Lecture 16
3D
projections
3D from pixel values

Measuring height

\[v \approx (b \times b_0) \times (v_x \times v_y) \]

vanishing line (horizon)

\[t \approx (v \times t_0) \times (r \times b) \]
Humans label cues for 3D

Reasoning about spatial relationships between objects

1. LEFT OF
2. RIGHT OF
3. BESIDE (alongside, next to)
4. ABOVE (over, higher than, on top of)
5. BELOW (under, underneath, lower than)
6. BEHIND (in back of)
7. IN FRONT OF
8. NEAR (close to, next to?)
9. FAR
10. TOUCHING
11. BETWEEN
12. INSIDE (within)
13. OUTSIDE

Freeman, 1974

Ballard & Brown, 1982

Guzman, 1969
Tool went online July 1st, 2005
250,000 object annotations
Labelme.csail.mit.edu

Polygon quality
Testing

Most common labels:
- test
- adksdsas
- woiieie
...

Online Hooligans
Do not try this at home
Overlapping segments

Key idea: analyze overlap statistics of labeled objects

- (tree – building)
- Transparent and wiry objects
- (Car – door)
- Object – parts relations
- (Car – road)
- Completed objects behind occlusions
 - Occlusion relations
 - Support – object relations
The object on the foreground has more control points in the shared segment (95%)
Depth ordering

http://labelme.csail.mit.edu/LabelMeToolbox/index.html
How to infer the geometry of a scene?
Scene layout assumptions

Assumption: objects stand on ground plane
Camera and ground
Image formation model

3D -> 2D

\[X = (X, Y, Z, 1)^T \quad x = (x, y, 1)^T \]

\[x = PX \]

\[P = \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} [I \mid -C] \]
Image formation model

\[X = (X, Y, Z, 1)^T \]
\[x = (x, y, 1)^T \]
\[x = PX \]

\[P = \begin{bmatrix} K & R & [I \mid -C] \end{bmatrix} \]

\[C = (0, 0, C_z)^T \]

\[f = \text{focal length} \]
\[(ax, ay) = \text{pixels size} \]
\[s = \text{skew} \]
\[(px, py) = \text{principal point} \]
\[= 0 \]
\[= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \]

\[\tan \theta = \frac{v}{f} \]

Unknowns: \(f \) (focal length), \(v \) (horizon line), \(C_z \) (camera height)
Camera and ground

- Assume camera is held level with ground
- Camera parameters: camera height, horizon line, focal length
- Can relate ground and image planes via homography
Standing objects

- Standing objects represented by vertical piecewise-connected planes
- 3D coordinates on standing planes related to ground plane via the contact line
Attached objects

- 3D coordinates of attached objects determined by object it is attached to
Recovering scene geometry

- Polygon types
 - Ground
 - Standing
 - Attached

- Edge types
 - Contact
 - Attached
 - Occluded

- Camera parameters
Recovering scene geometry

- **Polygon types**
 - Ground
 - Standing
 - Attached

- **Edge types**
 - Contact
 - Attached
 - Occluded

- **Camera parameters**
Relationships between polygons

Part-of

Supported-by

Attached

Standing / Ground / Attached

Standing

Ground
Cues for attachment relationships

1. Consistency of relationship across database

building, windows

building, person
Cues for attachment relationships

2. High relative overlap between part and object

\[
\frac{\text{area}(\text{part} \cap \text{object})}{\text{area}(\text{part})}
\]

3. Probability of coincidental overlap

\[
\frac{\text{area}(\text{object})}{\text{area}(\text{image})}
\]

e.g. building
Learned/inferred attachment relationships
Learned/inferred attachment relationships
Relationships between polygons

Part-of

Supported-by

Attached
Standing / Ground / Attached
Standing
Ground
Recover support relations

Over entire dataset, count number of images where bottom of object is inside support object

\[P_{support} = \frac{N_s}{N + \alpha} \]
Learned/inferred support relations
Learned/inferred support relations
 Recovering scene geometry

- Polygon types
 - Ground
 - Standing
 - Attached
- Edge types
 - Contact
 - Attached
 - Occluded
- Camera parameters
Edge types

Ground and attached objects have attached edges

Standing objects can have contact or occluding edges

Cues for contact edges:
- Orientation
- Proximity to ground
- Length
Recovering scene geometry

- Polygon types
 - Ground
 - Standing
 - Attached
- Edge types
 - Contact
 - Attached
 - Occluded
- Camera parameters
Absolute (monocular) 3D cues

Are there any monocular cues that give us absolute 3D information from a single image?
Camera parameters

- Assume
 - flat ground plane
 - camera roll is negligible (consider pitch only)

- Camera parameters: height and orientation
Camera parameters

\[
\frac{t-b}{X} = \frac{v-b}{C}
\]

\(X\) – World object height (in meters)
\(C\) – World camera height (in meters)
Camera parameters

