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In this paper, we describe image-based modeling tech-

niques that make possible the creation of photo-realistic

computer models of real human faces. The image-based

model is built using example views of the face, bypassing

the need for any three-dimensional computer graphics

models. A learning network is trained to associate each

of the example images with a set of pose and expres-

sion parameters. For a novel set of parameters, the

network synthesizes a novel, intermediate view using

a view morphing approach. This image-based synthesis

paradigm can adequately model both rigid and non-rigid

facial movements.

We also describe an analysis-by-synthesis algorithm,

which is capable of extracting a set of high-level parame-

ters from an image sequence involving facial movement

using embedded image-based models. The parameters

of the models are perturbed in a local and independent

manner for each image until a correspondence-based

error metric is minimized.

A small sample of experimental results is presented.

1 Introduction

Facial analysis and synthesis have emerged to be two

important requirements for a vast array of vision-based

applications. Facial analysis refers to the extraction

from video sequences of information concerning the lo-

cation of the head, its pose, and the movement of fa-

cial features such as the eyes and the mouth. Facial

synthesis refers to the reverse process of animating a

facial model using a set of high-level parameters that

control the face's gaze, mouth orientation, and pose.

Facial analysis would be useful for such applications

as eye-tracking, facial expression recognition, and vi-

sual speech understanding. Facial synthesis would be

useful for animating cartoon characters or digital ac-

tors. Together, facial analysis and facial synthesis in

tandem would be useful for model-based coding appli-

cations such as video email and video-teleconferencing,

as well as interactive animation of cartoon characters

using facial motions.

Many of the attempts at facial analysis and synthesis

involve modeling the human face in three dimensions

using computer graphics techniques. In this work, we

adopt an image-based model, whose basis is to com-

pletely forego any underlying computer graphics mod-

els, and instead model the face using example images.

Within the image-based synthesis literature, a num-

ber of researchers ([4], [7], [15], [16]) have noticed the

viability of a view interpolation approach to image syn-

thesis, where novel, intermediate images of a scene are

synthesized from example endpoints using a morphing

technique. In this work, we adopt the particular ap-

proach of Beymer, Shashua, Poggio [4], who cast the

view interpolation approach in a learning-by-example

framework: each example image is associated with a

position in a high-level, multi-dimensional parameter

space denoting pose and expression. By training on

the examples, a learning network can then generalize,

and generate suitable novel images that lie at interme-

diate points in the example space. The trained net-

work, in essence, becomes a synthesis network, which

generates images as output, for suitable parameters as

input. Beymer, Shashua, Poggio [4], in fact, showed

that this technique is capable of modeling rigid facial

transformations such as pose changes, as well as non-

rigid transformations such as smiles.

From the analysis standpoint, we are motivated in

particular by the work of Jones and Poggio who con-

structed models of line drawings [11] and faces [12], and

used a stochastic gradient descent algorithm to match

the models to novel line drawings or faces input by the

user. The models themselves consisted of a linear com-

bination of prototypes [14], and the error metric which

the gradient descent algorithm tried to minimize was



T. Ezzat and T. Poggio

the pixel-wise error between the novel drawing and the

current guess for the closest model image. At every

iteration, the algorithm would compute the gradient of

this error metric with respect to the model parameters,

and proceed to a new guess for a set of parameters that

would produce a new model image closer to the novel

image.

The �rst contribution of this work is to extend the

synthesis network paradigm of Beymer, Shashua, Pog-

gio [4] into a synthesis module paradigm more suitable

for analysis: Firstly, each synthesis network is addition-

ally parameterized with a set of a�ne parameters, such

as translation, rotation, and scale. Secondly, a 
exible

mask-based segmentation scheme is incorporated into

the synthesis module that is capable of segmenting the

head in any of the images output by the network. Thus,

from an input-output perspective, the synthesis mod-

ule is capable, for the appropriate input parameters, of

producing images of segmented faces at various scales,

rotations, positions, poses, and expressions.

The second contribution of this work is to em-

bed the synthesis modules mentioned previously in an

analysis-by-synthesis algorithm similar to that of Jones

and Poggio [11]. In our case, however, we de�ne a

correspondence-based error metric instead of a pixel-

based error metric, in an attempt to make the analysis

algorithm more robust to changes in lighting, position,

scale, rotation, and hairstyle. Essentially, the parame-

ters of the embedded synthesis modules are perturbed

in a local and independent manner for each image in

the sequence until the correspondence-based error met-

ric is minimized.

In Section 2, we describe the construction of the ba-

sic synthesis networks to be used for analysis and syn-

thesis. In Section 3, we describe additional techniques

that allow for more complicated synthesis networks to

be constructed. In Section 4, we transition from the

synthesis network to the synthesis module, and sketch

an outline of our analysis-by-synthesis algorithm. In

Section 5, we describe and depict a small sample of

experimental results. Finally, in Section 6, we brie
y

critique our approach, and discuss future work.
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Figure 1: A 5-example, 2-dimensional example set in a

smile/open-mouth con�guration.

