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Abstract
We present a 2-D spectro-temporal Gabor filterbank based on
the 2-D Fast Fourier Transform, and show how it may be used
to analyze localized patches of a spectrogram. We argue thatthe
2-D Gabor filterbank has the capacity to decompose a patch into
its underlying dominant spectro-temporal components, andwe
illustrate the response of our filterbank to different speech phe-
nomena such as harmonicity, formants, vertical onsets/offsets,
noise, and overlapping simultaneous speakers.
Index Terms: speech analysis, spectro-temporal filterbanks, 2-
D Gabor

1. Introduction
A typical narrowband magnitude spectrogram of speech dis-
plays several important and well-known phenomena: harmonic-
ity, which is exemplified by the presence of horizontal linesre-
lated to the pitch of the speaker; low-frequency amplitude mod-
ulations, related to the formants of the speaker’s vocal tract;
vertical onset/offset edges in time, related to plosive sounds
in speech; and noise, related to fricatives, aspirants, andother
phonemes which generate noise.

All of these speech-related phenomena may be viewed as
different types of spectro-temporal modulations, and one of the
challenges our auditory system faces in processing speech is
that it must detect, separate, and recognize these modulations in
a fast and reliable manner.

Recent neurophysiological evidence from a number of ani-
mals [1] [2] indicates that cells in the auditory cortex are,in fact,
tuned to localized spectro-temporal modulations. The spectro-
temporal receptive fields (STRFs) of these cortical cells look
like 2-D spectro-temporal Gabor filters, and an analogy be-
tween these STRFs and a 2-D spectro-temporal Gabor filter-
bank clearly suggests itself.

Motivated by these studies, we present in this work a simple
2-D Gabor filterbank, and use it to analyze localized patchesof
a spectrogram. We show in this work how such a filterbank re-
sponds to the different types of phenomena commonly occuring
in spectrograms, and further argue that, in principle, it has the
capacity to detect, separate, and recognize these phenomena.

Our 2-D Gabor filterbank is implemented using the 2-D
FFT. We do this for two main reasons: firstly, the 2-D FFT
is fast, since it makes use of the Fast Fourier Transform. Ad-
ditionally, the 2-D FFT organizes its outputs into a 2-D grid,
which allows us to easily visualize the filterbank’s response as
an image.

In prior work, Kleinschmidt, Gelbart, and colleagues [3] [4]
also applied 2-D spectro-temporal Gabors to mel-spectrograms.
However, in their approach, no organizational map of the Gabor
filter responses was formed. Instead, the 2-D Gabor outputs
were lumped together into a one-dimensional feature vectorfor

use in recognition experiments. As a consequence, it is hard
to interpret their results and see how the 2-D Gabor filterbank
analyzed the various types of spectrogram phenomena.

Shamma and colleagues [1] [5] have also applied 2-D
spectro-temporal Gabor filterbanks for speech discrimination
and enhancement. In their work the spectro-temporal responses
were organized into a very large multi-dimensional tensorial
representation which is very hard to visualize and interpret. We
present an alternative filterbank decomposition in our workhere
which we believe is simpler and easier to interpret.

Finally, in our own previous work [6], we applied 2-D Ga-
bor analysis using the 2-D FFT to spectrogram patches. How-
ever, in that work we only noted the filterbank’s response to
harmonic phenomena, and failed to document how it responds
to other very important phenomena such as formants and ver-
tical edges. This was partly due to the fact that patch DC val-
ues were not removed prior to performing 2-D Gabor analysis,
which made it difficult to see the response of the filterbank for
these other phenomena.

In the following sections, we briefly review how our spec-
trograms are constructed (Section 2), and how are patches are
selected (Section 3). Then we describe our 2-D Gabor filter-
bank in Sections 4 and 5. Finally, in Section 6 we describe the
response of the filterbank for different types of speech-related
phenomena.

2. 1D STFT
All of the 16KHz utterances we consider are first STFT ana-
lyzed using a 25msec Hamming window with a 1ms frame rate
and a zeropadding factor of 4. This yields 1600 dimensional
STFT frames, which are truncated to 800 bins due to the sym-
metry of the Fourier transform. We limit our analysis in this
paper to the magnitude spectrogram of each utterance, which
we represent notationally asS(f, t). Additionally, we limit our
analysis to a linear frequency axis, deferring logarithmicfre-
quency analysis to future work.

