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Abstract

We present a method that analyzes a two-dimensional magnitude
spectrogramS(f, t) into its local constituent spectro-temporal am-
plitudes A(f, t), frequenciesF (f, t), orientationsΘ(f, t), and
phasesφ(f, t). The method operates by performing a two-
dimensional local Gabor-like analysis of the spectrogram,retain-
ing only the parameters of the 2D-Gabor filter withmaximalam-
plitude response within the local region. We demonstrate the tech-
nique over a wide variety of speakers, and show how the spec-
trograms in each case may be adequately reconstructed usingthe
parameters of the Max-Gabor analysis. Finally, we discuss the na-
ture of the extracted Max-Gabor parameters.
Index Terms: spectrogram analysis, spectrogram reconstruc-
tion, two-dimensional Gabor, spectro-temporal frequency, spectro-
temporal orientation.

1. Introduction
We observe that within small local two-dimensional patchesp in
a narrowband magnitude spectrogramS(f, t) there is usually only
one locally dominant spectro-temporal frequencyF (p) and orien-
tation Θ(p). Shown in Figure 1 are several patches A, B, and E
which exhibit this local spectro-temporal behavior for a speaker
uttering‘‘Hi Jane’’. Secondly, we observe that these locally
dominant spectro-temporal frequencies and orientationschange
smoothly in time and frequency. Finally, we observe that there
are patches for which this assumption is violated, such as patch F
in Figure 1.

Based on these observations, our goal in this work is to present
a method which analyzes a magnitude spectrogramS(f, t) into its
locally dominant spectro-temporal frequenciesF (f, t) and orien-
tationsΘ(f, t). Our method also estimates local patch amplitudes
A(f, t) and phasesΦ(f, t) as well. Finally, our method adequately
reconstructs the analyzed spectrograms from the extractedparam-
eters. Since the local patches are Gabor-like, the method weper-
forms a two-dimensional Gabor-like analysis of the spectrogram,
retaining only the parameters of the 2D-Gabor filter withmaxi-
malamplitude response within the local region. Hence we call our
technique aMax-Gaboranalysis of spectrograms.

Our hope in performing such an analysis is to factor out var-
ious important phenomena occurring during speech. In particu-
lar, local Gabor amplitude should relate to formant energies dur-
ing speech, while local spectro-temporal frequency and orienta-
tion should relate to pitch and the underlying pitch changesduring
speech. At the same time, we hope that the parameters extracted
by this representation summarize the spectrogram in a smooth and

Figure 1: A magnitude spectrogram of‘‘Hi Jane’’ (vertical
axis is low frequency to high frequency). Patches A,B,E exhibit
clear locally dominant spectro-temporal frequencies and orienta-
tions. Patch F violates this assumption, while patches C,D are
somewhere in between.

useful way, and would be useful for further processing in applica-
tions such as speech recognition and speech synthesis.

2. Background
Our Max-Gabor analysis is inspired by the work of Shamma and
colleagues [1] [2], who have developed a two-stage auditorymodel
based on psycho-acoustical and neurophysiological findings in the
early and central stages of the auditory pathway.

The first stage of their approach converts a sound into anau-
ditory spectrogram, which is similar in nature to a regular mag-
nitude spectrogram. The second stage analyzes local patches of
the auditory spectrogram using a filterbank of two-dimensional lo-
cal spectro-temporal filters that are selective to different frequency
scalesΩ and to different temporal ratesω. Thus, for each point
(i, j) in the spectrogram, the Shamma model produces a two-
dimensional outputRij(Ω, ω) that is the response of the entire
filterbank for that location. Typical values for the dimensionality
of Ω andω are 6 and 26 respectively [2].

In our work we also examine the content of local spectro-



temporal patches of the spectrogram using an analogous re-
sponse functionRij(Ω, ω). However, unlike the Shamma model,
we choose to keep only the maximum output response value
maxΩ,ω(Rij(Ω, ω)), as well as the parameters of the filter which
produced the maximum value:argmaxΩ,ω(Rij(Ω, ω)). In so do-
ing, we are using our assumption that, within a local patch, there
is only onedominantlocal frequency and orientation, and conse-
quently the entire filterbankRij(Ω, ω) may becompressedto the
parameters of one meaningful Gabor filter.

The usage of a MAX operator as the mechanism to select the
dominant local frequency and orientation is itself motivated by re-
cent work in visual neuroscience [3], where it was embedded in
a hierarchical mechanism for visual object recognition in order to
account for visual translation- and scale-invariance. Additionally,
a MAX operator was also used in texture analysis [4], where itwas
used to extract dominant local texture parameters for the purpose
of texture segmentation.

3. Max-Gabor Analysis
3.1. Overview

Our MAX-Gabor algorithm is modelled after recent fingerprint en-
hancement algorithms [5], where it is also necessary to analyze lo-
cal spectro-temporal frequencies and orientations. Shownin Fig-
ure 2 is a schematic of the various stages of our algorithm, which
we discuss in detail below.

