http://people.csail.mit.edu/torralba/courses/6.869/6.869. computervision.htm

Lecture 16
 3D

3D from pixel values

D. Hoiem, A.A. Efros, and M. Hebert, "Automatic Photo Pop-up". SIGGRAPH 2005.

A. Saxena, M. Sun, A. Y. Ng. "Learning 3-D Scene Structure from a Single Still Ima In ICCV workshop on 3D Representation for Recognition (3dRR-07), 2007.

Measuring height

Humans label cues for 3D

Y. Horry, K.I. Anjyo and K. Arai. "Tour Into the Picture: Using a spidery mesh use interface to make animation from a single image". ACM SIGGRAPH 1997

A. Criminisi, I. Reid, and A. Zisserman. "Single View Metrology". ICCV, Kerkyra, Greece, 1999.

Reasoning about spatial relationships between objects

1. LEFT OF
2. RIGHT OF
3. BESIDE (alongside, next to)
4. ABOVE (over, higher than, on top of)
5. BELOW (under, underneath, lower than)
6. BEHIND (in back of)
7. IN FRONT OF
8. NEAR (close to, next to?)
9. FAR
10. TOUCHING
11. BETWEEN
12. INSIDE (within)
13. OUTSIDE

Ballard \& Brown, 1982

Freeman, 1974

Guzman, 1969

have any suggestions.

Label as many objects and regions as you can in this image

Sign in (why?)
With your help, there are
91348 labelled objects in the database (more stats)

Instructions (Get more help)
Use your mouse to click around the boundary of some objects in this image. You will then be asked to enter the name of the object (examples: car, window).

Labeling tools

Polygons in this image (XML)

Tool went online July 1st, 2005 250,000 object annotations Labelme.csail.mit.edu

Polygon quality

Testing

Most common labels:
test
adksdsa
woileife

Online Hooligans
 Do not try this at home

Overlapping segments

(tree - building)
Transparent and wiry objects

Key idea: analyzs overlap statistics of labeled objects

$$
\begin{aligned}
& \text { Object - parts } \\
& \text { relations }
\end{aligned}
$$

Completed objects behind occlusions

- Occlusion relations
- Support - object relations

Depth ordering

The object on the foreground has more control points in the shared segment (95\%)

Depth ordering

http://labelme.csail.mit.edu/LabeIMeToolbox/index.html

How to infer the geometry of a scene?

Scene layout assumptions

Assumption: objects stand on ground plane

Camera and ground

Camera and ground

Image formation model

Image formation model

$$
\mathrm{x}=\mathrm{PX}
$$

$$
\mathbf{K}=\left(\begin{array}{ccc}
\alpha_{x} f & s & p_{x} \\
0 & \alpha_{y} f & p_{y} \\
0 & 0 & 1
\end{array}\right)
$$

$\tan \theta=\frac{v}{f}$
f=focal length
(ax,ay) = pixels size = ?
s=skew $=(1,1)$
$=0$
(px,py) $=$ principal point $=(0,0)$ image center

Unknowns: f(focal length), v (horizon line), Cz (camera height)

Camera and ground

- Assume camera is held level with ground
- Camera parameters: camera height, horizon line, focal length
- Can relate ground and image planes via homography

Standing objects

- Standing objects represented by vertical piecewise-connected planes
- 3D coordinates on standing planes related to ground plane via the contact line

Attached objects

- 3D coordinates of attached objects determined by object it is attached to

Recovering scene geometry

- Polygon types
- Ground
- Standing
- Attached
- Edge types
- Contact
- Attached
- Occluded
- Camera parameters

Recovering scene geometry

- Polygon types
- Ground
- Standing
- Attached
- Edge types
- Contact
- Attached
- Occluded
- Camera parameters

Relationships between polygons

Part-of

Supported-by

Standing
Ground

Cues for attachment relationships

1. Consistency of relationship across database

bullding, windows

building, person

Cues for attachment relationships

2. High relative overlap between part and object
area(part Oobject)
area(part)

3. Probability of coincidental overlap

$$
\begin{aligned}
& \text { area(object) } \\
& \hline \text { area(image) }
\end{aligned}
$$

Learned/inferred attachment relationships

Learned/inferred attachment relationships

Relationships between polygons

Part-of

Supported-by

Standing
Ground

Recover support relations

Over entire dataset, count number of images where bottom of object is inside support object

Learned/inferred support relations

Learned/inferred support relations

Learned/inferred support relations

Recovering scene geometry

- Polygon types
- Ground
- Standing
- Attached
- Edge types
- Contact
- Attached
- Occluded

- Camera parameters

Edge types

Ground and attached objects have attached edges

Standing objects can have contact or occluding edges

Cues for contact edges:

Recovering scene geometry

- Polygon types
- Ground
- Standing
- Attached
- Edge types
- Contact
- Attached
- Occluded
- Camera parameters

Absolute (monocular) 3D cues

Are there any monocular cues that give us absolute 3D information from a single image?