Human height distribution
1.7 +/- 0.085 m
(National Center for Health Statistics)

Car height distribution
1.5 +/- 0.19 m
(automatically learned)
Object heights

Database image

Pixel heights

Real heights

Slide from J-F Lalonde
Recovered object heights

(Average, in meters)

<table>
<thead>
<tr>
<th>Standing objects</th>
<th>Attached objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person</td>
<td>Wheel</td>
</tr>
<tr>
<td>1.65</td>
<td>0.62</td>
</tr>
<tr>
<td>Car</td>
<td>Window</td>
</tr>
<tr>
<td>1.46</td>
<td>2.16</td>
</tr>
<tr>
<td>Bicycle</td>
<td>Arm</td>
</tr>
<tr>
<td>1.05</td>
<td>0.72</td>
</tr>
<tr>
<td>Trash</td>
<td>Windshield</td>
</tr>
<tr>
<td>1.24</td>
<td>0.47</td>
</tr>
<tr>
<td>Parking meter</td>
<td>Head</td>
</tr>
<tr>
<td>1.58</td>
<td>0.41</td>
</tr>
<tr>
<td>Fence</td>
<td>Tail light</td>
</tr>
<tr>
<td>1.89</td>
<td>0.34</td>
</tr>
<tr>
<td>Van</td>
<td>Headlight</td>
</tr>
<tr>
<td>1.89</td>
<td>0.26</td>
</tr>
<tr>
<td>Firehydrant</td>
<td>License plate</td>
</tr>
<tr>
<td>0.87</td>
<td>0.23</td>
</tr>
<tr>
<td>Cone</td>
<td>Mirror</td>
</tr>
<tr>
<td>0.74</td>
<td>0.22</td>
</tr>
</tbody>
</table>
System outputs
System outputs
System outputs
System outputs
System outputs
Toy example…
Accuracy of 3D outputs

Evaluation with range data [Saxena et al. 2007]
Relative error: 0.29
Computed over 5-70 meter range (46% of pixels)
How does labeling accuracy affect outputs?

- a) input image
- b) building and road
- c) building, road, cars
- d) wrong labeling
Cut and glue!
Range scanners, stereo cameras

Stanford dataset

Depth map

Depth map
Stereo

• Two eyes
• Depth without recognition: random dot stereogram, Julesz. The world is structured but with two eyes we can see even in random worlds.
• Hollow face illusion
• Illusion street inversed
• Simple stereo
Stereo vision

~6cm

~50cm
Depth for familiar objects

(Gregory 1970; Hill and Bruce 1993, 1994; Papathomas and DeCarlo 1999)
Depth without objects

Random dot stereograms (Bela Julesz)

Julesz, 1971
Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different viewpoints and display so that each eye sees only one of the images.

Invented by Sir Charles Wheatstone, 1838

Image courtesy of fisher-price.com

Slide credit: Kristen Grauman
Anaglyph pinhole camera
Autostereograms

Exploit disparity as depth cue using single image.

(Single image random dot stereogram, Single image stereogram)

Images from magiceye.com

Slide credit: Kristen Grauman
A typical disparity-defined stimulus from the experiment, showing a horizontally oriented half-cylinder. This figure is designed for cross-fusion, but in the experiment the stimuli were viewed through LCD-shuttered glasses and the large dots were not present.
http://www.psy.ritsumei.ac.jp/~akitaoka/stereo3e.html
Estimating depth with stereo

- **Stereo**: shape from “motion” between two views
- We’ll need to consider:
 - Info on camera pose (“calibration”)
 - Image point correspondences

Slide credit: Kristen Grauman
Camera parameters

- **Extrinsic** params: rotation matrix and translation vector
- **Intrinsic** params: focal length, pixel sizes (mm), image center point, radial distortion parameters

We’ll assume for now that these parameters are given and fixed.
Geometry for a simple stereo system

• First, assuming parallel optical axes, known camera parameters (i.e., calibrated cameras):
Geometry for a simple stereo system

- Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). We can triangulate via:

 Similar triangles \((p_l, P, p_r)\) and \((O_l, P, O_r)\):

 \[
 \frac{T + x_l - x_r}{Z - f} = \frac{T}{Z}
 \]

 \[Z = f \frac{T}{x_r - x_l}\]

 disparity

Slide credit: Kristen Grauman
Depth from disparity

\[(x', y') = (x + D(x, y), y) \]

Slide credit: Kristen Grauman
General case, with calibrated cameras

- The two cameras need not have parallel optical axes.

Slide credit: Kristen Grauman
Stereo correspondence constraints

- Given p in left image, where can corresponding point p' be?
Stereo correspondence constraints
Geometry of two views constrains where the corresponding pixel for some image point in the first view must occur in the second view:

- It must be on the line carved out by a plane connecting the world point and optical centers.