3. STFT Patches
At every grid point(i, j) in the spectrogram, we extract a patch
Pij(f, t) of the spectrogram of sizedf and width dt. The
heightdf and widthdt of the local patch are important anal-
ysis parameters: they must be large enough to be able to resolve
the underlying spectro-temporal components in the patch, but
small enough so that the underlying signal is stationary. Suit-
able parameter ranges are 5-15msec for thedt parameter, and
600− 800Hz for thedf parameter. Additional analysis param-
eters are the window hopsizes in time∆i and frequency∆j.
Typically we set∆i to be 3-5ms and∆j to 150-350Hz, which
creates overlap between the patches. Additionally, we subtract
the patch DC value 1

dfdt

P

f,t
Pij(f, t) from the patchPij(f, t)



Figure 1: Left: Examples of spectro-temporal Gabor filters
GF,Θ(f, t) for F = {1, 2, 3} andΘ =
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. Right:
The magnitude Fourier transform of each corresponding Gabor
filter on the left.

before any further processing.

4. 2-D Gabor Filterbank Using the 2-D FFT

To perform 2-D Gabor filterbank analysis, we first multiply each
patchPij(f, t) by a 2-D Gaussian windowW (f, t) located at
the patch center(f0, t0):

W (f, t) =
1
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Typically, we fix the window bandwidth(σf , σt) to be one-third
of the patch height and width respectively.

Secondly, a 2-D Fourier transform of sizeNH × NW is
applied to the windowed patch to produce the 2-D spectro-
temporal Gabor filterbank output:

Rij(Ω, ω) =
P
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Typical valuesNH andNW are 512 and 256 respectively.
By exchanging the termsW (f, t) andPij(f, t), we can re-

write the filterbank output as

Rij(Ω, ω) =
X

f

X

t
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Ω,ω(f, t) (2)
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Equation 3 above is the equation of a 2-D spectro-temporal Ga-
bor filter. Rij(Ω, ω) may thus be viewed as the projection of a
patchPij(f, t) on an entire bank of spectro-temporal 2-D Ga-
bor filtersGΩ,ω(f, t).

It is sometimes desirable to re-parameterize the spectro-
temporal GaborsGΩ,ω(f, t) in terms of their spectro-temporal
frequency F and orientationΘ. This can be done in a
straight-forward manner through the forward trigonometric
mapping(F, Θ) = (

√
Ω2 + ω2, tan−1(Ω, ω)) and the back-

ward trigonometric mapping(Ω, ω) = (FcosΘ, F sinΘ).
Shown in Figure 1 on the left are example 2-D Gabors
GF,Θ(f, t) for different values ofF andΘ.

Finally, it is well-known [7] that the Fourier transform of
a 2-D Gabor looks like a pair of conjugate Gaussian “peaks”,
whose distance from each other is proportional toF , and whose
orientation is proportional toΘ. Shown in Figure 1 on the right
are example 2-D Fourier transforms of the Gabor filters on the
left.

5. Patch 2-D Gabor Analysis & Synthesis
Shown in Figure 2 on the left is a representative patch from
a narrowband magnitude spectrogram. The magnitude of the
2-D spectro-temporal response|Rij(Ω, ω)| for that patch is

Figure 2: Left: example spectrogram patchPij(f, t). Mid-
dle: magnitude spectro-temporal response|Rij(Ω, ω)|. Right:
reconstructed patcĥPij(f, t) using the top 5 spectro-temporal
components.

plotted in the middle. In general, 2-D spectro-temporal Ga-
bor responses of spectrogram patches exhibit multiple Gaussian
“peaks” that come in conjugate pairs. Each peak pair corre-
sponds to a different spectro-temporal modulation contained in
the patch. In effect, the 2-D Gabor filterbank decomposes a
patch into its spectro-temporal components. “Peaks” with large
amplitude in the spectro-temporal responseRij(Ω, ω) corre-
spond to dominant spectro-temporal modulations in the patch.

In order to examine what spectro-temporal component each
of these peak pairs corresponds to, a simple peak-detection
strategy is used to obtain a setC of candidate peak locations
(Ωpeak, ωpeak) and values (amplitudeApeak and phaseΦpeak)
from the spectro-temporal responseRij(Ω, ω). We match the
conjugate peak locations inC with each other into pairs and
throw out any peak candidates which do not have matching con-
jugate peaks.

For each of these matched peak pairs, we can estimate a
spectro-temporal orientationΘk and frequencyFk associated
with that spectro-temporal componentk as

Θk = tan
−1
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where∆Ωpeak and∆ωpeak refers to differences between the
conjugate pair location coordinates. The amplitudeAk and
phaseΦk of the spectro-temporal component are just equal to
the amplitudeApeak and phaseΦpeak of the peaks inRij(Ω, ω)
itself.