Camera parameters

- Assume
- flat ground plane
- camera roll is negligible (consider pitch only)
- Camera parameters: height and orientation

Camera parameters

$$
\frac{t-b}{X}=\frac{v-b}{c}
$$

X - World object height (in meters)
C - World camera height (in meters)

Camera parameters

Human height distribution
$1.7+/-0.085 \mathrm{~m}$ (National Center for Health Statistics)

Car height distribution
1.5 +/- 0.19 m
(automatically learned)

$\bigcirc \circ \circ$

Slide from J-F Lalonde

Object heights

Database image

Pixel heights

Real heights

Recovered object heights

(Average, in meters)

Standing objects

Person	1.65	Wheel	0.62
Car	1.46	Window	2.16
Bicycle	1.05	Arm	0.72
Trash	1.24	Windshield	0.47
Parking meter	1.58	Head	0.41
Fence	1.89	Tail light	0.34
Van	1.89	Headlight	0.26
Firehydrant	0.87	License plate	0.23
Cone	0.74	Mirror	0.22

System outputs

System outputs

System outputs

System outputs

System outputs

Toy example...

Submitted images

Accuracy of 3D outputs

Evaluation with range data [Saxena et al. 2007] Relative error: 0.29
Computed over 5-70 meter range (46\% of pixels)

Input image

Range scan

System output

How does labeling accuracy affect outputs?

a) input image

b) building and road

c) building, road, cars
d) wrong labeling

Labeling 3D

There are $\mathbf{2 8 7 5 6 9}$ labelled objects
Polygons in this image (IMG, XML) road building $\frac{\text { sky }}{\text { pole }}$ pole pole window window window pole pole pole pole pole manhole doorway building bell roof window antenna sidewalk

Cut and glue!

Range scanners, stereo cameras

Stanford dataset

Depth map

Depth map

Stereo

- Two eyes
- Depth without recognition: random dot stereogram, Julesz. The world is structured but with two eyes we can see even in random worlds.
- Hollow face illusion
- Illusion street inversed
- Simple stereo

Stereo vision

Depth for familiar objects

(Gregory 1970; Hill and Bruce 1993, 1994; Papathomas and DeCarlo 1999)

Depth without objects Random dot stereograms (Bela Julesz)

1	0	1	0	1	0	0	1	0	1
1	0	0	1	0	1	0	1	0	0
0	0	1	1	0	1	1	0	1	0
0	1	0	Y	A	A	B	8	0	1
1	1	1	\times	B	A	B	A	0	1
0	0	1	X	A	A	E	A	1	0
1	1	1	Y	8	8	A	B	0	1
1	0	0	1	1	0	1	1	0	1
1	1	0	0	1	1	0	1	1	1
0	1	0	0	0	1	1	1	1	0

1	0	1	0	1	0	0	1	0	1
1	0	0	1	0	1	0	1	0	0
0	0	1	1	0	1	1	0	1	0
0	1	0	A	A	B	B	X	0	1
1	1	1	B	A	B	A	Y	0	1
0	0	1	A	A	A	A	Y	1	0
1	1	1	B	B	A	B	X	0	1
1	0	0	1	1	0	1	1	0	1
1	1	0	0	1	1	0	1	1	1
0	1	0	0	0	1	1	1	1	0

Julesz, 1971

Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different viewpoints and display so that each eye sees only one of the images.

Invented by Sir Charles Wheatstone, 1838

Image courtesy of fisher-price.com

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

de credit: Kristen Grauman

Anaglyph pinhole camera

Autostereograms

> Exploit disparity as depth cue using single image.

(Single image random dot stereogram, Single image stereogram)

Cross-fusion

http://www.journalofvision.org/8/8/5/article.aspx
A typical disparity-defined stimulus from the experiment, showing a horizontally oriented half-cylinder. This figure is designed for cross-fusion, but in the experiment the stimuli were viewed through LCD-shuttered glasses and the large dots were not present.

http://www.psy.ritsumei.ac.jp/~akitaoka/stereo3e.html

Estimating depth with stereo

- Stereo: shape from "motion" between two views
- We'll need to consider:
- Info on camera pose ("calibration")
- Image point correspondences

Camera parameters

Extrinsic parameters:
 Camera frame $1 \leftrightarrow \rightarrow$ Camera frame 2

Intrinsic parameters: Image coordinates relative to camera $\leftrightarrow \rightarrow$ Pixel coordinates

- Extrinsic params: rotation matrix and translation vector
- Intrinsic params: focal length, pixel sizes (mm), image center point, radial distortion parameters

We'll assume for now that these parameters are given and fixed.

Geometry for a simple stereo system

- First, assuming parallel optical axes, known camera parameters (i.e., calibrated cameras):

Geometry for a simple stereo system

- Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). We can triangulate via:

Similar triangles (p_{1}, P, p_{r}) and $\left(O_{1}, P, O_{r}\right)$:

$$
\frac{T+x_{l}-x_{r}}{Z-f}=\frac{T}{Z}
$$

$$
Z=f \frac{T}{r-r}
$$

disparity

Depth from disparity

General case, with calibrated cameras

- The two cameras need not have parallel optical axes.