Why is this useful?
Epipolar constraint

This is useful because it reduces the correspondence problem to a 1D search along an epipolar line.

Image from Andrew Zisserman

Slide credit: Kristen Grauman
Epipolar geometry

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Slide credit: Kristen Grauman
Epipolar geometry: terms

- **Baseline**: line joining the camera centers
- **Epipole**: point of intersection of baseline with the image plane
- **Epipolar plane**: plane containing baseline and world point
- **Epipolar line**: intersection of epipolar plane with the image plane

- All epipolar lines intersect at the epipole
- An epipolar plane intersects the left and right image planes in epipolar lines

Slide credit: Kristen Grauman
Example

Slide credit: Kristen Grauman
Example: converging cameras

Figure from Hartley & Zisserman

Slide credit: Kristen Grauman
Example: parallel cameras

Where are the epipoles?
• So far, we have the explanation in terms of geometry.
• Now, how to express the epipolar constraints algebraically?
Stereo geometry, with calibrated cameras

Main idea

Slide credit: Kristen Grauman
If the stereo rig is calibrated, we know:
how to rotate and translate camera reference frame 1 to get to camera reference frame 2.
Rotation: 3 x 3 matrix R; translation: 3 vector T.

Slide credit: Kristen Grauman
If the stereo rig is calibrated, we know:
how to rotate and translate camera reference frame 1 to
get to camera reference frame 2. $\mathbf{X}'_c = \mathbf{RX}_c + \mathbf{T}$

Slide credit: Kristen Grauman
An aside: cross product

\[
\vec{a} \times \vec{b} = \vec{c}
\]

\[
\vec{a} \cdot \vec{c} = 0
\]

\[
\vec{b} \cdot \vec{c} = 0
\]

Vector cross product takes two vectors and returns a third vector that’s perpendicular to both inputs.

So here, \(\vec{c} \) is perpendicular to both \(\vec{a} \) and \(\vec{b} \), which means the dot product = 0.

Slide credit: Kristen Grauman
From geometry to algebra

\[X' = RX + T \]

\[T \times X' = \text{Normal to the plane} = T \times RX \]

\[X' \cdot (T \times X') = X' \cdot (T \times RX) = 0 \]

Slide credit: Kristen Grauman
Another aside:
Matrix form of cross product

\[\vec{a} \times \vec{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \vec{c} \]

\[\vec{a} \cdot \vec{c} = 0 \]
\[\vec{b} \cdot \vec{c} = 0 \]

Can be expressed as a matrix multiplication.

\[[a_x] = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \]

\[\vec{a} \times \vec{b} = [a_x] \vec{b} \]

Slide credit: Kristen Grauman
From geometry to algebra

\[X' = RX + T \]

\[T \times X' = T \times RX + T \times T \]

Normal to the plane

\[= T \times RX \]

\[X' \cdot (T \times X') = X' \cdot (T \times RX) = 0 \]

Slide credit: Kristen Grauman
Essential matrix

\[
\mathbf{X}' \cdot (\mathbf{T} \times \mathbf{R}\mathbf{X}) = 0
\]

\[
\mathbf{X}' \cdot (\mathbf{T}_x \mathbf{R}\mathbf{X}) = 0
\]

Let \(\mathbf{E} = \mathbf{T}_x\mathbf{R} \)

\[
\mathbf{X}'^T \mathbf{E}\mathbf{X} = 0
\]

\(\mathbf{E} \) is called the essential matrix, and it relates corresponding image points between both cameras, given the rotation and translation.

If we observe a point in one image, its position in other image is constrained to lie on line defined by above.

Note: these points are in camera coordinate systems.
Essential matrix example: parallel cameras

For the parallel cameras, image of any point must lie on same horizontal line in each image plane.

\[
R = \quad p = [x, y, f]
\]

\[
T = \quad p' = [x', y', f]
\]

\[
E = [T_x]R = \quad p'^T Ep = 0
\]

Slide credit: Kristen Grauman
What about when cameras’ optical axes are not parallel?

Slide credit: Kristen Grauman
Stereo image rectification

In practice, it is convenient if image scanlines (rows) are the epipolar lines.

reproject image planes onto a common plane parallel to the line between optical centers. Pixel motion is horizontal after this transformation. Two homographies (3x3 transforms), one for each input image reprojection.

Adapted from Li Zhang

Slide credit: Kristen Grauman
Stereo image rectification: example
Multiview geometry

Structure from motion (SfM)

- N. Snavely, S. M. Seitz, R. Szeliski, 2007
- M. Vergauwen, L. Van Gool, 2006
- M. Brown, D. Lowe, 2005
- F. Schaffalitzky, A. Zisserman, 2002

Dense multiview stereo

- Y. Furukawa, J. Ponce, 2009
- P. Labatut, J.-P. Pons, R. Keriven, 2009