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Abstract

This paper presents a method for extracting distinctivariawnt features from
images that can be used to perform reliable matching betadenent views of

an object or scene. The features are invariant to image acaeotation, and
are shown to provide robust matching across a a substaaftigerof affine dis-
tortion, change in 3D viewpoint, addition of noise, and amin illumination.

The features are highly distinctive, in the sense that desifegiture can be cor-
rectly matched with high probability against a large dasabaf features from
many images. This paper also describes an approach to uwmsg features
for object recognition. The recognition proceeds by matghndividual fea-

tures to a database of features from known objects using adasest-neighbor
algorithm, followed by a Hough transform to identify clustdelonging to a sin-
gle object, and finally performing verification through leaquares solution for
consistent pose parameters. This approach to recognisiorrabustly identify

objects among clutter and occlusion while achieving neartime performance.

Accepted for publication in thénternational Journal of Computer Visio2004.



1 Introduction

Image matching is a fundamental aspect of many problemsrimpater vision, including
object or scene recognition, solving for 3D structure fromltiple images, stereo correspon-
dence, and motion tracking. This paper describes imagarksathat have many properties
that make them suitable for matching differing images of aject or scene. The features are
invariant to image scaling and rotation, and partially nesat to change in illumination and
3D camera viewpoint. They are well localized in both the ighaind frequency domains, re-
ducing the probability of disruption by occlusion, cluiter noise. Large numbers of features
can be extracted from typical images with efficient algarnigh In addition, the features are
highly distinctive, which allows a single feature to be eamtlty matched with high probability
against a large database of features, providing a basidjectoand scene recognition.

The cost of extracting these features is minimized by takiegscade filtering approach,
in which the more expensive operations are applied onlycations that pass an initial test.
Following are the major stages of computation used to géméhne set of image features:

1. Scale-space extrema detectiorithe first stage of computation searches over all scales
and image locations. It is implemented efficiently by usingdifeerence-of-Gaussian
function to identify potential interest points that areanant to scale and orientation.

2. Keypoint localization: At each candidate location, a detailed model is fit to deteemi
location and scale. Keypoints are selected based on measitreir stability.

3. Orientation assignment: One or more orientations are assigned to each keypoint lo-
cation based on local image gradient directions. All futoperations are performed
on image data that has been transformed relative to thengsbayientation, scale, and
location for each feature, thereby providing invariancéhese transformations.

4. Keypoint descriptor: The local image gradients are measured at the selected scale
in the region around each keypoint. These are transformedaimepresentation that
allows for significant levels of local shape distortion amguege in illumination.

This approach has been named the Scale Invariant Featursfdma (SIFT), as it transforms
image data into scale-invariant coordinates relative ¢tallfeatures.

An important aspect of this approach is that it generateglaumbers of features that
densely cover the image over the full range of scales anditotsa A typical image of size
500x500 pixels will give rise to about 2000 stable featusdthdugh this number depends on
both image content and choices for various parameters).qUiatity of features is partic-
ularly important for object recognition, where the abiltty detect small objects in cluttered
backgrounds requires that at least 3 features be corregtghad from each object for reli-
able identification.

For image matching and recognition, SIFT features are fksteted from a set of ref-
erence images and stored in a database. A new image is mdughedividually comparing
each feature from the new image to this previous databasdimaidg candidate match-
ing features based on Euclidean distance of their featuceoree This paper will discuss
fast nearest-neighbor algorithms that can perform this mdation rapidly against large
databases.

The keypoint descriptors are highly distinctive, whicloals a single feature to find its
correct match with good probability in a large database afures. However, in a cluttered
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image, many features from the background will not have amgecbo match in the database,
giving rise to many false matches in addition to the corresso The correct matches can
be filtered from the full set of matches by identifying sukset keypoints that agree on the
object and its location, scale, and orientation in the neagen The probability that several
features will agree on these parameters by chance is mudr livan the probability that
any individual feature match will be in error. The deterntioa of these consistent clusters
can be performed rapidly by using an efficient hash table émgintation of the generalized
Hough transform.

Each cluster of 3 or more features that agree on an objecttammbse is then subject
to further detailed verification. First, a least-squaretineste is made for an affine approxi-
mation to the object pose. Any other image features comgistih this pose are identified,
and outliers are discarded. Finally, a detailed computaganade of the probability that a
particular set of features indicates the presence of archlgeven the accuracy of fit and
number of probable false matches. Object matches that fjabese tests can be identified
as correct with high confidence.

2 Related research

The development of image matching by using a set of locatestgoints can be traced back
to the work of Moravec (1981) on stereo matching using a code¢ector. The Moravec
detector was improved by Harris and Stephens (1988) to niakere repeatable under small
image variations and near edges. Harris also showed ite Yahefficient motion tracking
and 3D structure from motion recovery (Harris, 1992), ang karris corner detector has
since been widely used for many other image matching tasksle\these feature detectors
are usually called corner detectors, they are not selegtistgcorners, but rather any image
location that has large gradients in all directions at a @teunined scale.

The initial applications were to stereo and short-rangeiondracking, but the approach
was later extended to more difficult problems. Zhahgl. (1995) showed that it was possi-
ble to match Harris corners over a large image range by usitayralation window around
each corner to select likely matches. Outliers were therovweh by solving for a funda-
mental matrix describing the geometric constraints betwke two views of rigid scene and
removing matches that did not agree with the majority sotutiAt the same time, a similar
approach was developed by Torr (1995) for long-range matiatching, in which geometric
constraints were used to remove outliers for rigid objectsimy within an image.

The ground-breaking work of Schmid and Mohr (1997) showed itvariant local fea-
ture matching could be extended to general image recognitioblems in which a feature
was matched against a large database of images. They alddHases corners to select
interest points, but rather than matching with a corretationdow, they used a rotationally
invariant descriptor of the local image region. This allowieatures to be matched under
arbitrary orientation change between the two images. Euribre, they demonstrated that
multiple feature matches could accomplish general re¢imgnunder occlusion and clutter
by identifying consistent clusters of matched features.

The Harris corner detector is very sensitive to changes iagenscale, so it does not
provide a good basis for matching images of different sizEsrlier work by the author
(Lowe, 1999) extended the local feature approach to aclseate invariance. This work
also described a new local descriptor that provided motindis/e features while being less



sensitive to local image distortions such as 3D viewpoiaihgfe. This current paper provides
a more in-depth development and analysis of this earliekywehile also presenting a number
of improvements in stability and feature invariance.