3.2. 2D Gabor Definition

We define a 2D GaborG(f, t) with spectro-temporal frequencyF ,
spectro-temporal orientationΘ, amplitudeA, and phaseΦ as:

G(f, t) = A · W (f, t) · cos(2πF x̂ + Φ) (1)

where
x̂ = tcosΘ + fsinΘ (2)

andW (f, t) is a Gaussian-like window (to be defined later). For
phase estimation, we will need the notion of a complex Gabor,
which will consist of real and imaginary versions of equation 1 in
quadrature phase:

G
∗(f, t) = A · W (f, t) · ej(2πF x̂+Φ) (3)

Finally, since magnitude spectrograms are nonnegative, wewill
also need to rectify Gabors during reconstruction, so we will de-
note a rectified real Gabor aŝG(f, t).

3.3. 1D STFT

All of the utterances we consider are first STFT-analyzed using
a 25msec Hamming window with a 1ms frame rate and a ze-
ropadding factor of 4. This yields 1600-dimensional STFT frames,
which are truncated to 800 bins due to the symmetry of the Fourier
transform. We limit our analysis in this paper to the magnitude
spectrogram of each utterance, which we represent notationally as
S(f, t). Additionally, we limit our analysis to a linear frequency
axis, deferring logarithmic frequency analysis to future work.

3.4. 2D Local FFT

At every grid point(i, j), we extract a patchPij(f, t) of the spec-
trogram of sizedf and widthdt. First, the patch is multiplied by a
2D Hamming windowWH(f, t) of the same size as the patch.

Figure 2:Two example Max-Gabor analyses: First column depicts
sample input patchesPij(f, t). Second column depicts sample
spectro-temporal spectraRij(Ω, ω). Third column depicts esti-
mated Max-Gabor peaks{Ωmax, ωmax}. Fourth column depicts
reconstructed GaborsGij(f, t).

Second, a 2-dimensional Fourier transform of sizeNH × NW

is performed on the patch to produce the local spectral-temporal
magnitude spectrum:
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It is important to point out that 2D-FFT weighted byWH(f, t)
takes the place of Shamma’s 2D Gabor analysis in our case.

The heightdf and widthdt of the local patch are important
analysis parameters: they must be large enough to be able to re-
solve the underlying local dominant frequency and orientation,
but small enough so that the underlying signal is locally station-
ary. Suitable parameter ranges are 10-20msec for thedt parame-
ter, and800Hz − 1.2Khz for the df parameter. Male speakers
require window heights in the lower end of thedf range, while fe-
male speakers require a window height in the higher end of thedf
range.

Additional analysis parameters are the window hopsizes in
time∆i and frequency∆j, as well as the FFT sizesNH andNW .
Typically we set∆i to be 3-5ms and∆j to 50-100Hz, which cre-
ates overlap between the patches.NH and NW are each set to
256.

3.5. Peak-Finding With Quadratic Interpolation

Visual inspection of the local spectro-temporal magnitudespec-
trum Rij(Ω, ω) for different window patches reveals that most of
the spectra exhibit a Gabor-like spectral structure (see Figure 2).
This is exemplified by the presence of two Gaussian-like “bumps”
in the spectrum whose location we wish to identify. Additionally,
a DC “bump” usually exists because the magnitude STFT is non-
negative, so local patches will have a nonzero average value.

We use apeak-findingstrategy to obtain a setC of candi-
date locations for the Gabor “bumps” in the spectral response
Rij(Ω, ω). This setC is composed of the locations{Ωc, ωc} of
the local peaks, as well as their corresponding values{Rc}. The
local peaks and their locations are first identified on the original
sampling grid ofRij(Ω, ω), and then subsequently refined using
local quadratic interpolation.



Generally, the peak locations will come in conjugate pairs due
to the conjugate symmetry of the Fourier transform, so we match
the conjugate peak locations inC with each other into pairs. We
also remove the DC peak from the setC if it exists.

As a result, at the end of our peak-processing stage for each
patch, the setC will contain a set of candidate local maxima{Rc},
and their conjugate locations{Ωc, ωc}.

3.6. Locally Dominant Frequency and Orientation Estimation
Using MAX

We determine the locally dominant Gabor peak by choosing
among the peaks in the setC using a MAX operator:

Rmax = max
c

{Rc} (5)

This identifies the corresponding peak locations as

{Ωmax, ωmax} = {Ωc∗ , ωc∗} (6)

where
c
∗ = argmaxc {Rc} (7)

Finally, the locally dominant orientation and frequency may be
estimated from the chosen peak location as
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where∆Ωmax and∆ωmax refers to differences between the con-
jugate pair location coordinates. Shown in Figure 2 in the third
column are example peaks extracted by our algorithm.