The spectro-temporal component k associated
with a certain peak pair may thus be synthesized as
Ake−jΦkGFk,Θk

(f, t). If there are k components in a
patch then the patch may be approximately reconstructed as

P̂ij(f, t) = ℜ
 

X

k
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(f, t)
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(6)

Shown in Figure 2 at right is the reconstuction of the patch on
the left using the top 5 spectro-temporal components from the
2-D spectro-temporal Gabor response in the middle.

6. Phenomenological Analysis of 2-D Gabor
Responses

We now examine more carefully how different types of
commonly-occurring phenomena in spectrograms are analyzed
by the 2-D Gabor transform. The phenomena we will examine
are harmonicity; low-frequency amplitude modulations related
to formants; vertical onset/offset phenomena related to plosives;
phonetic noise; the effect of adding white background noise;
and finally, the effect of overlapping simultaneous speakers. In
each of the following sections, we look at each phenomenon
individually.



Figure 3: First column: example harmonic patchesPij(f, t).
Second column: magnitude spectro-temporal responses
|Rij(Ω, ω)| for each patch. Third column: spectro-temporal
components corresponding to largest (black “X”) and next
largest (green “X”) peak pairs. Fourth column: reconstructed
patchesP̂ij(f, t) using the top 2 spectro-temporal components.

6.1. Harmonicity

Shown in Figure 3 on the far left are two different representa-
tive harmonic patches from a spectrogram. In the second col-
umn, we plot the magnitude of the spectro-temporal response
|Rij(Ω, ω)| for each patch. In the third column we plot the re-
synthesized spectro-temporal components associated withthe
top two peak pairs in the spectro-temporal response. The first
spectro-temporal component corresponds to peak pair with the
largest amplitude (marked with a black “X”), while the second
spectro-temporal component corresponds to peak pair with the
second largest amplitude (marked with a green “X”). Finally, in
the last column we plot the reconstruction̂Pij(f, t) of the input
patch using only the top two components (as in Equation 6).

Clearly we can see that the spectro-temporal components
associated with the largest peaks are in fact the harmonic com-
ponents. In general, harmonicity in a patch emerges as a set of
dominant conjugate peaks spaced with a distance proportional
to spectro-temporal frequencyF and with an angle proportional
to the spectro-temporal orientationΘ. This fact was noticed and
employed for the purposes of carrier estimation in [6] and pitch-
tracking in [8].

6.2. Formants

Further inspection of the spectro-temporal magnitude responses
|Rij(Ω, ω)| in Figure 3 reveals that the patches contain a second
component exemplified by the presence of two smaller peaks
located closer to the origin in the spectro-temporal responses.
Synthesizing the spectro-temporal component associated with
these secondary peaks reveals that they correspond to the low-
frequency amplitude modulations associated with formants.

In general, low-frequency amplitude modulations in a patch
emerge as a set of conjugate peaks that are spaced closer to the
origin in the spectro-temporal response. As with the harmonic
peaks, the distance and angle of the peaks corresponds directly
to the frequency and orientation of the modulation.

It is worthwhile to note here that 2-D Gabor filterbank anal-

Figure 4: First column: example plosive patchesPij(f, t).
Second column: magnitude spectro-temporal responses
|Rij(Ω, ω)| for each patch. Third column: spectro-temporal
components corresponding to largest (black “X”) and next
largest (green “X”) peak pairs. Fourth column: reconstructed
patchesP̂ij(f, t) using the top 2 spectro-temporal components.

ysis is capable ofseparatingharmonic from formant spectro-
temporal components. Such a property could be used by our
auditory system to endow us with the ability to recognize speech
in a manner that is invariant to the speaker uttering it: our audi-
tory system could have evolved to focus its attention mainlyon
the low-frequency components (which carry the phonetic infor-
mation), ignoring the higher-frequency harmonic components
related to the speaker.

On the other hand, the response to both harmonic and for-
mant components is simultaneouslypresevedin the Gabor fil-
terbank’s outputs. Such a property could be used by our audi-
tory system to enable us to recognize speech in a noise-robust
manner: whenever distinct harmonic peaks emerge in the filter-
bank’s response, the auditory system can identify that response
as a distinct signature of speech, and it can then attend to the in-
formation contained in the low-frequency peaks related to for-
mants.

6.3. Vertical/Plosive Edges

Shown in Figure 4 on the far left are two different representative
patches which contain plosive phenomena. These phenomena
are characterized by rapid onset/offset of voicing or noise, and
look like vertical edges in a patch.