There is a considerable body of previous research on igamgifrepresentations that are
stable under scale change. Some of the first work in this assaby Crowley and Parker
(1984), who developed a representation that identified eakl ridges in scale space and
linked these into a tree structure. The tree structure cthdd be matched between images
with arbitrary scale change. More recent work on graph-ttasatching by Shokoufandeh,
Marsic and Dickinson (1999) provides more distinctive featdescriptors using wavelet co-
efficients. The problem of identifying an appropriate andgistent scale for feature detection
has been studied in depth by Lindeberg (1993, 1994). Heilesdhis as a problem of scale
selection, and we make use of his results below.

Recently, there has been an impressive body of work on eixtgridcal features to be
invariant to full affine transformations (Baumberg, 200Qytelaars and Van Gool, 2000;
Mikolajczyk and Schmid, 2002; Schaffalitzky and Zissern2002; Brown and Lowe, 2002).
This allows for invariant matching to features on a planafame under changes in ortho-
graphic 3D projection, in most cases by resampling the iniagelocal affine frame. How-
ever, none of these approaches are yet fully affine invaresithey start with initial feature
scales and locations selected in a non-affine-invariantneratiue to the prohibitive cost of
exploring the full affine space. The affine frames are are alsce sensitive to noise than
those of the scale-invariant features, so in practice theegfieatures have lower repeatability
than the scale-invariant features unless the affine disiois greater than about a 40 degree
tilt of a planar surface (Mikolajczyk, 2002). Wider affinezariance may not be important for
many applications, as training views are best taken at taasy 30 degrees rotation in view-
point (meaning that recognition is within 15 degrees of tlhisest training view) in order to
capture non-planar changes and occlusion effects for 38ctj

While the method to be presented in this paper is not fullyhaffihvariant, a different
approach is used in which the local descriptor allows retafieature positions to shift signif-
icantly with only small changes in the descriptor. This agmh not only allows the descrip-
tors to be reliably matched across a considerable rangdinéafistortion, but it also makes
the features more robust against changes in 3D viewpoinhdorplanar surfaces. Other
advantages include much more efficient feature extractimhthe ability to identify larger
numbers of features. On the other hand, affine invariancerdduable property for matching
planar surfaces under very large view changes, and furdserarch should be performed on
the best ways to combine this with non-planar 3D viewpoimaiiance in an efficient and
stable manner.

Many other feature types have been proposed for use in rémogrsome of which could
be used in addition to the features described in this pappragde further matches under
differing circumstances. One class of features are thaaentiake use of image contours or
region boundaries, which should make them less likely to iseugted by cluttered back-
grounds near object boundaries. Maghal., (2002) have shown that their maximally-stable
extremal regions can produce large numbers of matchingrestvith good stability. Miko-
lajczyk et al., (2003) have developed a new descriptor that uses local edgiés ignoring
unrelated nearby edges, providing the ability to find stédgures even near the boundaries
of narrow shapes superimposed on background clutter. Nedsd Selinger (1998) have
shown good results with local features based on groupingsa@ie contours. Similarly,



Pope and Lowe (2000) used features based on the hierarghtgding of image contours,
which are particularly useful for objects lacking detaitedture.

The history of research on visual recognition contains wamka diverse set of other
image properties that can be used as feature measuremeataeirG and Jepson (2002)
describe phase-based local features that represent the @ther than the magnitude of local
spatial frequencies, which is likely to provide improvedariance to illumination. Schiele
and Crowley (2000) have proposed the use of multidimenstistograms summarizing the
distribution of measurements within image regions. Thpetgf feature may be particularly
useful for recognition of textured objects with deformablepes. Basri and Jacobs (1997)
have demonstrated the value of extracting local region Bames for recognition. Other
useful properties to incorporate include color, motionuf@sground discrimination, region
shape descriptors, and stereo depth cues. The local fegtpreach can easily incorporate
novel feature types because extra features contributébtestness when they provide correct
matches, but otherwise do little harm other than their cbsbmputation. Therefore, future
systems are likely to combine many feature types.

3 Detection of scale-space extrema

As described in the introduction, we will detect keypoinssng a cascade filtering approach
that uses efficient algorithms to identify candidate lamagithat are then examined in further
detail. The first stage of keypoint detection is to identibgdtions and scales that can be
repeatably assigned under differing views of the same tbjeetecting locations that are
invariant to scale change of the image can be accomplishegdrghing for stable features
across all possible scales, using a continuous functionadé «known as scale space (Witkin,
1983).

It has been shown by Koenderink (1984) and Lindeberg (199k) under a variety of
reasonable assumptions the only possible scale-spacd kethe Gaussian function. There-
fore, the scale space of an image is defined as a fundlipn,y, o), that is produced from
the convolution of a variable-scale Gaussiéfiz, y, o), with an input image/ (z, y):

L(z,y,0) = G(x,y,0) x I(x,y),

wherex is the convolution operation in andy, and

1 (22 402) /252
G(:E,y,a)zme (@%4y7) /207,

To efficiently detect stable keypoint locations in scalecgpave have proposed (Lowe, 1999)
using scale-space extrema in the difference-of-Gaussiactibn convolved with the image,

D(z,y,0), which can be computed from the difference of two nearbyescaéparated by a
constant multiplicative factot:

D(ac,y,o) = (G(:U,y,k‘a) —G(l‘,y,d))*l($,y)
= L(m,y,ka)—L(x,y,U). (1)
There are a number of reasons for choosing this functiost,kilis a particularly efficient

function to compute, as the smoothed imagesneed to be computed in any case for scale
space feature description, ahtlcan therefore be computed by simple image subtraction.
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Figure 1: For each octave of scale space, the initial imagepisatedly convolved with Gaussians to
produce the set of scale space images shown on the left. émj@&aussian images are subtracted
to produce the difference-of-Gaussian images on the rigfier each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function progdeclose approximation to the
scale-normalized Laplacian of Gaussiahy?G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with thedaet is required for true scale
invariance. In detailed experimental comparisons, Mijalgk (2002) found that the maxima
and minima ofr2V2G produce the most stable image features compared to a ramgeesf
possible image functions, such as the gradient, Hessiadtawis corner function.

The relationship betweeh ando?V2G can be understood from the heat diffusion equa-
tion (parameterized in terms ofrather than the more usuak ¢2):

oG )
%—O'v G.

From this, we see tha??G can be computed from the finite difference approximation to
0G /0o, using the difference of nearby scalegcatando:

% ~ G(‘Tayaka) — G(x7y70)

Oo ko —o

oV2G =

and therefore,

G(z,y, ko) — G(z,y,0) ~ (k — 1)o*V?G.

This shows that when the difference-of-Gaussian functias $cales differing by a con-
stant factor it already incorporates thé scale normalization required for the scale-invariant
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Figure 2: Maxima and minima of the difference-of-Gaussiaages are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at therent and adjacent scales (marked
with circles).

Laplacian. The factotk — 1) in the equation is a constant over all scales and therefage do
not influence extrema location. The approximation errot gdl to zero as: goes to 1, but
in practice we have found that the approximation has almostipact on the stability of
extrema detection or localization for even significantetfi#inces in scale, such as= /2.