3.7. Local Phase and Amplitude Estimation

Local phaseΦ(i, j) is estimated for the patch under consideration
by first synthesizing acomplex2D Gabor signalG∗

ij(f, t) with
local frequencyF (i, j), local orientationΘ(i, j), amplitudeA =
1, phaseΦ = 0, and windowWH(f, t). The patchP (i, j) is then
projected onto the complex GaborG∗

ij(f, t), and the phase value
determined from the resulting angle:

Φ(i, j) = angle
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Similarly, local amplitude is estimated for the patch undercon-
sideration by first synthesizing a rectified real 2D Gabor signal
Ĝij(f, t) with local frequencyF (i, j), local orientationΘ(i, j),
phaseΦ(i, j), and amplitudeA = 1. An optimal scaling factor
A(i, j) which scales the synthetic Gabor to to match the current
patchPij under consideration is estimated as:

A(i, j) =

P

f

P

t
WA(f, t)Pij(f, t)Ĝij(f, t)
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For accurate amplitude estimation, we have found it necessary to
use an amplitude Hanning windowWA(f, t) which is narrower
than the patch Hamming windowWH(f, t). Typically, WA(f, t)
ranges in height from 200Hz-450Hz, and 1-5msec in width.

3.8. Smoothing over Time and Frequency

There are many cases (such as patch F in Figure 1) when a
patch has very little or no energy, and our peak-picking algorithm
does not find any local peaks in the spectro-temporal response
Rij(Ω, ω). We handle this case by setting the frequency and ori-
entation for the current patchP (i, j) to be the same as those from
the previous patchin timeP (i − 1, j).

There are also cases when a patch (such as patch C in Figure
1) contains a lot of noise-like energy, and the peak-finding algo-
rithm finds many spurious peaks which may throw off the local
frequency and orientation estimation in Section 3.6. We handle
this case by removing from the setC those candidate peaks whose
orientations and frequencies are significantly different from those
estimated in the previous patchesP (i−1, j) andP (i, j−1) in time
and frequency. Two parameters,∆Fmax and∆Θmax, determine
how much patch-to-patch change in frequency and orientation we
are willing to tolerate in our Max-Gabor analysis.

4. Max-Gabor Synthesis
Given the estimated local frequenciesF (i, j), orientationsΘ(i, j),
amplitudesA(i, j), and phasesΦ(i, j), the spectrogram̂S(f, t) is
reconstructed by synthesizing local rectified 2D GaborsĜij(f, t)
with window WA for each patch, and overlap-adding them to-
gether:
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5. Max-Gabor Results
We analyzed and re-synthesized several test utterances of different
speakers uttering the phrase‘‘Hi Jane’’. Two examples of
our results are shown in Figures 3 and 41.

The first through third plots in each pair of Figures shows the
real spectrogramS(f, t), the reconstructed spectrogram̂S(f, t),
and the reconstructed spectrogram̂S(f, t) smoothed with a
150Hz-by-3msec 2D Gaussian filter (to scale the colormap forbet-
ter comparison with the first plot). Comparing the reconstructions
with the original spectrograms reveals that our Max-Gabor analy-
sis faithfully captures the local frequency, orientation,and ampli-
tude of the original harmonics.

The fourth through seventh plots in each figure depict the lo-
cal amplitudesA(i, j), frequenciesF (i, j), orientationsΘ(i, j),
and phasesΦ(i, j) estimated by our Max-Gabor analysis. The lo-
cal amplitudes clearly capture the formant energy behaviorin an
utterance. The local frequency plots exhibit visible segmentation
into distinct but smooth pitch regions (for example, as yellow and
blue regions in the 5th plot of Figure 3) Finally, the orientation
plots depict distinct vertical orientationbandswhich represent un-
derlying upward or downward pitch shifts. Dark blue bands reflect
downward pitch shifts, while yellow and red bands depict upward
pitch shifts.

Finally, in order to perform auditory comparisons, we synthe-
sized time waveforms for both original and reconstructed magni-
tude spectrograms using sinusoidal analysis/synthesis techniques
[6]. Informal listening tests indicated that both were verysimi-

1Seehttp://cuneus.ai.mit.edu:8000/research/maxgabor
for more results
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Figure 3:Top row, left to right: Original magnitude spectrogramS(f, t), reconstructed spectrogram̂S(f, t), reconstructed spectrogram
convolved with a small Gaussian filter̂S(f, t) ∗ WG(f, t) . Bottom row, left to right:A(i, j), F (i, j), Θ(i, j), andΦ(i, j).
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Figure 4:Top row, left to right: Original magnitude spectrogramS(f, t), reconstructed spectrogram̂S(f, t), reconstructed spectrogram
convolved with a small Gaussian filter̂S(f, t) ∗ WG(f, t) . Bottom row, left to right:A(i, j), F (i, j), Θ(i, j), andΦ(i, j).

lar to each other, which suggests that the Max-Gabor technique is
successful at capturing the important aspects of the spectrogram.

6. Conclusions and Future Work

We presented a method that analyzes a two-dimensional mag-
nitude spectrogramS(f, t) into its locally dominant spectro-
temporal amplitudesA(f, t), frequenciesF (f, t), orientations
Θ(f, t), and phasesφ(f, t). In addition, we presented a method
that reconstructs a spectrogram from the extracted parameters.

The quality of our reconstructions suggests that assuming only
one dominant frequency and orientation within a local patchis in
fact a valid assumption, and represents a meaningful compression
of the filterbank outputs of [1].

Future work will consist of exploring the use of the extracted
parameters for applications such as speech recognition, compres-
sion, and synthesis.
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