2 Building the Synthesis Networks

2.1 Choosing the Example Set and the Param-

eter Space

The �rst step in the creation of the synthesis network

is the selection of the example images and the associ-

ation of each example with a point in a hand-crafted

parameter space x. Figure 1 depicts �ve example im-

ages arranged in a two-dimensional parameter space

where each axis is limited to values between 0.0 and

1.0. One axis denotes degree of smile, while the other

denotes degree of mouth openness. The top-right ex-

ample image, for instance, would be associated with

the position in parameter space x = (1:0; 1:0).

2.2 Learning the Map from Parameters to

Correspondences

Given the example images and the associated parame-

ters, the desired task is to generate novel intermediate

images lying in the space spanned by the examples.

Beymer, Shashua, and Poggio [4] re-cast this task as

a learning problem, in which it is necessary to learn

an unknown function y = f(x) that maps between the

parameter space, x, and the example space, y, given a

set of N training samples (xi, yi) of the function f(x).
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Learning such a function would allow one to generalize

the function at points other than the example points,

and hence synthesize appropriate novel intermediate

images.

Poggio and Brunelli [13], however, made the cru-

cial observation that trying to approximate a function

y = f(x) that maps between the parameter space x and

an example space y of images would probably not work

due to the discontinuous nature of the underlying map.

Instead, Poggio and Brunelli [13] argued that it is bet-

ter to try to learn a map between a parameter space

x and an example space y of correspondence vectors

that de�ne corresponding features across the example

images. The underlying intuition is that such a map

is easier to learn because the correspondence vectors

factor out lighting e�ects, and also because they un-

dergo reasonably smooth change during motion of the

underlying object to be modeled.

A helpful, and often important, way (discussed in

Beymer [3]) to think about the distinction between im-

ages and correspondences is to view correspondence as

a way to sample the motion (or shape) of an object be-

tween two views, and to view images as a way to sample

the object's texture for those views. Synthesizing novel

intermediate correspondences is thus equivalent to syn-

thesizing novel intermediate motions (or shapes) of the

face.

2.3 De�ning and Obtaining the Correspon-

dence

In this work, a dense, pixel-wise correspondence is de-

�ned between two images: for a pixel in image A at

position (i; j), the corresponding pixel in image B lies

at position (i+�x(i; j); j+�y(i; j)), where �x and �y

are arrays or matrices that contain the x and y com-

ponents of the correspondence vectors, respectively. In

the rest of this paper, we use the symbol y to refer to

both the x- and the y-components of the correspon-

dences, and the reserve symbol x to refer to the im-

posed multidimensional parameter space. Equations

involving the use of y imply that they are performed

twice: once on the x-components and once on the y-

components.

From the standpoint of synthesis network design, in

which more than two images may be involved, a refer-

ence example image is designated, and correspondence

between it and the rest of the images in the example set

is found. For example, in Figure 1, the bottom-left im-

age is the reference example, and four correspondence

vectors yi are obtained between it and the other ex-

amples. A �fth, and null, correspondence vector, y0,

is designated to represent the correspondence between

the reference example and itself.

To obtain such a dense, pixel-wise correspondence

between the example images, optical 
ow algorithms

borrowed from the computer vision literature are uti-

lized. We speci�cally use the coarse-to-�ne, gradient-

based optical 
ow algorithms developed by Bergen and

Hingorani [2], which have yielded good results in prac-

tice. In cases where they have not yielded good results,

such as in cases when there is signi�cant movement or

occlusion, we have found [9] that concatenating optical


ow between a set of intermediate images improves the

�nal correspondences dramatically.

2.4 Constructing the Mapping Function

We approximate the unknown function y = f(x) which

maps from parameters to correspondences given the

samples (yi; xi)
N
i=1, using a radial basis function with

Gaussian centers:

f(x) =

nX
�=1

c�G(kx� t�k) (1)

where

G(x) = e
�

x
2

�
2 (2)

and the t0
�
s are arbitrary parameters termed centers.

A radial basis function as de�ned in Equation 1

was shown in [10] to be a type of regularization net-

work which incorporates a priori knowledge about the

smoothness of the function that can be learned from

a set of samples. Such a smoothness prior is neces-

sary because the problem of generalizing a function

from a set of samples is inherently ill-posed, and many

functions may be found which pass through the sample

points. The approximating function in Equation 1 is

chosen from among all the possible solutions because

it is simultaneously close to the data samples and the

smoothness constraints.

The learning stage of a radial basis function consists

of the speci�cation of three sets of variables: the centers

t�, the �'s of the Gaussians, and, most importantly, the

coe�cients ci.
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In this work, we associate one example parameter

xi with each center t�, so the approximating function

f(x) may be rewritten as

f(x) =

NX
i=1

ciG(kx� xik) (3)

where N denotes the total number of examples used to

train the network. One can now visualize a Gaussian

center associated with each example parameter xi used

to train the network.

