same size as the patch.
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Figure 2: Two example Max-Gabor analyses: First column depicts
sample input patche®;;(f,¢). Second column depicts sample
spectro-temporal spectr&;;(2,w). Third column depicts esti-
mated Max-Gabor peakf?max, wmas }- FOUrth column depicts
reconstructed Gabor&';; (f,t).

Second, a 2-dimensional Fourier transform of si¥g x Nw
is performed on the patch to produce the local spectral-beahp
magnitude spectrum:

Riy(w) = |3 ST Wa(f, )Py (f,t)e 7> Nl e 27w !
Foot

4)
It is important to point out that 2D-FFT weighted By (f, )
takes the place of Shamma’s 2D Gabor analysis in our case.

The heightdf and widthdt of the local patch are important
analysis parameters: they must be large enough to be abée to r
solve the underlying local dominant frequency and oriéomat
but small enough so that the underlying signal is locallyicta
ary. Suitable parameter ranges are 10-20msec fodthparame-
ter, and800H z — 1.2K hz for the df parameter. Male speakers
require window heights in the lower end of ttigrange, while fe-
male speakers require a window height in the higher end affhe
range.

Additional analysis parameters are the window hopsizes in
time A7 and frequencyl 7, as well as the FFT sizd$y and Nw .
Typically we setAi to be 3-5ms and\; to 50-100Hz, which cre-
ates overlap between the patche§y and Ny are each set to
256.

3.5. Peak-Finding With Quadratic Interpolation

Visual inspection of the local spectro-temporal magnitsgec-
trum R;; (2, w) for different window patches reveals that most of
the spectra exhibit a Gabor-like spectral structure (sgargi2).
This is exemplified by the presence of two Gaussian-like ‘psim
in the spectrum whose location we wish to identify. Addiatn
a DC “bump” usually exists because the magnitude STFT is non-
negative, so local patches will have a nonzero average .value
We use apeak-findingstrategy to obtain a set' of candi-
date locations for the Gabor “bumps” in the spectral respons
R;;(2,w). This setC is composed of the locatiod$2., w.} of
the local peaks, as well as their corresponding values}. The
local peaks and their locations are first identified on thgioail
sampling grid ofR;; (2, w), and then subsequently refined using
local quadratic interpolation.



Generally, the peak locations will come in conjugate pairs d
to the conjugate symmetry of the Fourier transform, so wecmat
the conjugate peak locations @ with each other into pairs. We
also remove the DC peak from the gefif it exists.

As a result, at the end of our peak-processing stage for each

patch, the sef’ will contain a set of candidate local maxii&. },
and their conjugate locatiod$2., wc}.

3.6. Locally Dominant Frequency and Orientation Estimatian
Using MAX

3.8. Smoothing over Time and Frequency

There are many cases (such as patch F in Figure 1) when a
patch has very little or no energy, and our peak-picking ratigm
does not find any local peaks in the spectro-temporal regpons
R;;(Q,w). We handle this case by setting the frequency and ori-
entation for the current patch(z, j) to be the same as those from
the previous patchn time P(i — 1, j).

There are also cases when a patch (such as patch C in Figure
1) contains a lot of noise-like energy, and the peak-findilgg-a
rithm finds many spurious peaks which may throw off the local

We determine the locally dominant Gabor peak by choosing frequency and orientation estimation in Section 3.6. Wedtean

among the peaks in the sétusing a MAX operator:

Riar = max {R.} (5)
This identifies the corresponding peak locations as
{Qma:m Wmaz} - {QC* s We* } (6)
where
c" = argmazx.{R:} )

Finally, the locally dominant orientation and frequencyynise
estimated from the chosen peak location as

O(i,j) =tan™" (%:Z::) (8)
and
AQman 2 Awmar 2
) ()
F(i,j) = ©)

2
whereAQ,,q, andAw.,q, refers to differences between the con-
jugate pair location coordinates. Shown in Figure 2 in thedth
column are example peaks extracted by our algorithm.

3.7. Local Phase and Amplitude Estimation

Local phaseb (i, j) is estimated for the patch under consideration
by first synthesizing a@omplex2D Gabor signalGy;(f,t) with
local frequencyF (3, j), local orientation®(i, 7), amplitudeA =

1, phased = 0, and windowW g (f, t). The patchP(i, j) is then
projected onto the complex Gab6¥;(f,t), and the phase value
determined from the resulting angle:

waﬁzaww(}jﬁﬁ%ﬂﬂﬂﬂﬂﬁﬂGMﬂﬂ) (10)
f ot

Similarly, local amplitude is estimated for the patch unden-
sideration by first synthesizing a rectified real 2D Gabonaig
Gij(f7 t) with local frequencyF'(i, j), local orientationO(s, j),
phase®(i, j), and amplituded = 1. An optimal scaling factor

this case by removing from the s@tthose candidate peaks whose
orientations and frequencies are significantly differeatrf those
estimated in the previous patch@éi—1, j) andP(i, j—1) intime
and frequency. Two parameterS Fra. and A© ..., determine
how much patch-to-patch change in frequency and oriemtat®
are willing to tolerate in our Max-Gabor analysis.