Vs.

Stereo correspondence constraints

- Given p in left image, where can corresponding point p ' be?

Stereo correspondence constraints

Slide credit: Kristen Grauman

Epipolar constraint

Geometry of two views constrains where the corresponding pixel for some image point in the first view must occur in the second view:

- It must be on the line carved out by a plane connecting the world point and optical centers.

Epipolar constraint

This is useful because it reduces the correspondence problem to a 1D search along an epipolar line.

Epipolar geometry

http://www.ai.sri.com/~luong/research/Meta3DViewer/
EpipolarGeo.html

Epipolar geometry: terms

- Baseline: line joining the camera centers
- Epipole: point of intersection of baseline with the image plane
- Epipolar plane: plane containing baseline and world point
- Epipolar line: intersection of epipolar plane with the image plane
- All epipolar lines intersect at the epipole
- An epipolar plane intersects the left and right image planes in epipolar lines

Example

Slide credit: Kristen Grauman

Example: converging cameras

Figure from Hartley \& Zisserman
Slide credit: Kristen Grauman

Example: parallel cameras

Where are the epipoles?

Figure from Hartley \& Zisserman

- So far, we have the explanation in terms of geometry.
- Now, how to express the epipolar constraints algebraically?

Stereo geometry, with calibrated cameras

Main idea

Stereo geometry, with calibrated cameras

If the stereo rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to get to camera reference frame 2.

Rotation: 3×3 matrix R; translation: 3 vector T.

Stereo geometry, with calibrated cameras

If the stereo rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to get to camera reference frame $2 \cdot \mathbf{X}_{c}^{\prime}=\mathbf{R} \mathbf{X}_{c}+\mathbf{T}$

An aside: cross product

$$
\begin{array}{ll}
\vec{a} \times \vec{b}=\vec{c} & \vec{a} \cdot \vec{c}=0 \\
& \vec{b} \cdot \vec{c}=0
\end{array}
$$

Vector cross product takes two vectors and returns a third vector that's perpendicular to both inputs.

So here, c is perpendicular to both a and b, which means the dot product $=0$.

From geometry to algebra

$$
=\mathbf{T} \times \mathbf{R X}
$$

Another aside:

Matrix form of cross product

$$
\vec{a} \times \vec{b}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\vec{c} \quad \begin{aligned}
& \vec{a} \cdot \vec{c}=0 \\
& \vec{b} \cdot \vec{c}=0
\end{aligned}
$$

Can be expressed as a matrix multiplication.

$$
\left[a_{x}\right]=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right] \quad \vec{a} \times \vec{b}=\left[a_{x}\right] \vec{b}
$$

From geometry to algebra

Normal to the plane

$$
\begin{aligned}
\mathbf{X}^{\prime} \cdot\left(\mathbf{T} \times \mathbf{X}^{\prime}\right) & =\mathbf{X}^{\prime} \cdot(\mathbf{T} \times \mathbf{R X}) \\
& =0
\end{aligned}
$$

$$
=\mathbf{T} \times \mathbf{R X}
$$

Essential matrix

$$
\begin{aligned}
& \mathbf{X}^{\prime} \cdot(\mathbf{T} \times \mathbf{R X})=0 \\
& \mathbf{X}^{\prime} \cdot\left(\mathbf{T}_{x} \mathbf{R X}\right)=0 \\
& \text { Let } \mathbf{E}=\mathbf{T}_{x} \mathbf{R} \\
& \mathbf{X}^{\prime T} \mathbf{E X}=0
\end{aligned}
$$

E is called the essential matrix, and it relates corresponding image points between both cameras, given the rotation and translation.

If we observe a point in one image, its position in other image is constrained to lie on line defined by above.

Note: these points are in camera coordinate systems.

Essential matrix example: parallel cameras

R =
$\mathbf{p}=[x, y, f]$
$\mathrm{T}=$
$\mathbf{E}=\left[\mathbf{T}_{\mathrm{x}}\right] \mathbf{R}=$

$$
\mathbf{p}^{\prime \mathrm{T}} \mathbf{E p}=0
$$

For the parallel cameras, image of any point must lie on same horizontal line in each image plane.

What about when cameras' optical axes are not parallel?

Stereo image rectification

In practice, it is convenient if image scanlines (rows) are the epipolar lines.

Stereo image rectification: example

Multiview geometry

Structure from motion (SfM)

Dense multiview stereo

- N. Snavely, S. M. Seitz, R. Szeliski, 2007• Y. Furukawa, J. Ponce, 2009
- M. Vergauwen, L. Van Gool, 2006
- M. Brown, D. Lowe, 2005
- F. Schaffalitzky, A. Zisserman, 2002
- P. Labatut, J.-P. Pons, R. Keriven, 2009
- M. Goesele, N. Snavely, B. Curless,
H. Hoppe, S. M. Seitz., 2007