The sigmas of the Gaussians, which denote the width

of their in
uence, are determined using an average

inter-example distance strategy. For each Gaussian, the

average distance between its associated example pa-

rameter and all the other example parameters is found.

The �nal sigma value for that Gaussian is chosen to be

some �xed constant times the resulting average.

Finally, the ci coe�cients are chosen in a manner

that minimizes the empirical error between the approx-

imating function f(x) and the sample points (yi; xi)
N

i=1.

If we substitute all the sample pairs into the Equation

3 we obtain the equation

Y = CG (4)

where

Y = [ y1 y2 : : : yN ]; (5)

C = [ c1 c2 : : : cN ]; (6)

and

G =

2
6664

G(kx1 � x1k) G(kx2 � x1k) : : : G(kxN � x1k)

G(kx1 � x2k) G(kx2 � x2k) : : : G(kxN � x2k)

.

.

.
.
. .

.

.

.

G(kx1 � xNk) G(kx2 � xNk) : : : G(kxN � xNk)

3
7775 (7)

The coe�cients C are then determined by computing

C = Y G+ (8)

where G+ is the pseudo-inverse of G.

2.5 The Dual Representation for Synthesis

It is extremely helpful to rewrite the approximation

function in Equation 3 into its dual representation,

which illustrates the nature of its interpolative prop-

erties. Continuing from Equation 3, we have

y(x) = Cg(x) (9)

where

g(x) = [ G(kx� x1k) G(kx� x2k) : : : G(kx� xNk) ]: (10)

Substituting Equation 8 into Equation 9 we obtain

y(x) = Y G+g(x): (11)

Gathering the terms not related to Y together, we have

y(x) =

NX
i=1

bi(x)yi (12)

where

bi(x) = (G+)ig(x): (13)

Equation 12, which represents the dual representation

of Equation 3, is arguably the most central equation for

synthesis. Equation 12 represents any novel intermedi-

ate correspondence vector y as a linear combination of

the N example correspondence vectors yi. The coe�-

cients of the combination, bi(x), depend nonlinearly on

the parameter x. The learning stage de�nes the struc-

ture of the bi kernels, which are typically Gaussian-like

in nature, centered around each of the example param-

eters xi used for training. This is not surprising given

the approximation of y = f(x) using a radial basis

function with Gaussian centers.

2.6 Warping

A new correspondence vector y synthesized from Equa-

tion 12 de�nes a position in correspondence space that

we would like the novel, intermediate image to be lo-

cated at. A simple forward warp operation that pushes

the pixels of the reference example image along the

synthesized correspondence vector is su�cient to gen-

erate a novel intermediate image, but such an approach

would not utilize the image texture from all the ex-

amples in the network. To utilize the image texture
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from all the examples, we adopt a correspondence re-

orientation procedure, described in [4], that re-orients

the synthesized correspondence vector from Equation

12 so that it originates from each of the other example

images and points to the same position as the original

synthesized correspondence. This allows us to subse-

quently forward warp all the examples along their re-

spective re-oriented correspondence vectors.

The forward warp algorithm used does not explicitly

treat pixel overlaps, or folds, in any special way, since

there is no a-priori visibility model [16] built into the

algorithm, unlike [6] and [7]. Hence, the order of the

warp is a simple top-down, left-to-right order. Pixel

destination values are rounded to the nearest integer

location.

2.7 Hole-�lling

Since the correspondences produced by the optical 
ow

algorithms are not strictly one-to-one mappings, for-

ward warping usually exposes regions in the warped

image that are un�lled. These regions, called holes,

must be explicitly treated, since they lead to notice-

able degradations in the quality of the �nal images

that are synthesized. In particular, holes due to local

image expansion and inaccuracies in the optical 
ow

algorithms due to lack of discriminating texture usu-

ally lead to small specks in the warped image. These

holes are identi�ed and eliminated as in [7], by �ll-

ing the warped image with a reserved \background"

color prior to warping. For those pixels which retain

the background color after the warp, new colors are

computed by interpolating the colors of the adjacent

non-background colors.

2.8 Blending

Warping all the example images along the re-oriented

correspondence vectors results in a set of warped im-

ages that need to be combined to produce the �nal im-

age, which is done using blending. Blending refers to

multiplying each image with a blending coe�cient, and

then adding all the scaled images together to form the

�nal image. The blending coe�cients chosen are the

same as the coe�cients bi(x) from Equation 12. Intu-

itively, the blending coe�cient associated with a partic-

ular example image decreases with the distance of the

novel synthesis image from the example image. Conse-

Figure 2: Two sets of intermediate, novel images gener-

ated from 1-dimensional, 2-example synthesis networks for

smile (top) and rightwards pose (bottom). The original im-

ages are the leftmost and rightmost images for each synthe-

sis segment.

quently, more weight in the blending stage is given to

the warped images from the closer examples.

2.9 Results and Discussion

Figure 2 illustrates a number of novel images synthe-

sized from two one-dimensional networks. The original

images for both networks are the leftmost and right-

most images. The correspondences were obtained using

direct optical 
ow estimation between both endpoint

images.