An efficient approach to construction @¥(x,y, o) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to prodo@ages separated by a constant
factor k in scale space, shown stacked in the left column. We choodmitie each octave
of scale space (i.e., doubling ef) into an integer numbers, of intervals, sok = 21/s,
We must produce + 3 images in the stack of blurred images for each octave, sditfedt
extrema detection covers a complete octave. Adjacent irpegles are subtracted to produce
the difference-of-Gaussian images shown on the right. Gncemplete octave has been
processed, we resample the Gaussian image that has twitgtiddevalue of o (it will be 2
images from the top of the stack) by taking every second pixebch row and column. The
accuracy of sampling relative t is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minimalafz, y, o), each sample point is compared
to its eight neighbors in the current image and nine neighbbothe scale above and below
(see Figure 2). Itis selected only if it is larger than all lsé$e neighbors or smaller than all
of them. The cost of this check is reasonably low due to thetfed most sample points will
be eliminated following the first few checks.

An important issue is to determine the frequency of sampglirthe image and scale do-
mains that is needed to reliably detect the extrema. Unfaktly, it turns out that there is
no minimum spacing of samples that will detect all extrensath& extrema can be arbitrar-
ily close together. This can be seen by considering a whitdecon a black background,
which will have a single scale space maximum where the @rqubsitive central region of
the difference-of-Gaussian function matches the size acatibn of the circle. For a very
elongated ellipse, there will be two maxima near each entegtlipse. As the locations of
maxima are a continuous function of the image, for somesadlipith intermediate elongation
there will be a transition from a single maximum to two, willetmaxima arbitrarily close to
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Figure 3: The top line of the first graph shows the percent gpkénts that are repeatably detected at
the same location and scale in a transformed image as adaraftthe number of scales sampled per
octave. The lower line shows the percent of keypoints the lizeir descriptors correctly matched to
a large database. The second graph shows the total numbeymdikts detected in a typical image
as a function of the number of scale samples.

each other near the transition.

Therefore, we must settle for a solution that trades off iefficy with completeness.
In fact, as might be expected and is confirmed by our expetsnextrema that are close
together are quite unstable to small perturbations of thegien We can determine the best
choices experimentally by studying a range of samplinguesgies and using those that
provide the most reliable results under a realistic sinitabf the matching task.

3.2 Frequency of sampling in scale

The experimental determination of sampling frequency thakimizes extrema stability is
shown in Figures 3 and 4. These figures (and most other siiogain this paper) are based
on a matching task using a collection of 32 real images draom & diverse range, including
outdoor scenes, human faces, aerial photographs, andriatlithages (the image domain
was found to have almost no influence on any of the results)h Baage was then subject to a
range of transformations, including rotation, scalindinaf stretch, change in brightness and
contrast, and addition of image noise. Because the changessynthetic, it was possible
to precisely predict where each feature in an original imstysuld appear in the transformed
image, allowing for measurement of correct repeatabilitg positional accuracy for each
feature.

Figure 3 shows these simulation results used to examindfew ef varying the number
of scales per octave at which the image function is sampleat fir extrema detection. In
this case, each image was resampled following rotation landam angle and scaling by
a random amount between 0.2 of 0.9 times the original sizeyp#iats from the reduced
resolution image were matched against those from the afigimage so that the scales for all
keypoints would be be present in the matched image. In additi% image noise was added,
meaning that each pixel had a random number added from tlf@mminterval [-0.01,0.01]
where pixel values are in the range [0,1] (equivalent to jgog slightly less than 6 bits of
accuracy for image pixels).
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Figure 4: The top line in the graph shows the percent of kayocations that are repeatably detected
in a transformed image as a function of the prior image sningtfor the first level of each octave.
The lower line shows the percent of descriptors correctlycmed against a large database.

The top line in the first graph of Figure 3 shows the percenegpbkints that are detected
at a matching location and scale in the transformed imagealFexamples in this paper, we
define a matching scale as being within a factos/@f of the correct scale, and a matching
location as being withia pixels, wherer is the scale of the keypoint (defined from equation
(1) as the standard deviation of the smallest Gaussian us#tkidifference-of-Gaussian
function). The lower line on this graph shows the number ofpkénts that are correctly
matched to a database of 40,000 keypoints using the newiggtbor matching procedure
to be described in Section 6 (this shows that once the keymirepeatably located, it is
likely to be useful for recognition and matching tasks). Astgraph shows, the highest
repeatability is obtained when sampling 3 scales per octawe this is the number of scale
samples used for all other experiments throughout thispape

It might seem surprising that the repeatability does nottinae to improve as more
scales are sampled. The reason is that this results in margylowal extrema being detected,
but these extrema are on average less stable and therefotesarlikely to be detected in
the transformed image. This is shown by the second graphgar&i3, which shows the
average number of keypoints detected and correctly maticheach image. The number of
keypoints rises with increased sampling of scales and taertamber of correct matches also
rises. Since the success of object recognition often deperwde on the quantity of correctly
matched keypoints, as opposed to their percentage corggching, for many applications it
will be optimal to use a larger number of scale samples. Hewsdfie cost of computation
also rises with this number, so for the experiments in thgepave have chosen to use just 3
scale samples per octave.

To summarize, these experiments show that the scale-spgtarente-of-Gaussian func-
tion has a large number of extrema and that it would be vergesipe to detect them all.
Fortunately, we can detect the most stable and useful setssatwith a coarse sampling of
scales.



3.3 Frequency of sampling in the spatial domain

Just as we determined the frequency of sampling per octageadé space, so we must de-
termine the frequency of sampling in the image domain naedatib the scale of smoothing.
Given that extrema can be arbitrarily close together, tialidbe a similar trade-off between
sampling frequency and rate of detection. Figure 4 showscpariemental determination of
the amount of prior smoothings, that is applied to each image level before building the
scale space representation for an octave. Again, the tepdithe repeatability of keypoint
detection, and the results show that the repeatabilityimoas to increase with. However,
there is a cost to using a largein terms of efficiency, so we have chosen to use- 1.6,
which provides close to optimal repeatability. This valsaugsed throughout this paper and
was used for the results in Figure 3.

Of course, if we pre-smooth the image before extrema detectve are effectively dis-
carding the highest spatial frequencies. Therefore, toenfiak use of the input, the image
can be expanded to create more sample points than were phegbe original. We dou-
ble the size of the input image using linear interpolatiommpto building the first level of
the pyramid. While the equivalent operation could effegtivhave been performed by us-
ing sets of subpixel-offset filters on the original images thage doubling leads to a more
efficient implementation. We assume that the original imaag a blur of at least = 0.5
(the minimum needed to prevent significant aliasing), armd therefore the doubled image
haso = 1.0 relative to its new pixel spacing. This means that littleiaddal smoothing is
needed prior to creation of the first octave of scale space.iffiage doubling increases the
number of stable keypoints by almost a factor of 4, but noigant further improvements
were found with a larger expansion factor.