Inspection of the spectro-temporal magnitude responses
|Rij(Ω, ω)| for these plosive patches reveals the presence of
two dominant peaks which arehorizontal in their angular ori-
entation, in contrast to thevertical angular orientation of both
harmonic and formant spectro-temporal modulations shown in
Figure 3. Synthesizing the spectro-temporal component associ-
ated with these peaks reveals that they do in fact correspondto a
vertical amplitude modulation associated with the plosiveedge.

We note that vertical plosive onset/offset edgescannotbe
detected unless a filterbank is used whose filters have afinite
extent in time. Consequently, it is quite heartening that, within
the same 2-D Gabor filterbank framework, all three types of
harmonic, formant, and plosive phenomena can be separately
detected.



Figure 5: First column: example noisy patchPij(f, t). Second
column: magnitude spectro-temporal responses|Rij(Ω, ω)|.
Third column: spectro-temporal components correspondingto
largest (black “X”), second largest (green “X”), and third largest
(magenta “X”) peak pairs. Fourth column: reconstructed patch
P̂ij(f, t) using the top 3 spectro-temporal components.

Figure 6: PatchPij(f, t) with increasing levels of white
noise added, along with the corresponding magnitude spectro-
temporal response|Rij(Ω, ω)| for each patch. (Top left: 10 dB
SNR, Top right: 5 dB SNR, Bottom left: -5 dB SNR, Bottom
right: -10 dB SNR).

6.4. Phonetic Noise

Shown in Figure 5 on the left is a representative noisy patch cor-
responding to the phonemesh. As may be seen, the spectro-
temporal response of a noisy patch contains multiple peaks at
multiple orientations and frequencies. In general we have found
that this is a signature propery of noisy patches, in contrast to
harmonic patches or plosive patches which usually contain one
or at most two dominant spectro-temporal components. For ex-
ample, we need at least three spectro-temporal components in
order to begin to faithfully reconstruct the patch in Figure5.

6.5. Background Noise

In Figure 6 we investigate the effect of adding white noise toa
sound. Shown on the left of each figure pair is the same identical
patch but with increasing amounts of white noise added1. On
the right hand side of each figure pair are the corresponding
spectro-temporal responses. As may be seen, even though the
SNR ratios are quite low, the spectro-temporal responses show
very clear harmonic peaks up to about -5 SNR ratios. At -10
SNR, the spectro-temporal response begins to lose the dominant
harmonic peaks.

Even though white noise adds a large number of uncorre-
lated peaks to the spectro-temporal response, peaks correspond-
ing to the relevant harmonic, formant, or plosive phenomena
may still be detectable. This is because the output of any one
spectro-temporal Gabor filter is obtained byintegrating infor-
mation from the entire 2-D patch, which allows the 2-D spectro-

1White noise added in the time domain before the STFT is recom-
puted.

Figure 7: PatchesPij(f, t) and associated magnitude spectro-
temporal response|Rij(Ω, ω)| for speaker A (left), speaker B
(middle), and speaker A+B (right).

temporal filterbank to be more robust to noise than purely 1-D
spectral counterparts.

6.6. Overlapping Speakers

Finally, we examine the effect of simultaneous speakers on the
spectro-temporal response. Shown in the left of Figure 7 is a
patch from speaker A and its associated spectro-temporal re-
sponse. In the middle is the patch and response from speaker
B (with same spectrogram coordinates(i, j) as the patch from
speaker A). Finally, in the right of the figure is the patch and
response from a spectrogram of speaker A and B. As may be
seen, the spectro-temporal response of the simultaneous speak-
ers contains identifiable peaks from both speakers.A strategy
suggests itself for speaker separation which is based on iden-
tifying the peaks in the combined spectro-temporal response,
and assigning those peaks across frequency and time to either
speaker.

7. Discussion and Conclusion
In this work, we showed that the 2-D spectro-temporal Gabor
responseRij(f, t) contains many useful and important proper-
ties. In particular, we showed that 1) harmonicity emerges as
a pair of very dominant vertical peaks; 2) formants emerge as
a pair of vertical peaks spaced closer to the origin; 3) plosive
onsets/offsets emerge as a pair of horizontal peaks; and 4) noise
emerges as a large number of peaks at multiple orietations and
frequencies.

While this paper merely presented initial observations, fu-
ture work will consist of more systematic exploration of theuse
of 2-D Gabor spectro-temporal responses for applications such
as speech recognition, de-noising, separation, and synthesis.
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