Figure 3 illustrates a large number of novel images

synthesized from the two-dimensional, 5-example net-

work shown in Figure 1. The correspondences were ob-

tained by concatenating optical 
ow between a number

of intermediate images.

It is important to note that the combination of warp-

ing and blending, also known as morphing, is more

powerful than either technique on its own. Blending

alone can generate intermediate images, but a sense

of movement between images will be lacking. Warp-

ing alone will expose the de�ciencies of the optical 
ow

algorithms, and particularly in our case their lineariza-

tion errors: the 
ow estimates at each pixel are only

a linear approximation to the actual 
ow. As a re-

sult, warping from one image by itself will lead to suit-

able intermediate images only when the parameters are

close to the parameters of the example image, but will

lead to incorrect images as the parameters move far-

ther away. Warping from all the examples combined
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sm
ile

open mouth

Figure 3: Examples of the intermediate, novel images generated from the 2-dimensional, 5-example synthesis network for

facial expressions shown in Figure 1. The original images are high-lighted with darker borders.
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with weighted blending, however, eases the lineariza-

tion errors because, as the parameters move farther

away from one example image, the pixel motion and

pixel values of another example image begin to take

e�ect.

It is also extremely heartening that a technique that

combines warping, blending, and concatenated optical


ow can lead to results that are good for cases in which

large occlusions are present, as was the case in Figure 3.

This is considerably surprising especially in light of the

fact that our optical 
ow algorithms have no a-priori

visibility model [16] built into them, as mentioned ear-

lier.

3 Other Types of Networks

Although the synthesis network paradigm described

above is adequate for modeling a large number of facial

motions, it is necessary to augment it with additional

techniques to address certain issues. In this section,

we describe those issues, and the techniques adopted

to address them.

3.1 Regional Networks

One of the problems associated with the example-based

synthesis paradigm explored in this work is that a large

number of example images are needed whenever a new

dimension is added to a synthesis network. For ex-

ample, suppose we are modeling 6 eye positions and

4 mouth positions. Modeling a �fth mouth position

would require 6 additional examples, one for each sep-

arate modeled eye position.

One approach to alleviate the need for such a large

number of example images is to create separate, re-

gional networks for di�erent parts of the face that move

independently of each other. Such an approach would

decorrellate the eye-mouth network described above

into two separate, regional networks: one regional eye

network composed of 6 example images modeling the

various eye positions, and one regional mouth network

composed of 4 images modeling the various mouth po-

sitions. Modeling a �fth mouth position would thus

require only one additional example image.

Regional decomposition needs to address two issues:

how to specify which regions each network controls,

and how to combine the synthesized outputs of all the

regional networks back together again.

Amask-based approach was adopted to specify which

regions of the face each network controls. At the outset

of the example set selection, the example set designer

uses a special tool to \mask out" which region of the

face each network controls. The mask produced by the

tool is essentially a binarized image. During synthe-

sis, a navigational mechanism �rst determines which

parameters have changed relative to previous parame-

ters, and identi�es which regional network is activated.

The parameters associated with that regional network

are then used to synthesize an image. The mask associ-

ated with that regional network is then used to extract

the appropriate portion of the synthesized image.

To combine the masked regions back together again,

a simple paste approach was adopted, where the regions

are pasted on top of a base image of the face. This ap-

proach works extremely well if the motion is contained

within the regions themselves. Ideally, one would want

to blend the regions onto the base image using more

sophisticated techniques.

As an example, a regional network was constructed

for left eye motions, right eye motions, and mouth mo-

tions, as shown in Figure 4. The regional left and right

eye networks were composed of the same six images

placed in a 2-dimensional arrangement, with di�erent

masks for each eye regional network. The mouth re-

gional network consisted only of two examples to model

an opening mouth. The mask for the mouth network

consisted of all the pixels not contained in the left and

right eye regional networks; this approach enables one

to avoid creating a mask with a more explicit segmen-

tation of the mouth region, which is hard to do be-

cause mouth movements a�ect a large portion of the

face. The masked outputs of each regional network are

pasted onto the base image shown in the center of the

�gure.

The gain in possible eye-mouth con�gurations given

the number of example images is now much higher than

in a standard approach not involving regional networks.

Using only 6 original eye images (since the left and right

eye regional networks use the same images) and 1 ad-

ditional open-mouth image (since the reference image

is the same for all the regional networks), various com-

binations of eye-mouth positions may be synthesized,

as shown in Figure 5. This added 
exibility is also a

boon for the example set designer, who needs fewer ex-

ample images to build the desired synthesis model. On
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the other hand, the example set designer now needs to

specify the mask regions.

3.2 Composed Networks

Another problem with the example-based synthesis

network paradigm described in the Section 2 is that

it requires warping and blending of all the example

images within the network. Such an approach does

not take advantage of the inherent locality of the im-

age space. For example, suppose we wanted to model

vertical and horizontal head pose movements using a

two-dimensional, 3-by-3 network such as the one shown

in Figure 6.