4 Accurate keypoint localization

Once a keypoint candidate has been found by comparing a fotd neighbors, the next
step is to perform a detailed fit to the nearby data for locgtgrale, and ratio of principal
curvatures. This information allows points to be rejectkdt thave low contrast (and are
therefore sensitive to noise) or are poorly localized alangdge.

The initial implementation of this approach (Lowe, 1999npgly located keypoints at
the location and scale of the central sample point. Howeeeently Brown has developed
a method (Brown and Lowe, 2002) for fitting a 3D quadratic fiorcto the local sample
points to determine the interpolated location of the maximand his experiments showed
that this provides a substantial improvement to matchirtgsaability. His approach uses the
Taylor expansion (up to the quadratic terms) of the scadesunction,D(x, y, o), shifted
so that the origin is at the sample point:

T 2
D(x) :D—I—g—i x—|—%ngle)x 2
whereD and its derivatives are evaluated at the sample pointaadz,y, )7 is the offset
from this point. The location of the extremum, is determined by taking the derivative of
this function with respect ta and setting it to zero, giving

0*D "' 0D

ox2  ox’ 3)

% =—
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Figure 5: This figure shows the stages of keypoint selectfahThe 233x189 pixel original image.
(b) The initial 832 keypoints locations at maxima and minimh¢éhe difference-of-Gaussian function.
Keypoints are displayed as vectors indicating scale, taten, and location. (c) After applying
a threshold on minimum contrast, 729 keypoints remain. (@ final 536 keypoints that remain
following an additional threshold on ratio of principal satures.

As suggested by Brown, the Hessian and derivativé)odre approximated by using dif-
ferences of neighboring sample points. The resulting 3x&af system can be solved with
minimal cost. If the offsek is larger than 0.5 in any dimension, then it means that the ex-
tremum lies closer to a different sample point. In this célse,sample point is changed and
the interpolation performed instead about that point. Tinel bffsetk is added to the location
of its sample point to get the interpolated estimate for tization of the extremum.

The function value at the extremur®),(%X), is useful for rejecting unstable extrema with
low contrast. This can be obtained by substituting equaByimto (2), giving

10DT
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For the experiments in this paper, all extrema with a valué/og)| less than 0.03 were
discarded (as before, we assume image pixel values in tige fari]).

Figure 5 shows the effects of keypoint selection on a nataragie. In order to avoid too
much clutter, a low-resolution 233 by 189 pixel image is uaad keypoints are shown as
vectors giving the location, scale, and orientation of damfpoint (orientation assignment is
described below). Figure 5 (a) shows the original imagectvig shown at reduced contrast
behind the subsequent figures. Figure 5 (b) shows the 832kegmat all detected maxima

D(%X) =D+
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and minima of the difference-of-Gaussian function, whadg ghows the 729 keypoints that
remain following removal of those with a value @D (x)| less than 0.03. Part (d) will be
explained in the following section.

4.1 Eliminating edge responses

For stability, it is not sufficient to reject keypoints witbw contrast. The difference-of-
Gaussian function will have a strong response along edges, i€ the location along the
edge is poorly determined and therefore unstable to smallais of noise.

A poorly defined peak in the difference-of-Gaussian funciall have a large principal
curvature across the edge but a small one in the perpendtitégtion. The principal curva-
tures can be computed from a 2x2 Hessian makixcomputed at the location and scale of
the keypoint:

D,. D
[ Dyy Dy, ]

The derivatives are estimated by taking differences ofmimiging sample points.

The eigenvalues dfl are proportional to the principal curvaturesiof Borrowing from
the approach used by Harris and Stephens (1988), we can expiititly computing the
eigenvalues, as we are only concerned with their ratio. d-&ie the eigenvalue with the
largest magnitude anglbe the smaller one. Then, we can compute the sum of the eigesva
from the trace oH and their product from the determinant:

Tr(H) = Dy + Dy = a + 63,
Det(H) = D,y Dyy — (Dyy)* = af3.

In the unlikely event that the determinant is negative, theatures have different signs so the
point is discarded as not being an extremum.sLle¢ the ratio between the largest magnitude
eigenvalue and the smaller one, so that 5. Then,

Tr(H)? _ (a+p)* _ (rB+8)? _ (r+1)?

Det(H) o8 32 r
which depends only on the ratio of the eigenvalues rather thair individual values. The
quantity (r +1)2 /r is at a minimum when the two eigenvalues are equal and itase®with
r. Therefore, to check that the ratio of principal curvatusebelow some threshold, we

only need to check

Tr(H)?2  (r+1)2

Det(H) < ro
This is very efficient to compute, with less than 20 floatingnp@mperations required to
test each keypoint. The experiments in this paper use a wilue= 10, which eliminates
keypoints that have a ratio between the principal curvatgreater than 10. The transition
from Figure 5 (c) to (d) shows the effects of this operation.
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5 Orientation assignment

By assigning a consistent orientation to each keypointdaselocal image properties, the
keypoint descriptor can be represented relative to thisnteition and therefore achieve in-
variance to image rotation. This approach contrasts witotientation invariant descriptors
of Schmid and Mohr (1997), in which each image property i®am a rotationally invariant
measure. The disadvantage of that approach is that it lbmgtglescriptors that can be used
and discards image information by not requiring all measueebe based on a consistent
rotation.

Following experimentation with a number of approaches sigaéng a local orientation,
the following approach was found to give the most stableltesiihe scale of the keypoint
is used to select the Gaussian smoothed imageith the closest scale, so that all compu-
tations are performed in a scale-invariant manner. For @aelge sampleL(z,y), at this
scale, the gradient magnitude,(x, y), and orientationd(z, y), is precomputed using pixel
differences:

m(z,y) = /(L@ + 1,y) — L(z — 1,y))? + (L{z,y + 1) — L(z,y — 1))?

0(z,y) = tan™ " ((L(z,y +1) — L(z,y — 1))/(L(z + 1,y) — L(z — 1,)))

An orientation histogram is formed from the gradient or&rans of sample points within
a region around the keypoint. The orientation histogram3galsins covering the 360 degree
range of orientations. Each sample added to the histogramighted by its gradient magni-
tude and by a Gaussian-weighted circular window withthat is 1.5 times that of the scale
of the keypoint.

Peaks in the orientation histogram correspond to dominaettibns of local gradients.
The highest peak in the histogram is detected, and then &y lical peak that is within
80% of the highest peak is used to also create a keypoint hathorientation. Therefore, for
locations with multiple peaks of similar magnitude, theii# ae multiple keypoints created at
the same location and scale but different orientationsy @pbut 15% of points are assigned
multiple orientations, but these contribute significantlyhe stability of matching. Finally, a
parabola is fit to the 3 histogram values closest to each megitdrpolate the peak position
for better accuracy.