4. Max-Gabor Synthesis

Given the estimated local frequencigs:, j), orientation® (4, j),
amplitudesA(i, 7), and phase®(i, 5), the spectrograrﬁ‘(f, t)is
reconstructed by synthesizing local rectified 2D Galnﬁr,s( f,t)
with window W4 for each patch, and overlap-adding them to-
gether:

_ Zz Zj éw(f? t)
T, Walh)

5. Max-Gabor Results

We analyzed and re-synthesized several test utterancéfeoédt
speakers uttering the phraséHi Jane’ ' . Two examples of
our results are shown in Figures 3 and 4

The first through third plots in each pair of Figures shows the
real spectrogran®(f,t), the reconstructed spectrograﬁm fit),
and the reconstructed spectrograﬁ{ f,t) smoothed with a
150Hz-by-3msec 2D Gaussian filter (to scale the colormapdor
ter comparison with the first plot). Comparing the recorcttans
with the original spectrograms reveals that our Max-Galpadya
sis faithfully captures the local frequency, orientatiand ampli-
tude of the original harmonics.

The fourth through seventh plots in each figure depict the lo-
cal amplitudesA(i, 7), frequenciesF (i, j), orientationsO(i, j),
and phase® (i, j) estimated by our Max-Gabor analysis. The lo-
cal amplitudes clearly capture the formant energy behaxian
utterance. The local frequency plots exhibit visible segiagon
into distinct but smooth pitch regions (for example, asowland
blue regions in the 5th plot of Figure 3) Finally, the origita
plots depict distinct vertical orientatidrandswhich represent un-

S(f,t) (12)

A(i, j) which scales the synthetic Gabor to to match the current derlying upward or downward pitch shifts. Dark blue bandteoe

patchP;; under consideration is estimated as:

2op 2 Walf, )P (f, )G (f, 1)
32 G

For accurate amplitude estimation, we have found it necgs$sa

use an amplitude Hanning windoW 4 (f, t) which is narrower

than the patch Hamming windoW g (f, t). Typically, Wa(f,t)

ranges in height from 200Hz-450Hz, and 1-5msec in width.

Ai, ) = (11)

downward pitch shifts, while yellow and red bands depict apiv
pitch shifts.

Finally, in order to perform auditory comparisons, we syAth
sized time waveforms for both original and reconstructedmia
tude spectrograms using sinusoidal analysis/syntheslisigues
[6]. Informal listening tests indicated that both were veini-

ISeent t p: // cuneus. ai . nmit. edu: 8000/ r esear ch/ maxgabor
for more results
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Figure 3: Top row, left to right: Original magnitude spectrograff{ f,t), reconstructed spectrogralﬁ( f,t), reconstructed spectrogram
convolved with a small Gaussian filt8X f, t) * W (f,t) . Bottom row, left to right:A(4, 5), (i, §), ©(i, 7), and®(i, 7).
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Figure 4: Top row, left to right: Original magnitude spectrograff{ f,t), reconstructed spectrogratﬁ( f,t), reconstructed spectrogram
convolved with a small Gaussian filt8X f, t) * W (f,t) . Bottom row, left to right:A(4, 5), (i, §), ©(i, 7), and®(i, 7).

lar to each other, which suggests that the Max-Gabor teakrii)
successful at capturing the important aspects of the sygreim.

6. Conclusions and Future Work

(1]

(2]

We presented a method that analyzes a two-dimensional mag-

nitude spectrogramS(f,t) into its locally dominant spectro-
temporal amplitudesA(f,t), frequenciesF(f,t), orientations
O(f,t), and phases(f,t). In addition, we presented a method
that reconstructs a spectrogram from the extracted paeasnet

The quality of our reconstructions suggests that assunrihyg o
one dominant frequency and orientation within a local pasdh
fact a valid assumption, and represents a meaningful casipre
of the filterbank outputs of [1].

Future work will consist of exploring the use of the extrakcte
parameters for applications such as speech recognitiompres-
sion, and synthesis.

(3]
(4]

(5]
(6]
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