Such a 3-by-3 network, however, may be viewed as

four 2-by-2 networks that share a common set of ex-

ample images along the adjacent edges. Instead of

traversing one large network space, smaller, local net-

work spaces are traversed, and a navigational mech-

anism is utilized to determine which local network is

currently activated. Experiments were performed with

exactly such a set of 4 composed local networks denot-

ing horizontal and vertical pose movement, and some

of the synthesized results are shown in Figure 7. The

navigational mechanism used in this case performs a

horizontal and vertical threshold check based on the

input parameters to check which network is activated.

There are several major advantages of using such a

network composition technique. Firstly, composition is

natural, at least within a synthesis framework based on

morphing. If the 2-dimensional space is large, chances

are that the intermediate examples should only be de-

termined from the example images that are the closest.

Secondly, composition maintains constant computa-

tion complexity. No matter how large an example set

space becomes, if one synthesizes only from the four

closest examples, then the computational complexity

remains constant. The only price to be paid is the

price of having to decide which network to activate,

which is not as computationally intensive as having to

warp and blend from a large number of examples.

Thirdly, composition improves �nal image quality.

By using only the most relevant images for synthe-

sis, the �nal image quality is improved. Image quality

tends to decrease when a large number of examples are

warped and blended together, due to the accumulated

errors.
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Figure 6: The examples for a 3-by-3 network involving

pose movements in all directions.
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Figure 7: Some intermediate examples generated from the

synthesis network of Figure 6, and their positions in the

imposed parameter space.

3.3 Hierarchical Networks

Another modi�cation to the general example-based

synthesis paradigm introduced in the second section

emerged in the course of attempting to model eye,

mouth, and pose movements simultaneously. It be-

came apparent that there is an inherent hierarchical

relationship between certain facial motions. For exam-

ple, eye motions and mouth motions are subordinate to

pose motions: changing pose necessarily a�ects the ap-

pearance of the eyes and the mouth, while movements

of the mouth and the eyes do not change the overall

pose of the head. Consequently, there was a need for

a modi�ed synthesis approach which attempted to en-
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LEFT EYE NETWORK RIGHT EYE NETWORK

BASE IMAGE 

MOUTH NETWORK

Figure 4: Construction of a 7-example, 5-dimensional regional synthesis network controlling mouth movement and eye

movement.

Figure 5: Synthesized images generated from the network in the Figure 4.
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code this new notion of hierarchy between networks.

The modi�ed hierarchical synthesis paradigm was

applied to a 14-example, 4-dimensional network that

involved eye, mouth, and pose movements, shown in

Figure 8. Firstly, a 7-example eye-mouth network was

constructed for eye and mouth movements at a single

head pose. The eye-mouth network was composed of

two regional networks for the eyes and mouth, as de-

scribed in the previous section on regional networks.

A similar 7-example network was also created for the

eye and mouth movements at a second rightwards pose.

The two 7-example eye-mouth networks, shown in Fig-

ure 8 a), thus constitute subnetworks to be placed

within a larger pose network.

The next step in the creation of the eyes-mouth-pose

network, shown in Figure 8 b), is to compute a set of

cross-
ows linking the images between the two subnet-

works. The cross-
ows may be obtained using any one

of various methods described in [9], and essentially al-

low the two eye-mouth subnetworks to be placed in cor-

respondence, in the same manner as two images would

be placed in correspondence.

The third and most important step in the hierar-

chical synthesis paradigm, shown in Figure 8 c), is to

synthesize an intermediate eye-mouth subnetwork for a

change in pose. Synthesizing such a new intermediate

eye-mouth subnetwork consists of two steps:

� The �rst involves synthesizing the new, interme-

diate images that belong in the new, intermediate

subnetwork. The synthesis of the new images pro-

ceeds along the respective cross-
ow vectors. Es-

sentially, temporary 1-dimensional synthesis net-

works are created, where the corner images are

the corresponding images in the mouth subnet-

works, and the correspondence vector is the cross-


ow vector. Synthesis of the intermediate images

proceeds in the standard manner described in Sec-

tion 2.

� The second step, involves the synthesis of new,

intermediate correspondences tying the images

within the new, intermediate subnetwork together.

In this case, a temporary network is created in

which the endpoints are not images, but the two

correspondences from the corner mouth subnet-

works. These correspondences are warped to pro-

duce the intermediate correspondences that tie

pose

eyes-mouth

eyes-mouth

eyes-mouth

eyes-mouth

eyes-mouth

eyes-mouth

A)

B)

C)

Figure 8: The stages of the new hierarchical synthesis ap-

proach for the 14-example, 4-dimensional, eyes-mouth-pose

network.

the images within the intermediate subnetwork to-

gether.

Experiments were performed with such a hierarchical

eyes-mouth-pose network, and Figure 9 shows two se-

quences of images generated from the same eyes-pose-

mouth synthesis network. In the top row, the mouth is

kept closed while the eyes and the pose are changed. In

the bottom row, all three facial features are changed.
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Figure 9: Two separate image sequences synthesized from the 14-example, 4-dimensional eyes-mouth-pose network in

Figure 8.