Figure 6 shows the experimental stability of location, scahd orientation assignment
under differing amounts of image noise. As before the imagesrotated and scaled by
random amounts. The top line shows the stability of keypldnation and scale assign-
ment. The second line shows the stability of matching whenaitrentation assignment is
also required to be within 15 degrees. As shown by the gapdmtwhe top two lines, the
orientation assignment remains accurate 95% of the time after addition of:10% pixel
noise (equivalent to a camera providing less than 3 bits efipion). The measured vari-
ance of orientation for the correct matches is about 2.5e#egrising to 3.9 degrees for 10%
noise. The bottom line in Figure 6 shows the final accuracyoafectly matching a keypoint
descriptor to a database of 40,000 keypoints (to be disdussiew). As this graph shows,
the SIFT features are resistant to even large amounts of pdige, and the major cause of
error is the initial location and scale detection.
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Figure 6: The top line in the graph shows the percent of kayotations and scales that are repeat-
ably detected as a function of pixel noise. The second liogvstihe repeatability after also requiring
agreement in orientation. The bottom line shows the finadgretrof descriptors correctly matched to
a large database.

6 The local image descriptor

The previous operations have assigned an image locatiale, ®nd orientation to each key-
point. These parameters impose a repeatable local 2D cabedsystem in which to describe
the local image region, and therefore provide invariandbiése parameters. The next step is
to compute a descriptor for the local image region that isliglistinctive yet is as invariant
as possible to remaining variations, such as change initlaton or 3D viewpoint.

One obhvious approach would be to sample the local imagesitiies around the key-
point at the appropriate scale, and to match these usingraatiaed correlation measure.
However, simple correlation of image patches is highly gmesto changes that cause mis-
registration of samples, such as affine or 3D viewpoint ckasrgnon-rigid deformations. A
better approach has been demonstrated by Edelman, In@atbiPoggio (1997). Their pro-
posed representation was based upon a model of biologisiahyiin particular of complex
neurons in primary visual cortex. These complex neuronsoms to a gradient at a particular
orientation and spatial frequency, but the location of tredgent on the retina is allowed to
shift over a small receptive field rather than being preygitmtalized. Edelmaset al. hypoth-
esized that the function of these complex neurons was ter dtlomatching and recognition
of 3D objects from a range of viewpoints. They have perfordethiled experiments using
3D computer models of object and animal shapes which shawrtatching gradients while
allowing for shifts in their position results in much bettassification under 3D rotation. For
example, recognition accuracy for 3D objects rotated inttiéy 20 degrees increased from
35% for correlation of gradients to 94% using the complex meldel. Our implementation
described below was inspired by this idea, but allows fortmosl shift using a different
computational mechanism.
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Figure 7: A keypoint descriptor is created by first computing gradient magnitude and orientation
at each image sample point in a region around the keypoiatimt, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid&irThese samples are then accumulated
into orientation histograms summarizing the contents dwdrsubregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradnagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array compfrted an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors compuedd 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint dggori First the image gradient mag-
nitudes and orientations are sampled around the keypatatién, using the scale of the
keypoint to select the level of Gaussian blur for the imageorder to achieve orientation
invariance, the coordinates of the descriptor and the graidirientations are rotated relative
to the keypoint orientation. For efficiency, the gradients grecomputed for all levels of the
pyramid as described in Section 5. These are illustrateld gntall arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sanopé prhis is illustrated
with a circular window on the left side of Figure 7, althougl,course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoidisacthanges in the descriptor
with small changes in the position of the window, and to gesslemphasis to gradients that
are far from the center of the descriptor, as these are migsttaél by misregistration errors.

The keypoint descriptor is shown on the right side of Figurdtallows for significant
shift in gradient positions by creating orientation higergs over 4x4 sample regions. The
figure shows eight directions for each orientation histogravith the length of each arrow
corresponding to the magnitude of that histogram entry. @dgmt sample on the left can
shift up to 4 sample positions while still contributing taeteame histogram on the right,
thereby achieving the objective of allowing for larger Ibpasitional shifts.

It is important to avoid all boundary affects in which the ciggstor abruptly changes as a
sample shifts smoothly from being within one histogram tother or from one orientation
to another. Therefore, trilinear interpolation is used istribute the value of each gradient
sample into adjacent histogram bins. In other words, eatly ario a bin is multiplied by a
weight of 1 — d for each dimension, wheréis the distance of the sample from the central
value of the bin as measured in units of the histogram binisgac

15



The descriptor is formed from a vector containing the valokall the orientation his-
togram entries, corresponding to the lengths of the arrawthe right side of Figure 7. The
figure shows a 2x2 array of orientation histograms, whereagxperiments below show that
the best results are achieved with a 4x4 array of histograitis8wrientation bins in each.
Therefore, the experiments in this paper use a 4x4x8 = 128ezlefeature vector for each
keypoint.

Finally, the feature vector is modified to reduce the effeftilumination change. First,
the vector is normalized to unit length. A change in imageemt in which each pixel value
is multiplied by a constant will multiply gradients by thensa constant, so this contrast
change will be canceled by vector normalization. A brigethehange in which a constant
is added to each image pixel will not affect the gradient @ajuas they are computed from
pixel differences. Therefore, the descriptor is invariémtaffine changes in illumination.
However, non-linear illumination changes can also occw tucamera saturation or due to
illumination changes that affect 3D surfaces with diffgriorientations by different amounts.
These effects can cause a large change in relative magsitodsome gradients, but are less
likely to affect the gradient orientations. Therefore, wduce the influence of large gradient
magnitudes by thresholding the values in the unit featuctovelo each be no larger than
0.2, and then renormalizing to unit length. This means thatching the magnitudes for
large gradients is no longer as important, and that theiloigion of orientations has greater
emphasis. The value of 0.2 was determined experimentaithg images containing differing
illuminations for the same 3D objects.

6.2 Descriptor testing

There are two parameters that can be used to vary the complaixthe descriptor: the
number of orientations;, in the histograms, and the width, of then x n array of orientation
histograms. The size of the resulting descriptor vectarri. As the complexity of the
descriptor grows, it will be able to discriminate better itagge database, but it will also be
more sensitive to shape distortions and occlusion.