It is interesting to point out that the modi�ed hier-

archical synthesis approach is not a new paradigm at

all, but a generalization. In the old synthesis method,

images were warped and blended together to achieve

novel, intermediate images. In the new method, this

notion of warping and blending is extended to include

not only images, but also 
ows, and hence entire net-

works. One can alternatively think of the synthesis

technique as warping and blending nodes, where a node

can be an image, a network, a network of networks, and

so on.

4 Analysis

4.1 Overview

In this section, a model-based analysis algorithm is out-

lined which is capable of extracting a set of high-level

parameters from novel image sequences. The analysis

approach is, in fact, an analysis-by-synthesis approach,

where the synthesis networks created in the previous

section are themselves used for analysis. An important

and useful consequence of this approach is that the

only parameters that may be extracted from the novel

sequence are those that are encoded by the synthesis

networks themselves.

4.2 A�ne Parameters

Before analyzing with respect to novel image sequences,

the synthesis networks must be additionally parame-

terized with a set of a�ne parameters. This is needed

because novel sequences involve movements of the head

that are at scales, positions, and rotation angles that

are di�erent from those in the network. Augmenting

the synthesis networks with a set of four a�ne param-

eters (two translation parameters, an angle parameter,

and a scale parameter), is straightforward. Essentially,

the network �rst synthesizes the head at the intrinsic

parameters imposed by the user, and then it performs

an a�ne transformation according to the desired trans-

lation, scale, and rotation. Ideally, we would also like

to augment the synthesis network with a set of projec-

tive parameters, but this was beyond the scope of this

work.

4.3 Segmentation

In addition to augmenting the synthesis network with

a set of a�ne parameters, it is also necessary to in-

corporate segmentation. This is needed because, in its

e�ort to match the synthesis network with a novel se-

quence, the analysis algorithm needs to match only on

the region in the synthesized network that corresponds

to the face. This will allow the algorithm to be less

sensitive to background changes, as well as hairstyle

and clothing changes.
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Figure 10: The masks associated with the 3-by-3 pose net-

work in Figure 6.

In attempting to segment the head in a network,

as opposed to segmenting the head in just an image,

there is a need for a 
exible segmentation scheme, be-

cause the outline of the head changes shape as the head

changes pose, position, rotation, and scale. One rigid

mask is thus not capable of segmenting the head prop-

erly.

Consequently, a network scheme for 
exible segmen-

tation was adopted, where a network of the same di-

mensions and orientation as the corresponding image

synthesis network is created, except that instead of im-

ages, the examples are masks. Each mask example

serves to segment the head for the corresponding im-

age example, and the correspondence 
ows relating the

masks together are the same as those within the image

synthesis network. The masks are de�ned by hand, al-

though it is possible to use other automatic techniques.

Whenever the synthesis network synthesizes a new im-

age, it also synthesizes a new mask appropriate for the

same image using the same warping and blending tech-

nique described in Section 2, with minor modi�cations

to preserve the black-and-white pixel integrity of the

mask.

Figure 10 depicts the masks that would be associ-

ated with the 3-by-3 pose network in Figure 6. Figure

11 shows various a�ne-perturbed, segmented images

which are synthesized from a network similar to the

Figure 11: Various segmented and a�ne-perturbed images

synthesized from a 3-by-3 pose network similar to the one

shown in Figure 6.

3-by-3 pose network of Figure 6.

We can thus begin to conceptualize a synthesis mod-

ule that, from an input-output perspective, can gener-

ate images of a face at a various positions, rotations,

scales, poses, expressions, etc., for the appropriate set

of input parameters. It is important to note, in light of

the forthcoming description of our analysis algorithm,

that in addition to images, the synthesis module can

also output correspondences and masks.

4.4 A Correspondence-Based Error Metric

A key feature of our analysis algorithm is that instead

of using the embedded synthesis module to synthe-

size images to match to the novel images, and thereby

have to rely on an image-based error metric, as in [11],

the algorithm instead tries to match novel correspon-

dence. For every iteration, the algorithm computes

the optical 
ow between two consecutive novel frames,

and then attempts to �nd the best matching corre-

spondence from within its embedded synthesis mod-

ule. The rationale for using a correspondence-based

metric, as opposed to an image-based metric, is that

trying to minimize a correspondence-based error met-

ric is less susceptible to noise, local minima, and light-

ing changes. Both Beymer, Shashua, and Poggio [4]

and Essa and Pentland [8] also found that comparing

novel incoming motion with stored motion (or motion

energy) templates led to good facial analysis results.
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It is important to note that the set of correspon-

dences that can be synthesized by the network are

only those correspondences involved with the facial mo-

tions that the user chose to model, in addition to the

correspondences involved with the a�ne movements.