Figure 8 shows experimental results in which the number igintations and size of the
descriptor were varied. The graph was generated for a viewpansformation in which a
planar surface is tilted by 50 degrees away from the viewer4% image noise is added.
This is near the limits of reliable matching, as it is in thesere difficult cases that descriptor
performance is most important. The results show the pefgrypoints that find a correct
match to the single closest neighbor among a database d@i@ike§points. The graph shows
that a single orientation histogram (= 1) is very poor at discriminating, but the results
continue to improve up to a 4x4 array of histograms with 8maéons. After that, adding
more orientations or a larger descriptor can actually huatahing by making the descriptor
more sensitive to distortion. These results were broadtyilar for other degrees of view-
point change and noise, although in some simpler casesrdisation continued to improve
(from already high levels) with 5x5 and higher descriptaesi Throughout this paper we
use a 4x4 descriptor with 8 orientations, resulting in featwectors with 128 dimensions.
While the dimensionality of the descriptor may seem highhaee found that it consistently
performs better than lower-dimensional descriptors omgeaof matching tasks and that the
computational cost of matching remains low when using thE@pmate nearest-neighbor
methods described below.
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Figure 8: This graph shows the percent of keypoints givirgdbrrect match to a database of 40,000
keypoints as a function of width of the x n keypoint descriptor and the number of orientations in

each histogram. The graph is computed for images with affieepoint change of 50 degrees and
addition of 4% noise.

6.3 Sensitivity to affine change

The sensitivity of the descriptor to affine change is exaahimeFigure 9. The graph shows
the reliability of keypoint location and scale selectionientation assignment, and nearest-
neighbor matching to a database as a function of rotatioreptidof a plane away from a
viewer. It can be seen that each stage of computation haseddapeatability with increas-
ing affine distortion, but that the final matching accuracsnais above 50% out to a 50
degree change in viewpoint.

To achieve reliable matching over a wider viewpoint anglee of the affine-invariant
detectors could be used to select and resample image reg®uaiscussed in Section 2. As
mentioned there, none of these approaches is truly affiveetant, as they all start from initial
feature locations determined in a non-affine-invariant neanin what appears to be the most
affine-invariant method, Mikolajczyk (2002) has proposed aun detailed experiments with
the Harris-affine detector. He found that its keypoint repleiity is below that given here out
to about a 50 degree viewpoint angle, but that it then re@dose to 40% repeatability out to
an angle of 70 degrees, which provides better performancextoeme affine changes. The
disadvantages are a much higher computational cost, atredue the number of keypoints,
and poorer stability for small affine changes due to errorassigning a consistent affine
frame under noise. In practice, the allowable range of imteor 3D objects is considerably
less than for planar surfaces, so affine invariance is ysumt the limiting factor in the
ability to match across viewpoint change. If a wide rangefidi@invariance is desired, such
as for a surface that is known to be planar, then a simpleisalig to adopt the approach of
Pritchard and Heidrich (2003) in which additional SIFT feat are generated from 4 affine-
transformed versions of the training image correspondm@Q degree viewpoint changes.
This allows for the use of standard SIFT features with no teathl cost when processing
the image to be recognized, but results in an increase inzhefthe feature database by a
factor of 3.
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Figure 9: This graph shows the stability of detection for k@it location, orientation, and final
matching to a database as a function of affine distortion. deggee of affine distortion is expressed
in terms of the equivalent viewpoint rotation in depth forlanar surface.

6.4 Matching to large databases

An important remaining issue for measuring the distinctegs of features is how the re-
liability of matching varies as a function of the number oétigres in the database being
matched. Most of the examples in this paper are generated asdatabase of 32 images
with about 40,000 keypoints. Figure 10 shows how the magchetiability varies as a func-
tion of database size. This figure was generated using a ldegabase of 112 images, with
a viewpoint depth rotation of 30 degrees and 2% image noiaddiition to the usual random
image rotation and scale change.

The dashed line shows the portion of image features for wtiiehnearest neighbor in
the database was the correct match, as a function of datalmssehown on a logarithmic
scale. The leftmost point is matching against features fomty a single image while the
rightmost point is selecting matches from a database okatufes from the 112 images. It
can be seen that matching reliability does decrease as it the number of distractors,
yet all indications are that many correct matches will awni to be found out to very large
database sizes.

The solid line is the percentage of keypoints that were ifledtat the correct match-
ing location and orientation in the transformed image, sis ibnly these points that have
any chance of having matching descriptors in the database. rdason this line is flat is
that the test was run over the full database for each valude whly varying the portion
of the database used for distractors. It is of interest thatgap between the two lines is
small, indicating that matching failures are due more taésswith initial feature localization
and orientation assignment than to problems with featusenditiveness, even out to large
database sizes.
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Figure 10: The dashed line shows the percent of keypointecily matched to a database as a
function of database size (using a logarithmic scale). Tie §ine shows the percent of keypoints
assigned the correct location, scale, and orientationgésd&ad random scale and rotation changes,
an affine transform of 30 degrees, and image noise of 2% adited@matching.

7 Application to object recognition

The major topic of this paper is the derivation of distinetimvariant keypoints, as described
above. To demonstrate their application, we will now giverigfbdescription of their use
for object recognition in the presence of clutter and odolusMore details on applications
of these features to recognition are available in other pafiwe, 1999; Lowe, 2001; Se,
Lowe and Little, 2002).

Object recognition is performed by first matching each kéypmdependently to the
database of keypoints extracted from training images. Mdriiese initial matches will be
incorrect due to ambiguous features or features that anse thackground clutter. Therefore,
clusters of at least 3 features are first identified that agnean object and its pose, as these
clusters have a much higher probability of being correchtivaividual feature matches.
Then, each cluster is checked by performing a detailed geaniit to the model, and the
result is used to accept or reject the interpretation.

7.1 Keypoint matching

The best candidate match for each keypoint is found by ijemg its nearest neighbor in the
database of keypoints from training images. The neareghber is defined as the keypoint
with minimum Euclidean distance for the invariant desaiptector as was described in
Section 6.

However, many features from an image will have not have amgcbmatch in the train-
ing database because they arise from background clutteeie mot detected in the training
images. Therefore, it would be useful to have a way to diséaatures that do not have
any good match to the database. A global threshold on distemthe closest feature does
not perform well, as some descriptors are much more dispdtivie than others. A more
effective measure is obtained by comparing the distanceeoflosest neighbor to that of the
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Figure 11: The probability that a match is correct can berdgteed by taking the ratio of distance
from the closest neighbor to the distance of the secondsiodising a database of 40,000 keypoints,
the solid line shows the PDF of this ratio for correct matchdsle the dotted line is for matches that
were incorrect.

second-closest neighbor. If there are multiple trainingges of the same object, then we
define the second-closest neighbor as being the closesthmithat is known to come from
a different object than the first, such as by only using imagmsvn to contain different ob-
jects. This measure performs well because correct matadebto have the closest neighbor
significantly closer than the closest incorrect match taea@hreliable matching. For false
matches, there will likely be a number of other false matahigisin similar distances due to
the high dimensionality of the feature space. We can thinthefsecond-closest match as
providing an estimate of the density of false matches withig portion of the feature space
and at the same time identifying specific instances of feanmbiguity.