Consequently, even though the novel sequences will

generate arbitrary types of correspondences in gen-

eral, we are constrained, through this synthesis module

paradigm, of matching them with only a certain reper-

toire of acceptable correspondences. Our matching ap-

proach may be viewed as a form of motion regular-

ization, in which unconstrained optical 
ow is regular-

ized with the 
ows from our synthesis module. Other

motion regularization approaches were made by Basu,

Essa, and Pentland [1] and Black and Yacoob [5]. Basu,

Essa, and Pentland regularized the unconstrained op-

tical 
ow with the motion of a three-dimensional el-

lipsoid for head-tracking purposes. Black and Yacoob

regularized local regions of optical 
ow using projective

planar models and curve models.

4.5 Parameter Perturbation Strategy

The analysis-by-synthesis algorithm is based on itera-

tive, local, independent perturbations of the synthesis

parameters. A sketch of the steps of the algorithm are

as follows:

1. For a novel correspondence obtained from two con-

secutive novel images (say images A and B) in the

sequence, the parameters of the embedded syn-

thesis model are perturbed. The perturbations

include the a�ne parameters, and vary each pa-

rameter independently in the positive and nega-

tive directions by a small delta factor.

2. For each set of perturbed parameters, the algo-

rithm then synthesizes a correspondence from the

module that corresponds to the perturbation. For

reasons described in [9], we have opted to ob-

tain the correspondence associated with the per-

turbation by synthesizing the two perturbed im-

ages �rst, and then computing optical 
ow be-

tween them.

3. The algorithm then computes the Euclidean dis-

tance between each perturbed correspondence and

the novel correspondence, and �nds the closest

synthesized correspondence of the set. All dis-

tances are computed only in the regions speci�ed

by the masks associated with the perturbed corre-

spondences.

4. The algorithm then repeats steps 1 through 3, it-

eratively perturbing around the set of parameters

associated with the closest synthesized correspon-

dence found in step 3.

5. For each iteration, the synthesized correspondence

that yielded the overall smallest distance with re-

spect to the novel correspondence is preserved; if

a set of perturbations do not yield any new corre-

spondences that reduce the overall minimum, the

delta factors are halved and the iterations proceed

once again. Thus when the algorithm gets close to

the optimum synthesized correspondence, it pro-

ceeds with smaller and smaller perturbations to

achieve a better match. The iterations terminate

when the delta factors have been reduced to a de-

gree where perturbations made using those factors

do not make any signi�cant changes in the synthe-

sized correspondences.

6. Once a parameter estimate is obtained for the

given novel 
ow, the algorithm computes the next

consecutive novel correspondence in the sequence

(say, between images B and C), and starts to per-

turb around the set of parameters found in the pre-

vious iteration. This whole process is performed

across the entire sequence.

The �rst image in the novel sequence needs to be

treated di�erently from the other images, since there is

no prior 
ow within the sequence itself against which

to match. Consequently, we compute the correspon-

dence from the reference image in the network to the

image, and then apply the iterative parameter pertur-

bation technique to �nd the closest synthesized cor-

respondence. This strategy su�ers from the weakness

that if the optical 
ow fails due to the fact that the

heads are too far away from each other, then the ex-

tracted parameters for the �rst image will be incorrect.

Consequently, in the novel sequences that we used to

test the analysis algorithm on, the head in the initial

frame was not placed too far away from the head in the

reference image of the embedded synthesis module, al-

though, of course, signi�cant deviations in translation,

rotation, scale, pose, and other variables did exist nev-

ertheless.
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5 Results

A varied but limited set of experiments were performed

to test our analysis-by-synthesis technique in estimat-

ing di�erent facial movements such as pose movements,

eye movements, mouth movements, as well as head

translations, rotations, and scales. The novel sequences

involved changes in lighting, position, scale, rotation,

background, clothing, and hairstyle. It should be noted

that to change his hairstyle, the author shaved his

head! In each illustration, a few frames from the novel

sequence are juxtaposed against a few frames from

the synthesized sequence. The analysis parameters ex-

tracted by the algorithm are also shown.

The synthesis modules embedded within the anal-

ysis algorithm were based on the networks described

in Sections 2 and 3 of this paper. Speci�cally, the

two-dimensional, 3-by-3 pose network shown in Figure

6 was used to analyze various novel pose movements

of the head. Figures 12 through 18 on the following

pages depict the results from the experiments. In ad-

dition, the 4-dimensional, 14-example eye-pose-mouth

network shown in Figure 8 was used to analyze various

combinations of mouth, eye, and pose movements. The

results from these experiments are shown in Figures 20

through 24. Finally, the 2-dimensional, 5-example ex-

pression network shown in Figure 1 was used to ana-

lyze both mouth expression movements and a variety

of a�ne head movements. The results from two such

experiments are shown in Figures 26 and 28.

6 Discussion and Future Work

Our analysis experiments are still very preliminary, and

more thorough testing is needed on a larger database of

facial expressions and head movements. On the other

hand, the results are extremely encouraging.

At present, the most salient di�culty with the

analysis-by-synthesis algorithm presented in this work

is that, like many iterative nonlinear optimization tech-

niques, it is computationally ine�cient. Formal timing

tests were not performed, but it takes between a few

minutes to half an hour to analyze one frame, depend-

ing on the complexity of the underlying synthesis mod-

ule. Future work de�nitely needs to explore improving

the e�ciency of the algorithm.

It also seems that the analysis-by-synthesis paradigm

as presented is also strongly user-dependent, although

formal tests were not performed to con�rm this: the

example-based models can only extract analysis pa-

rameters reliably from faces whose examples were used

to build the model. Further work is needed to deter-

mine the limitations of the example-based models in

this respect, and to overcome those limitations.

On the positive side, however, it seems that our deci-

sion to use a correspondence-based metric, in addition

to the incorporation of a�ne perturbation and segmen-

tation, have allowed us to achieve very good analysis

in spite of changes in background, lighting, hairstyle,

position, rotation, and scale.

Furthermore, it seems that the analysis-by-synthesis

technique is fairly general, and can serve to analyze a

wide variety of rigid and non-rigid facial movements,

which would be useful for many tasks such as eye-

tracking, facial expression recognition, visual speech

understanding, and pose estimation.
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Figure 12: A novel sequence with leftwards pose movement

(top), juxtaposed along with the synthesized sequence (bot-

tom). The synthesis module is the 9-example 3-by-3 pose

network shown in Figure 6 in this paper.

Figure 14: A novel sequence with rightwards pose move-

ment (top), juxtaposed along with the synthesized sequence

(bottom). The synthesis module is the 9-example 3-by-3

pose network shown in Figure 6 in this paper.

Figure 13: The pose parameters extracted from the se-

quence in Figure 12. The analysis algorithm extracts a set

of four a�ne parameters as well as 2 pose parameters, but

only pose parameters are shown here for illustration. The

\x" marks denote the positions of the 9 examples in pose

space.

Figure 15: The pose parameters extracted from the se-

quence in Figure 14. The analysis algorithm extracts a set

of four a�ne parameters as well as 2 pose parameters, but

only pose parameters are shown here for illustration. The

\x" marks denote the positions of the 9 examples in pose

space.
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Figure 16: A novel sequence with top-rightwards pose

movement (top), juxtaposed along with the synthesized se-

quence (bottom). The synthesis module is the 9-example

3-by-3 pose network shown in Figure 6 in this paper.

Figure 18: A novel sequence with bottom-leftwards pose

movement (top), juxtaposed along with the synthesized se-

quence (bottom). The synthesis module is the 9-example

3-by-3 pose network shown in Figure 6 in this paper.

Figure 17: The pose parameters extracted from the se-

quence in Figure 16. The analysis algorithm extracts a set

of four a�ne parameters as well as 2 pose parameters, but

only pose parameters are shown here for illustration. The

\x" marks denote the positions of the 9 examples in pose

space.

Figure 19: The pose parameters extracted from the se-

quence in Figure 18. The analysis algorithm extracts a set

of four a�ne parameters as well as 2 pose parameters, but

only pose parameters are shown here for illustration. The

\x" marks denote the positions of the 9 examples in pose

space.



T. Ezzat and T. Poggio

Figure 20: A novel sequence with mouth movement (top),

juxtaposed along with the synthesized sequence (bottom).

The synthesis module is the 4-dimensional, 14-example net-

work shown in Figure 8.

Figure 22: A novel sequence with eye movement (top),

juxtaposed along with the synthesized sequence (bottom).

The synthesis module is the same 4-dimensional, 14-

example network shown in Figure 8.

Figure 24: A novel sequence with eye, pose, and mouth

movement (top), juxtaposed along with the synthesized se-

quence (bottom). The synthesis module is the same 4-

dimensional, 14-example network shown in Figure 8.

Figure 21: The complete set of parameters extracted from

the sequence in Figure 20. All the activity occurs in the

mouth parameter, which denotes degree of openness.

Figure 23: The complete set of parameters extracted from

the sequence in Figure 22. All the activity occurs in the

eyes x and y parameters.

Figure 25: The complete set of parameters extracted from

the sequence in Figure 24. All the activity occurs in the eye,

mouth, and pose parameters.
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Figure 26: A novel sequence with mouth movement (left),

juxtaposed along with the synthesized sequence (right). The

synthesis module is the 2-dimensional, 5-example network

shown in Figure 1.

Figure 27: The smile and open-mouth parameters ex-

tracted from the sequence in Figure 26. The analysis algo-

rithm also extracts a set of four a�ne parameters as well,

but only the expression parameters are shown here for illus-

tration.

Figure 28: A novel sequence with on-plane rotation of the

head (left), juxtaposed along with the synthesized sequence

(right). The synthesis module is the same 2-dimensional,

5-example expression network shown in Figure 1.

Figure 29: The on-plane rotation parameter extracted

from the sequence in Figure 28. Another set of three a�ne

parameters, as well as two expression parameters are also

extracted, but only the rotation parameters are shown here

for illustration.