Figure 11 shows the value of this measure for real image ddta. probability density
functions for correct and incorrect matches are shown imseof the ratio of closest to
second-closest neighbors of each keypoint. Matches foctwtiie nearest neighbor was
a correct match have a PDF that is centered at a much lower ttetn that for incorrect
matches. For our object recognition implementation, weatepll matches in which the
distance ratio is greater than 0.8, which eliminates 90%®false matches while discarding
less than 5% of the correct matches. This figure was gendogitethtching images following
random scale and orientation change, a depth rotation ofeg@eds, and addition of 2%
image noise, against a database of 40,000 keypoints.

7.2 Efficient nearest neighbor indexing

No algorithms are known that can identify the exact neareghibors of points in high di-
mensional spaces that are any more efficient than exhagsiareh. Our keypoint descriptor
has a 128-dimensional feature vector, and the best algmijtbuch as the k-d tree (Friedman
et al., 1977) provide no speedup over exhaustive search for moreabaut 10 dimensional
spaces. Therefore, we have used an approximate algoritdiad ¢he Best-Bin-First (BBF)
algorithm (Beis and Lowe, 1997). This is approximate in teese that it returns the closest
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neighbor with high probability.

The BBF algorithm uses a modified search ordering for theeel @lgorithm so that bins
in feature space are searched in the order of their closettndie from the query location.
This priority search order was first examined by Arya and Mdil993), and they provide
further study of its computational properties in (Amstzal., 1998). This search order requires
the use of a heap-based priority queue for efficient deteatiwn of the search order. An
approximate answer can be returned with low cost by cuttfhfudher search after a specific
number of the nearest bins have been explored. In our impl&tien, we cut off search after
checking the first 200 nearest-neighbor candidates. Foradbdse of 100,000 keypoints, this
provides a speedup over exact nearest neighbor search by 2lmoders of magnitude yet
results in less than a 5% loss in the number of correct matcies reason the BBF algorithm
works particularly well for this problem is that we only catsr matches in which the nearest
neighbor is less than 0.8 times the distance to the seccar@steneighbor (as described in
the previous section), and therefore there is no need tdlgxaaive the most difficult cases
in which many neighbors are at very similar distances.

7.3 Clustering with the Hough transform

To maximize the performance of object recognition for smahighly occluded objects, we
wish to identify objects with the fewest possible numberegttire matches. We have found
that reliable recognition is possible with as few as 3 fezguA typical image contains 2,000
or more features which may come from many different objest&@ll as background clutter.
While the distance ratio test described in Section 7.1 vidivaus to discard many of the
false matches arising from background clutter, this do¢seroove matches from other valid
objects, and we often still need to identify correct subeétaatches containing less than 1%
inliers among 99% outliers. Many well-known robust fittingetinods, such as RANSAC or
Least Median of Squares, perform poorly when the percentligs falls much below 50%.
Fortunately, much better performance can be obtained Istaring features in pose space
using the Hough transform (Hough, 1962; Ballard, 1981; Gdm1990).

The Hough transform identifies clusters of features with asigent interpretation by
using each feature to vote for all object poses that are stamiwith the feature. When
clusters of features are found to vote for the same pose obpatty the probability of the
interpretation being correct is much higher than for angkarieature. Each of our keypoints
specifies 4 parameters: 2D location, scale, and orientadiwth each matched keypoint in the
database has a record of the keypoint’s parameters retatitre training image in which it
was found. Therefore, we can create a Hough transform enmtdigiing the model location,
orientation, and scale from the match hypothesis. Thisigtied has large error bounds,
as the similarity transform implied by these 4 parametersnly an approximation to the
full 6 degree-of-freedom pose space for a 3D object and ales dot account for any non-
rigid deformations. Therefore, we use broad bin sizes of &freks for orientation, a factor
of 2 for scale, and 0.25 times the maximum projected traimingge dimension (using the
predicted scale) for location. To avoid the problem of bamdeffects in bin assignment,
each keypoint match votes for the 2 closest bins in each dilmengiving a total of 16
entries for each hypothesis and further broadening the zosge.

In most implementations of the Hough transform, a multi-gitsional array is used to
represent the bins. However, many of the potential binsnertiain empty, and it is difficult
to compute the range of possible bin values due to their ralkeendence (for example,
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the dependency of location discretization on the selectatey These problems can be
avoided by using a pseudo-random hash function of the biregaio insert votes into a one-
dimensional hash table, in which collisions are easily ctet#

7.4 Solution for affine parameters

The Hough transform is used to identify all clusters witheatdt 3 entries in a bin. Each such
cluster is then subject to a geometric verification procedawhich a least-squares solution
is performed for the best affine projection parametersirajahe training image to the new
image.

An affine transformation correctly accounts for 3D rotatioha planar surface under
orthographic projection, but the approximation can be goor3D rotation of non-planar
objects. A more general solution would be to solve for thedamental matrix (Luong and
Faugeras, 1996; Hartley and Zisserman, 2000). Howeverndafuental matrix solution
requires at least 7 point matches as compared to only 3 faffime solution and in practice
requires even more matches for good stability. We would tik@erform recognition with
as few as 3 feature matches, so the affine solution providesterlstarting point and we
can account for errors in the affine approximation by allayfar large residual errors. If
we imagine placing a sphere around an object, then rotatfidcheosphere by 30 degrees
will move no point within the sphere by more than 0.25 timess phojected diameter of the
sphere. For the examples of typical 3D objects used in thigmpan affine solution works
well given that we allow residual errors up to 0.25 times theximum projected dimension
of the object. A more general approach is given in (Brown andi¢, 2002), in which the
initial solution is based on a similarity transform, whidten progresses to solution for the
fundamental matrix in those cases in which a sufficient nurobeatches are found.

The affine transformation of a model pointy]” to an image poinfu v]” can be written

HEESIHEE

where the model translation s, ¢,]7 and the affine rotation, scale, and stretch are repre-
sented by then; parameters.

We wish to solve for the transformation parameters, so theon above can be rewrit-
ten to gather the unknowns into a column vector:
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This equation shows a single match, but any number of furtretiches can be added, with
each match contributing two more rows to the first and lastimaft least 3 matches are
needed to provide a solution.

We can write this linear system as

Ax=Db
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Figure 12: The training images for two objects are shown enl¢ft. These can be recognized in a
cluttered image with extensive occlusion, shown in the rieid@he results of recognition are shown
on the right. A parallelogram is drawn around each recogh@gect showing the boundaries of the
original training image under the affine transformatiorved for during recognition. Smaller squares
indicate the keypoints that were used for recognition.

The least-squares solution for the parameteran be determined by solving the correspond-
ing normal equations,
x = [ATA]71ATD,

which minimizes the sum of the squares of the distances frenptojected model locations
to the corresponding image locations. This least-squgpsach could readily be extended
to solving for 3D pose and internal parameters of articaladed flexible objects (Lowe,
1991).

Outliers can now be removed by checking for agreement betwaeh image feature and
the model. Given the more accurate least-squares solwiemow require each match to
agree within half the error range that was used for the patersién the Hough transform
bins. If fewer than 3 points remain after discarding outljethen the match is rejected.
As outliers are discarded, the least-squares solution-$®iked with the remaining points,
and the process iterated. In addition, a top-down matchivase is used to add any further
matches that agree with the projected model position. Tinegehave been missed from the
Hough transform bin due to the similarity transform appmoation or other errors.

The final decision to accept or reject a model hypothesisdedan a detailed probabilis-
tic model given in a previous paper (Lowe, 2001). This metfid computes the expected
number of false matches to the model pose, given the projsize of the model, the number
of features within the region, and the accuracy of the fit. A&aan analysis then gives the
probability that the object is present based on the actualben of matching features found.
We accept a model if the final probability for a correct intetation is greater than 0.98.
For objects that project to small regions of an image, 3 featimay be sufficient for reli-
able recognition. For large objects covering most of a Hedektured image, the expected
number of false matches is higher, and as many as 10 featuoh@samay be necessary.

8 Recognition examples

Figure 12 shows an example of object recognition for a dletteand occluded image con-
taining 3D objects. The training images of a toy train andag fare shown on the left.
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Figure 13: This example shows location recognition withtoenplex scene. The training images for
locations are shown at the upper left and the 640x315 piseineage taken from a different viewpoint
is on the upper right. The recognized regions are shown ofother image, with keypoints shown
as squares and an outer parallelogram showing the bousdabditiee training images under the affine
transform used for recognition.

The middle image (of size 600x480 pixels) contains instamé¢hese objects hidden behind
others and with extensive background clutter so that detecf the objects may not be im-
mediate even for human vision. The image on the right shoe$itlal correct identification
superimposed on a reduced contrast version of the imagek&ypoints that were used for
recognition are shown as squares with an extra line to iteliocdentation. The sizes of the
squares correspond to the image regions used to consteudetitriptor. An outer parallel-
ogram is also drawn around each instance of recognitiom igitsides corresponding to the
boundaries of the training images projected under the fiffialestransformation determined
during recognition.

Another potential application of the approach is to pla@®gaition, in which a mobile
device or vehicle could identify its location by recogngifamiliar locations. Figure 13 gives
an example of this application, in which training imagestafesn of a number of locations.
As shown on the upper left, these can even be of such seenoghgistinctive items as a
wooden wall or a tree with trash bins. The test image (of sif@ly 315 pixels) on the upper
right was taken from a viewpoint rotated about 30 degreegratthe scene from the original
positions, yet the training image locations are easily getxed.
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All steps of the recognition process can be implementedieffily, so the total time
to recognize all objects in Figures 12 or 13 is less than OcBra#s on a 2GHz Pentium 4
processor. We have implemented these algorithms on a laptoputer with attached video
camera, and have tested them extensively over a wide rarmgaditions. In general, textured
planar surfaces can be identified reliably over a rotatioddpth of up to 50 degrees in any
direction and under almost any illumination conditions iir@vide sufficient light and do not
produce excessive glare. For 3D objects, the range of ootatidepth for reliable recognition
is only about 30 degrees in any direction and illuminatioaraye is more disruptive. For these
reasons, 3D object recognition is best performed by integrdeatures from multiple views,
such as with local feature view clustering (Lowe, 2001).

These keypoints have also been applied to the problem ot tobalization and map-
ping, which has been presented in detail in other papersL(&eg and Little, 2001). In this
application, a trinocular stereo system is used to deterrBD estimates for keypoint loca-
tions. Keypoints are used only when they appear in all 3 imagth consistent disparities,
resulting in very few outliers. As the robot moves, it lozak itself using feature matches to
the existing 3D map, and then incrementally adds featurdgetmap while updating their 3D
positions using a Kalman filter. This provides a robust arcigate solution to the problem
of robot localization in unknown environments. This worlslaso addressed the problem of
place recognition, in which a robot can be switched on andgeize its location anywhere
within a large map (Se, Lowe and Little, 2002), which is ealént to a 3D implementation
of object recognition.

9 Conclusions

The SIFT keypoints described in this paper are particulaggful due to their distinctive-
ness, which enables the correct match for a keypoint to leeteel from a large database of
other keypoints. This distinctiveness is achieved by abisma high-dimensional vector
representing the image gradients within a local region efithage. The keypoints have been
shown to be invariant to image rotation and scale and robursisa a substantial range of
affine distortion, addition of noise, and change in illuntioa. Large numbers of keypoints
can be extracted from typical images, which leads to rolasstin extracting small objects
among clutter. The fact that keypoints are detected ovengplaie range of scales means that
small local features are available for matching small agghllyioccluded objects, while large
keypoints perform well for images subject to noise and blureir computation is efficient,
so that several thousand keypoints can be extracted fropieatymage with near real-time
performance on standard PC hardware.

This paper has also presented methods for using the kegdoimbbject recognition. The
approach we have described uses approximate nearesboeigiokup, a Hough transform
for identifying clusters that agree on object pose, legstages pose determination, and fi-
nal verification. Other potential applications includewieatching for 3D reconstruction,
motion tracking and segmentation, robot localization, gm@anorama assembly, epipolar
calibration, and any others that require identification aftching locations between images.

There are many directions for further research in derivimmgriant and distinctive image
features. Systematic testing is needed on data sets witBDuwiewpoint and illumination
changes. The features described in this paper use only aaini@moe intensity image, so fur-
ther distinctiveness could be derived from including ilimation-invariant color descriptors
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(Funt and Finlayson, 1995; Brown and Lowe, 2002). Similddgal texture measures appear
to play an important role in human vision and could be incaajpex into feature descriptors
in a more general form than the single spatial frequency bgetie current descriptors. An
attractive aspect of the invariant local feature approacimatching is that there is no need
to select just one feature type, and the best results arg liebe obtained by using many
different features, all of which can contribute useful nm&te and improve overall robustness.

Another direction for future research will be to individlyalearn features that are suited
to recognizing particular objects categories. This willgaaticularly important for generic
object classes that must cover a broad range of possibleaggpu®s. The research of We-
ber, Welling, and Perona (2000) and Fergus, Perona, andriiss (2003) has shown the
potential of this approach by learning small sets of locatdees that are suited to recogniz-
ing generic classes of objects. In the long term, feature @t likely to contain both prior
and learned features that will be used according to the ahuduraining data that has been
available for various object classes.
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